Properties

Label 208.3.bd.b.33.1
Level $208$
Weight $3$
Character 208.33
Analytic conductor $5.668$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,3,Mod(33,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.33"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 208.bd (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,6,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.66758949869\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 33.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 208.33
Dual form 208.3.bd.b.145.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.732051 - 1.26795i) q^{3} +(-1.09808 - 1.09808i) q^{5} +(-10.9282 - 2.92820i) q^{7} +(3.42820 + 5.93782i) q^{9} +(-4.92820 - 18.3923i) q^{11} +(-11.2583 - 6.50000i) q^{13} +(-2.19615 + 0.588457i) q^{15} +(0.866025 - 0.500000i) q^{17} +(-5.80385 + 21.6603i) q^{19} +(-11.7128 + 11.7128i) q^{21} +(-11.6603 - 6.73205i) q^{23} -22.5885i q^{25} +23.2154 q^{27} +(7.66987 - 13.2846i) q^{29} +(-0.928203 - 0.928203i) q^{31} +(-26.9282 - 7.21539i) q^{33} +(8.78461 + 15.2154i) q^{35} +(-6.50000 - 24.2583i) q^{37} +(-16.4833 + 9.51666i) q^{39} +(-64.5070 + 17.2846i) q^{41} +(35.0718 - 20.2487i) q^{43} +(2.75575 - 10.2846i) q^{45} +(-9.60770 + 9.60770i) q^{47} +(68.4160 + 39.5000i) q^{49} -1.46410i q^{51} +80.7128 q^{53} +(-14.7846 + 25.6077i) q^{55} +(23.2154 + 23.2154i) q^{57} +(93.9615 + 25.1769i) q^{59} +(-8.35641 - 14.4737i) q^{61} +(-20.0770 - 74.9282i) q^{63} +(5.22501 + 19.5000i) q^{65} +(12.3397 - 3.30642i) q^{67} +(-17.0718 + 9.85641i) q^{69} +(-13.2679 + 49.5167i) q^{71} +(86.0596 - 86.0596i) q^{73} +(-28.6410 - 16.5359i) q^{75} +215.426i q^{77} -73.2820 q^{79} +(-13.8590 + 24.0045i) q^{81} +(-24.3923 - 24.3923i) q^{83} +(-1.50000 - 0.401924i) q^{85} +(-11.2295 - 19.4500i) q^{87} +(13.9878 + 52.2032i) q^{89} +(104.000 + 104.000i) q^{91} +(-1.85641 + 0.497423i) q^{93} +(30.1577 - 17.4115i) q^{95} +(35.5814 - 132.792i) q^{97} +(92.3154 - 92.3154i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 6 q^{5} - 16 q^{7} - 14 q^{9} + 8 q^{11} + 12 q^{15} - 44 q^{19} + 64 q^{21} - 12 q^{23} + 176 q^{27} + 48 q^{29} + 24 q^{31} - 80 q^{33} - 48 q^{35} - 26 q^{37} - 156 q^{39} - 116 q^{41}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.732051 1.26795i 0.244017 0.422650i −0.717838 0.696210i \(-0.754868\pi\)
0.961855 + 0.273561i \(0.0882014\pi\)
\(4\) 0 0
\(5\) −1.09808 1.09808i −0.219615 0.219615i 0.588721 0.808336i \(-0.299632\pi\)
−0.808336 + 0.588721i \(0.799632\pi\)
\(6\) 0 0
\(7\) −10.9282 2.92820i −1.56117 0.418315i −0.628138 0.778102i \(-0.716183\pi\)
−0.933034 + 0.359788i \(0.882849\pi\)
\(8\) 0 0
\(9\) 3.42820 + 5.93782i 0.380911 + 0.659758i
\(10\) 0 0
\(11\) −4.92820 18.3923i −0.448018 1.67203i −0.707841 0.706371i \(-0.750331\pi\)
0.259823 0.965656i \(-0.416336\pi\)
\(12\) 0 0
\(13\) −11.2583 6.50000i −0.866025 0.500000i
\(14\) 0 0
\(15\) −2.19615 + 0.588457i −0.146410 + 0.0392305i
\(16\) 0 0
\(17\) 0.866025 0.500000i 0.0509427 0.0294118i −0.474312 0.880357i \(-0.657303\pi\)
0.525255 + 0.850945i \(0.323970\pi\)
\(18\) 0 0
\(19\) −5.80385 + 21.6603i −0.305466 + 1.14001i 0.627078 + 0.778956i \(0.284251\pi\)
−0.932544 + 0.361057i \(0.882416\pi\)
\(20\) 0 0
\(21\) −11.7128 + 11.7128i −0.557753 + 0.557753i
\(22\) 0 0
\(23\) −11.6603 6.73205i −0.506968 0.292698i 0.224619 0.974447i \(-0.427886\pi\)
−0.731586 + 0.681749i \(0.761220\pi\)
\(24\) 0 0
\(25\) 22.5885i 0.903538i
\(26\) 0 0
\(27\) 23.2154 0.859829
\(28\) 0 0
\(29\) 7.66987 13.2846i 0.264478 0.458090i −0.702948 0.711241i \(-0.748134\pi\)
0.967427 + 0.253151i \(0.0814669\pi\)
\(30\) 0 0
\(31\) −0.928203 0.928203i −0.0299420 0.0299420i 0.691977 0.721919i \(-0.256740\pi\)
−0.721919 + 0.691977i \(0.756740\pi\)
\(32\) 0 0
\(33\) −26.9282 7.21539i −0.816006 0.218648i
\(34\) 0 0
\(35\) 8.78461 + 15.2154i 0.250989 + 0.434725i
\(36\) 0 0
\(37\) −6.50000 24.2583i −0.175676 0.655631i −0.996436 0.0843572i \(-0.973116\pi\)
0.820760 0.571273i \(-0.193550\pi\)
\(38\) 0 0
\(39\) −16.4833 + 9.51666i −0.422650 + 0.244017i
\(40\) 0 0
\(41\) −64.5070 + 17.2846i −1.57334 + 0.421576i −0.936857 0.349713i \(-0.886279\pi\)
−0.636486 + 0.771289i \(0.719613\pi\)
\(42\) 0 0
\(43\) 35.0718 20.2487i 0.815623 0.470900i −0.0332816 0.999446i \(-0.510596\pi\)
0.848905 + 0.528546i \(0.177262\pi\)
\(44\) 0 0
\(45\) 2.75575 10.2846i 0.0612390 0.228547i
\(46\) 0 0
\(47\) −9.60770 + 9.60770i −0.204419 + 0.204419i −0.801890 0.597471i \(-0.796172\pi\)
0.597471 + 0.801890i \(0.296172\pi\)
\(48\) 0 0
\(49\) 68.4160 + 39.5000i 1.39625 + 0.806122i
\(50\) 0 0
\(51\) 1.46410i 0.0287079i
\(52\) 0 0
\(53\) 80.7128 1.52288 0.761442 0.648233i \(-0.224492\pi\)
0.761442 + 0.648233i \(0.224492\pi\)
\(54\) 0 0
\(55\) −14.7846 + 25.6077i −0.268811 + 0.465594i
\(56\) 0 0
\(57\) 23.2154 + 23.2154i 0.407288 + 0.407288i
\(58\) 0 0
\(59\) 93.9615 + 25.1769i 1.59257 + 0.426727i 0.942787 0.333394i \(-0.108194\pi\)
0.649781 + 0.760122i \(0.274861\pi\)
\(60\) 0 0
\(61\) −8.35641 14.4737i −0.136990 0.237274i 0.789366 0.613923i \(-0.210410\pi\)
−0.926356 + 0.376649i \(0.877076\pi\)
\(62\) 0 0
\(63\) −20.0770 74.9282i −0.318682 1.18934i
\(64\) 0 0
\(65\) 5.22501 + 19.5000i 0.0803848 + 0.300000i
\(66\) 0 0
\(67\) 12.3397 3.30642i 0.184175 0.0493496i −0.165553 0.986201i \(-0.552941\pi\)
0.349728 + 0.936851i \(0.386274\pi\)
\(68\) 0 0
\(69\) −17.0718 + 9.85641i −0.247417 + 0.142846i
\(70\) 0 0
\(71\) −13.2679 + 49.5167i −0.186873 + 0.697418i 0.807349 + 0.590074i \(0.200901\pi\)
−0.994222 + 0.107344i \(0.965765\pi\)
\(72\) 0 0
\(73\) 86.0596 86.0596i 1.17890 1.17890i 0.198873 0.980025i \(-0.436272\pi\)
0.980025 0.198873i \(-0.0637283\pi\)
\(74\) 0 0
\(75\) −28.6410 16.5359i −0.381880 0.220479i
\(76\) 0 0
\(77\) 215.426i 2.79774i
\(78\) 0 0
\(79\) −73.2820 −0.927621 −0.463810 0.885935i \(-0.653518\pi\)
−0.463810 + 0.885935i \(0.653518\pi\)
\(80\) 0 0
\(81\) −13.8590 + 24.0045i −0.171099 + 0.296351i
\(82\) 0 0
\(83\) −24.3923 24.3923i −0.293883 0.293883i 0.544729 0.838612i \(-0.316633\pi\)
−0.838612 + 0.544729i \(0.816633\pi\)
\(84\) 0 0
\(85\) −1.50000 0.401924i −0.0176471 0.00472852i
\(86\) 0 0
\(87\) −11.2295 19.4500i −0.129074 0.223563i
\(88\) 0 0
\(89\) 13.9878 + 52.2032i 0.157166 + 0.586553i 0.998910 + 0.0466755i \(0.0148627\pi\)
−0.841744 + 0.539877i \(0.818471\pi\)
\(90\) 0 0
\(91\) 104.000 + 104.000i 1.14286 + 1.14286i
\(92\) 0 0
\(93\) −1.85641 + 0.497423i −0.0199614 + 0.00534863i
\(94\) 0 0
\(95\) 30.1577 17.4115i 0.317449 0.183279i
\(96\) 0 0
\(97\) 35.5814 132.792i 0.366819 1.36899i −0.498120 0.867108i \(-0.665976\pi\)
0.864939 0.501878i \(-0.167357\pi\)
\(98\) 0 0
\(99\) 92.3154 92.3154i 0.932478 0.932478i
\(100\) 0 0
\(101\) 37.5666 + 21.6891i 0.371947 + 0.214744i 0.674309 0.738450i \(-0.264442\pi\)
−0.302362 + 0.953193i \(0.597775\pi\)
\(102\) 0 0
\(103\) 76.8897i 0.746502i 0.927730 + 0.373251i \(0.121757\pi\)
−0.927730 + 0.373251i \(0.878243\pi\)
\(104\) 0 0
\(105\) 25.7231 0.244982
\(106\) 0 0
\(107\) −4.83717 + 8.37822i −0.0452072 + 0.0783011i −0.887744 0.460338i \(-0.847728\pi\)
0.842536 + 0.538639i \(0.181061\pi\)
\(108\) 0 0
\(109\) −123.785 123.785i −1.13564 1.13564i −0.989223 0.146415i \(-0.953226\pi\)
−0.146415 0.989223i \(-0.546774\pi\)
\(110\) 0 0
\(111\) −35.5167 9.51666i −0.319970 0.0857357i
\(112\) 0 0
\(113\) −30.3494 52.5666i −0.268578 0.465192i 0.699917 0.714225i \(-0.253221\pi\)
−0.968495 + 0.249033i \(0.919887\pi\)
\(114\) 0 0
\(115\) 5.41154 + 20.1962i 0.0470569 + 0.175619i
\(116\) 0 0
\(117\) 89.1333i 0.761823i
\(118\) 0 0
\(119\) −10.9282 + 2.92820i −0.0918336 + 0.0246067i
\(120\) 0 0
\(121\) −209.201 + 120.782i −1.72893 + 0.998199i
\(122\) 0 0
\(123\) −25.3064 + 94.4449i −0.205743 + 0.767844i
\(124\) 0 0
\(125\) −52.2558 + 52.2558i −0.418046 + 0.418046i
\(126\) 0 0
\(127\) −147.804 85.3346i −1.16381 0.671926i −0.211596 0.977357i \(-0.567866\pi\)
−0.952214 + 0.305431i \(0.901199\pi\)
\(128\) 0 0
\(129\) 59.2923i 0.459631i
\(130\) 0 0
\(131\) 30.4589 0.232511 0.116256 0.993219i \(-0.462911\pi\)
0.116256 + 0.993219i \(0.462911\pi\)
\(132\) 0 0
\(133\) 126.851 219.713i 0.953769 1.65198i
\(134\) 0 0
\(135\) −25.4923 25.4923i −0.188832 0.188832i
\(136\) 0 0
\(137\) −244.136 65.4160i −1.78201 0.477489i −0.791065 0.611732i \(-0.790473\pi\)
−0.990948 + 0.134243i \(0.957140\pi\)
\(138\) 0 0
\(139\) −68.4589 118.574i −0.492510 0.853053i 0.507452 0.861680i \(-0.330587\pi\)
−0.999963 + 0.00862675i \(0.997254\pi\)
\(140\) 0 0
\(141\) 5.14875 + 19.2154i 0.0365159 + 0.136279i
\(142\) 0 0
\(143\) −64.0666 + 239.100i −0.448018 + 1.67203i
\(144\) 0 0
\(145\) −23.0096 + 6.16541i −0.158687 + 0.0425201i
\(146\) 0 0
\(147\) 100.168 57.8320i 0.681415 0.393415i
\(148\) 0 0
\(149\) −1.71539 + 6.40192i −0.0115127 + 0.0429659i −0.971443 0.237272i \(-0.923747\pi\)
0.959931 + 0.280238i \(0.0904134\pi\)
\(150\) 0 0
\(151\) 183.569 183.569i 1.21569 1.21569i 0.246564 0.969127i \(-0.420699\pi\)
0.969127 0.246564i \(-0.0793014\pi\)
\(152\) 0 0
\(153\) 5.93782 + 3.42820i 0.0388093 + 0.0224066i
\(154\) 0 0
\(155\) 2.03848i 0.0131515i
\(156\) 0 0
\(157\) 4.37307 0.0278539 0.0139270 0.999903i \(-0.495567\pi\)
0.0139270 + 0.999903i \(0.495567\pi\)
\(158\) 0 0
\(159\) 59.0859 102.340i 0.371609 0.643646i
\(160\) 0 0
\(161\) 107.713 + 107.713i 0.669024 + 0.669024i
\(162\) 0 0
\(163\) −188.354 50.4693i −1.15554 0.309627i −0.370360 0.928888i \(-0.620766\pi\)
−0.785185 + 0.619261i \(0.787432\pi\)
\(164\) 0 0
\(165\) 21.6462 + 37.4923i 0.131189 + 0.227226i
\(166\) 0 0
\(167\) −20.2487 75.5692i −0.121250 0.452510i 0.878429 0.477874i \(-0.158592\pi\)
−0.999678 + 0.0253635i \(0.991926\pi\)
\(168\) 0 0
\(169\) 84.5000 + 146.358i 0.500000 + 0.866025i
\(170\) 0 0
\(171\) −148.512 + 39.7935i −0.868488 + 0.232711i
\(172\) 0 0
\(173\) 52.5744 30.3538i 0.303898 0.175456i −0.340295 0.940319i \(-0.610527\pi\)
0.644193 + 0.764863i \(0.277193\pi\)
\(174\) 0 0
\(175\) −66.1436 + 246.851i −0.377963 + 1.41058i
\(176\) 0 0
\(177\) 100.708 100.708i 0.568970 0.568970i
\(178\) 0 0
\(179\) −53.0718 30.6410i −0.296490 0.171179i 0.344375 0.938832i \(-0.388091\pi\)
−0.640865 + 0.767653i \(0.721424\pi\)
\(180\) 0 0
\(181\) 230.559i 1.27381i 0.770944 + 0.636903i \(0.219785\pi\)
−0.770944 + 0.636903i \(0.780215\pi\)
\(182\) 0 0
\(183\) −24.4693 −0.133712
\(184\) 0 0
\(185\) −19.5000 + 33.7750i −0.105405 + 0.182568i
\(186\) 0 0
\(187\) −13.4641 13.4641i −0.0720005 0.0720005i
\(188\) 0 0
\(189\) −253.703 67.9794i −1.34234 0.359679i
\(190\) 0 0
\(191\) −48.6936 84.3397i −0.254940 0.441569i 0.709939 0.704263i \(-0.248722\pi\)
−0.964879 + 0.262694i \(0.915389\pi\)
\(192\) 0 0
\(193\) −11.7891 43.9974i −0.0610833 0.227966i 0.928635 0.370994i \(-0.120983\pi\)
−0.989719 + 0.143028i \(0.954316\pi\)
\(194\) 0 0
\(195\) 28.5500 + 7.64994i 0.146410 + 0.0392305i
\(196\) 0 0
\(197\) −164.806 + 44.1596i −0.836577 + 0.224160i −0.651581 0.758579i \(-0.725894\pi\)
−0.184996 + 0.982739i \(0.559227\pi\)
\(198\) 0 0
\(199\) 105.191 60.7321i 0.528598 0.305186i −0.211847 0.977303i \(-0.567948\pi\)
0.740445 + 0.672117i \(0.234615\pi\)
\(200\) 0 0
\(201\) 4.84094 18.0666i 0.0240843 0.0898838i
\(202\) 0 0
\(203\) −122.718 + 122.718i −0.604522 + 0.604522i
\(204\) 0 0
\(205\) 89.8135 + 51.8538i 0.438114 + 0.252946i
\(206\) 0 0
\(207\) 92.3154i 0.445968i
\(208\) 0 0
\(209\) 426.985 2.04299
\(210\) 0 0
\(211\) −12.0526 + 20.8756i −0.0571211 + 0.0989367i −0.893172 0.449715i \(-0.851525\pi\)
0.836051 + 0.548652i \(0.184859\pi\)
\(212\) 0 0
\(213\) 53.0718 + 53.0718i 0.249163 + 0.249163i
\(214\) 0 0
\(215\) −60.7461 16.2769i −0.282540 0.0757064i
\(216\) 0 0
\(217\) 7.42563 + 12.8616i 0.0342195 + 0.0592699i
\(218\) 0 0
\(219\) −46.1192 172.119i −0.210590 0.785932i
\(220\) 0 0
\(221\) −13.0000 −0.0588235
\(222\) 0 0
\(223\) 274.617 73.5833i 1.23146 0.329970i 0.416315 0.909220i \(-0.363321\pi\)
0.815150 + 0.579250i \(0.196655\pi\)
\(224\) 0 0
\(225\) 134.126 77.4378i 0.596117 0.344168i
\(226\) 0 0
\(227\) 1.26795 4.73205i 0.00558568 0.0208460i −0.963077 0.269227i \(-0.913232\pi\)
0.968662 + 0.248381i \(0.0798985\pi\)
\(228\) 0 0
\(229\) 217.641 217.641i 0.950397 0.950397i −0.0484292 0.998827i \(-0.515422\pi\)
0.998827 + 0.0484292i \(0.0154215\pi\)
\(230\) 0 0
\(231\) 273.149 + 157.703i 1.18246 + 0.682695i
\(232\) 0 0
\(233\) 260.862i 1.11958i 0.828635 + 0.559789i \(0.189118\pi\)
−0.828635 + 0.559789i \(0.810882\pi\)
\(234\) 0 0
\(235\) 21.1000 0.0897871
\(236\) 0 0
\(237\) −53.6462 + 92.9179i −0.226355 + 0.392059i
\(238\) 0 0
\(239\) 294.277 + 294.277i 1.23128 + 1.23128i 0.963471 + 0.267813i \(0.0863010\pi\)
0.267813 + 0.963471i \(0.413699\pi\)
\(240\) 0 0
\(241\) −170.926 45.7994i −0.709235 0.190039i −0.113872 0.993495i \(-0.536325\pi\)
−0.595363 + 0.803457i \(0.702992\pi\)
\(242\) 0 0
\(243\) 124.760 + 216.091i 0.513417 + 0.889264i
\(244\) 0 0
\(245\) −31.7520 118.500i −0.129600 0.483673i
\(246\) 0 0
\(247\) 206.133 206.133i 0.834548 0.834548i
\(248\) 0 0
\(249\) −48.7846 + 13.0718i −0.195922 + 0.0524972i
\(250\) 0 0
\(251\) 66.2910 38.2731i 0.264107 0.152482i −0.362099 0.932139i \(-0.617940\pi\)
0.626207 + 0.779657i \(0.284607\pi\)
\(252\) 0 0
\(253\) −66.3538 + 247.636i −0.262268 + 0.978798i
\(254\) 0 0
\(255\) −1.60770 + 1.60770i −0.00630469 + 0.00630469i
\(256\) 0 0
\(257\) −86.4948 49.9378i −0.336556 0.194311i 0.322192 0.946674i \(-0.395580\pi\)
−0.658748 + 0.752364i \(0.728914\pi\)
\(258\) 0 0
\(259\) 284.133i 1.09704i
\(260\) 0 0
\(261\) 105.176 0.402971
\(262\) 0 0
\(263\) −170.890 + 295.990i −0.649771 + 1.12544i 0.333407 + 0.942783i \(0.391802\pi\)
−0.983177 + 0.182653i \(0.941532\pi\)
\(264\) 0 0
\(265\) −88.6288 88.6288i −0.334448 0.334448i
\(266\) 0 0
\(267\) 76.4308 + 20.4796i 0.286258 + 0.0767025i
\(268\) 0 0
\(269\) −189.779 328.708i −0.705500 1.22196i −0.966511 0.256626i \(-0.917389\pi\)
0.261011 0.965336i \(-0.415944\pi\)
\(270\) 0 0
\(271\) −19.4256 72.4974i −0.0716813 0.267518i 0.920779 0.390085i \(-0.127554\pi\)
−0.992460 + 0.122566i \(0.960888\pi\)
\(272\) 0 0
\(273\) 208.000 55.7334i 0.761905 0.204152i
\(274\) 0 0
\(275\) −415.454 + 111.321i −1.51074 + 0.404802i
\(276\) 0 0
\(277\) 388.500 224.301i 1.40253 0.809749i 0.407876 0.913038i \(-0.366270\pi\)
0.994651 + 0.103288i \(0.0329364\pi\)
\(278\) 0 0
\(279\) 2.32944 8.69358i 0.00834923 0.0311598i
\(280\) 0 0
\(281\) −230.275 + 230.275i −0.819484 + 0.819484i −0.986033 0.166549i \(-0.946738\pi\)
0.166549 + 0.986033i \(0.446738\pi\)
\(282\) 0 0
\(283\) −251.321 145.100i −0.888058 0.512721i −0.0147514 0.999891i \(-0.504696\pi\)
−0.873307 + 0.487170i \(0.838029\pi\)
\(284\) 0 0
\(285\) 50.9845i 0.178893i
\(286\) 0 0
\(287\) 755.559 2.63261
\(288\) 0 0
\(289\) −144.000 + 249.415i −0.498270 + 0.863029i
\(290\) 0 0
\(291\) −142.326 142.326i −0.489092 0.489092i
\(292\) 0 0
\(293\) 273.731 + 73.3461i 0.934237 + 0.250328i 0.693660 0.720302i \(-0.255997\pi\)
0.240576 + 0.970630i \(0.422664\pi\)
\(294\) 0 0
\(295\) −75.5307 130.823i −0.256036 0.443468i
\(296\) 0 0
\(297\) −114.410 426.985i −0.385219 1.43766i
\(298\) 0 0
\(299\) 87.5167 + 151.583i 0.292698 + 0.506968i
\(300\) 0 0
\(301\) −442.564 + 118.585i −1.47031 + 0.393969i
\(302\) 0 0
\(303\) 55.0014 31.7551i 0.181523 0.104802i
\(304\) 0 0
\(305\) −6.71728 + 25.0692i −0.0220239 + 0.0821942i
\(306\) 0 0
\(307\) 125.503 125.503i 0.408803 0.408803i −0.472518 0.881321i \(-0.656655\pi\)
0.881321 + 0.472518i \(0.156655\pi\)
\(308\) 0 0
\(309\) 97.4923 + 56.2872i 0.315509 + 0.182159i
\(310\) 0 0
\(311\) 490.592i 1.57747i 0.614735 + 0.788733i \(0.289263\pi\)
−0.614735 + 0.788733i \(0.710737\pi\)
\(312\) 0 0
\(313\) −198.123 −0.632981 −0.316490 0.948596i \(-0.602504\pi\)
−0.316490 + 0.948596i \(0.602504\pi\)
\(314\) 0 0
\(315\) −60.2309 + 104.323i −0.191209 + 0.331184i
\(316\) 0 0
\(317\) 314.011 + 314.011i 0.990570 + 0.990570i 0.999956 0.00938556i \(-0.00298756\pi\)
−0.00938556 + 0.999956i \(0.502988\pi\)
\(318\) 0 0
\(319\) −282.133 75.5974i −0.884430 0.236982i
\(320\) 0 0
\(321\) 7.08211 + 12.2666i 0.0220626 + 0.0382136i
\(322\) 0 0
\(323\) 5.80385 + 21.6603i 0.0179686 + 0.0670596i
\(324\) 0 0
\(325\) −146.825 + 254.308i −0.451769 + 0.782487i
\(326\) 0 0
\(327\) −247.569 + 66.3360i −0.757092 + 0.202862i
\(328\) 0 0
\(329\) 133.128 76.8616i 0.404645 0.233622i
\(330\) 0 0
\(331\) 140.603 524.736i 0.424781 1.58530i −0.339619 0.940563i \(-0.610298\pi\)
0.764401 0.644742i \(-0.223035\pi\)
\(332\) 0 0
\(333\) 121.758 121.758i 0.365641 0.365641i
\(334\) 0 0
\(335\) −17.1807 9.91927i −0.0512856 0.0296098i
\(336\) 0 0
\(337\) 15.4205i 0.0457581i −0.999738 0.0228790i \(-0.992717\pi\)
0.999738 0.0228790i \(-0.00728326\pi\)
\(338\) 0 0
\(339\) −88.8691 −0.262151
\(340\) 0 0
\(341\) −12.4974 + 21.6462i −0.0366493 + 0.0634785i
\(342\) 0 0
\(343\) −240.000 240.000i −0.699708 0.699708i
\(344\) 0 0
\(345\) 29.5692 + 7.92305i 0.0857079 + 0.0229654i
\(346\) 0 0
\(347\) −232.970 403.517i −0.671385 1.16287i −0.977512 0.210882i \(-0.932367\pi\)
0.306127 0.951991i \(-0.400967\pi\)
\(348\) 0 0
\(349\) 106.538 + 397.604i 0.305266 + 1.13927i 0.932716 + 0.360611i \(0.117432\pi\)
−0.627450 + 0.778657i \(0.715901\pi\)
\(350\) 0 0
\(351\) −261.367 150.900i −0.744634 0.429915i
\(352\) 0 0
\(353\) 467.556 125.281i 1.32452 0.354905i 0.473852 0.880604i \(-0.342863\pi\)
0.850670 + 0.525700i \(0.176196\pi\)
\(354\) 0 0
\(355\) 68.9423 39.8038i 0.194204 0.112124i
\(356\) 0 0
\(357\) −4.28719 + 16.0000i −0.0120089 + 0.0448179i
\(358\) 0 0
\(359\) 254.985 254.985i 0.710263 0.710263i −0.256327 0.966590i \(-0.582512\pi\)
0.966590 + 0.256327i \(0.0825123\pi\)
\(360\) 0 0
\(361\) −122.847 70.9256i −0.340296 0.196470i
\(362\) 0 0
\(363\) 353.674i 0.974309i
\(364\) 0 0
\(365\) −189.000 −0.517808
\(366\) 0 0
\(367\) 206.435 357.555i 0.562492 0.974265i −0.434786 0.900534i \(-0.643176\pi\)
0.997278 0.0737310i \(-0.0234906\pi\)
\(368\) 0 0
\(369\) −323.776 323.776i −0.877442 0.877442i
\(370\) 0 0
\(371\) −882.046 236.344i −2.37748 0.637045i
\(372\) 0 0
\(373\) −121.325 210.141i −0.325268 0.563381i 0.656299 0.754501i \(-0.272121\pi\)
−0.981567 + 0.191121i \(0.938788\pi\)
\(374\) 0 0
\(375\) 28.0038 + 104.512i 0.0746767 + 0.278697i
\(376\) 0 0
\(377\) −172.700 + 99.7083i −0.458090 + 0.264478i
\(378\) 0 0
\(379\) −186.981 + 50.1013i −0.493353 + 0.132194i −0.496913 0.867800i \(-0.665533\pi\)
0.00356045 + 0.999994i \(0.498867\pi\)
\(380\) 0 0
\(381\) −216.400 + 124.939i −0.567979 + 0.327923i
\(382\) 0 0
\(383\) −23.9230 + 89.2820i −0.0624623 + 0.233112i −0.990099 0.140372i \(-0.955170\pi\)
0.927637 + 0.373484i \(0.121837\pi\)
\(384\) 0 0
\(385\) 236.554 236.554i 0.614425 0.614425i
\(386\) 0 0
\(387\) 240.466 + 138.833i 0.621360 + 0.358743i
\(388\) 0 0
\(389\) 493.256i 1.26801i −0.773329 0.634005i \(-0.781410\pi\)
0.773329 0.634005i \(-0.218590\pi\)
\(390\) 0 0
\(391\) −13.4641 −0.0344350
\(392\) 0 0
\(393\) 22.2975 38.6204i 0.0567366 0.0982707i
\(394\) 0 0
\(395\) 80.4693 + 80.4693i 0.203720 + 0.203720i
\(396\) 0 0
\(397\) −94.1647 25.2314i −0.237191 0.0635551i 0.138265 0.990395i \(-0.455847\pi\)
−0.375456 + 0.926840i \(0.622514\pi\)
\(398\) 0 0
\(399\) −185.723 321.682i −0.465471 0.806220i
\(400\) 0 0
\(401\) 46.2795 + 172.717i 0.115410 + 0.430716i 0.999317 0.0369460i \(-0.0117630\pi\)
−0.883907 + 0.467662i \(0.845096\pi\)
\(402\) 0 0
\(403\) 4.41670 + 16.4833i 0.0109595 + 0.0409016i
\(404\) 0 0
\(405\) 41.5770 11.1405i 0.102659 0.0275074i
\(406\) 0 0
\(407\) −414.133 + 239.100i −1.01753 + 0.587469i
\(408\) 0 0
\(409\) −159.635 + 595.767i −0.390306 + 1.45664i 0.439324 + 0.898329i \(0.355218\pi\)
−0.829630 + 0.558313i \(0.811449\pi\)
\(410\) 0 0
\(411\) −261.664 + 261.664i −0.636652 + 0.636652i
\(412\) 0 0
\(413\) −953.108 550.277i −2.30777 1.33239i
\(414\) 0 0
\(415\) 53.5692i 0.129082i
\(416\) 0 0
\(417\) −200.462 −0.480724
\(418\) 0 0
\(419\) 327.727 567.640i 0.782164 1.35475i −0.148514 0.988910i \(-0.547449\pi\)
0.930678 0.365838i \(-0.119218\pi\)
\(420\) 0 0
\(421\) 101.107 + 101.107i 0.240159 + 0.240159i 0.816916 0.576757i \(-0.195682\pi\)
−0.576757 + 0.816916i \(0.695682\pi\)
\(422\) 0 0
\(423\) −89.9859 24.1117i −0.212733 0.0570015i
\(424\) 0 0
\(425\) −11.2942 19.5622i −0.0265747 0.0460287i
\(426\) 0 0
\(427\) 48.9385 + 182.641i 0.114610 + 0.427731i
\(428\) 0 0
\(429\) 256.267 + 256.267i 0.597358 + 0.597358i
\(430\) 0 0
\(431\) 413.387 110.767i 0.959135 0.256999i 0.254901 0.966967i \(-0.417957\pi\)
0.704234 + 0.709968i \(0.251291\pi\)
\(432\) 0 0
\(433\) 671.264 387.554i 1.55026 0.895045i 0.552144 0.833749i \(-0.313810\pi\)
0.998120 0.0612959i \(-0.0195233\pi\)
\(434\) 0 0
\(435\) −9.02679 + 33.6884i −0.0207512 + 0.0774446i
\(436\) 0 0
\(437\) 213.492 213.492i 0.488541 0.488541i
\(438\) 0 0
\(439\) 445.741 + 257.349i 1.01536 + 0.586216i 0.912755 0.408507i \(-0.133950\pi\)
0.102600 + 0.994723i \(0.467284\pi\)
\(440\) 0 0
\(441\) 541.656i 1.22825i
\(442\) 0 0
\(443\) 39.4256 0.0889969 0.0444984 0.999009i \(-0.485831\pi\)
0.0444984 + 0.999009i \(0.485831\pi\)
\(444\) 0 0
\(445\) 41.9634 72.6828i 0.0942998 0.163332i
\(446\) 0 0
\(447\) 6.86156 + 6.86156i 0.0153502 + 0.0153502i
\(448\) 0 0
\(449\) −55.1314 14.7724i −0.122787 0.0329007i 0.196902 0.980423i \(-0.436912\pi\)
−0.319689 + 0.947522i \(0.603579\pi\)
\(450\) 0 0
\(451\) 635.808 + 1101.25i 1.40977 + 2.44180i
\(452\) 0 0
\(453\) −98.3744 367.138i −0.217162 0.810460i
\(454\) 0 0
\(455\) 228.400i 0.501978i
\(456\) 0 0
\(457\) 183.435 49.1513i 0.401390 0.107552i −0.0524757 0.998622i \(-0.516711\pi\)
0.453866 + 0.891070i \(0.350045\pi\)
\(458\) 0 0
\(459\) 20.1051 11.6077i 0.0438020 0.0252891i
\(460\) 0 0
\(461\) −30.0538 + 112.162i −0.0651925 + 0.243302i −0.990831 0.135107i \(-0.956862\pi\)
0.925638 + 0.378409i \(0.123529\pi\)
\(462\) 0 0
\(463\) −23.3205 + 23.3205i −0.0503683 + 0.0503683i −0.731842 0.681474i \(-0.761339\pi\)
0.681474 + 0.731842i \(0.261339\pi\)
\(464\) 0 0
\(465\) 2.58468 + 1.49227i 0.00555846 + 0.00320918i
\(466\) 0 0
\(467\) 427.482i 0.915379i −0.889112 0.457689i \(-0.848677\pi\)
0.889112 0.457689i \(-0.151323\pi\)
\(468\) 0 0
\(469\) −144.533 −0.308173
\(470\) 0 0
\(471\) 3.20131 5.54483i 0.00679683 0.0117725i
\(472\) 0 0
\(473\) −545.261 545.261i −1.15277 1.15277i
\(474\) 0 0
\(475\) 489.272 + 131.100i 1.03005 + 0.276000i
\(476\) 0 0
\(477\) 276.700 + 479.258i 0.580084 + 1.00473i
\(478\) 0 0
\(479\) 190.483 + 710.894i 0.397669 + 1.48412i 0.817187 + 0.576373i \(0.195532\pi\)
−0.419518 + 0.907747i \(0.637801\pi\)
\(480\) 0 0
\(481\) −84.5000 + 315.358i −0.175676 + 0.655631i
\(482\) 0 0
\(483\) 215.426 57.7231i 0.446016 0.119510i
\(484\) 0 0
\(485\) −184.886 + 106.744i −0.381209 + 0.220091i
\(486\) 0 0
\(487\) −55.3308 + 206.497i −0.113616 + 0.424019i −0.999180 0.0404981i \(-0.987106\pi\)
0.885564 + 0.464517i \(0.153772\pi\)
\(488\) 0 0
\(489\) −201.877 + 201.877i −0.412836 + 0.412836i
\(490\) 0 0
\(491\) 143.885 + 83.0718i 0.293044 + 0.169189i 0.639314 0.768946i \(-0.279219\pi\)
−0.346270 + 0.938135i \(0.612552\pi\)
\(492\) 0 0
\(493\) 15.3397i 0.0311151i
\(494\) 0 0
\(495\) −202.739 −0.409573
\(496\) 0 0
\(497\) 289.990 502.277i 0.583480 1.01062i
\(498\) 0 0
\(499\) −53.6359 53.6359i −0.107487 0.107487i 0.651318 0.758805i \(-0.274216\pi\)
−0.758805 + 0.651318i \(0.774216\pi\)
\(500\) 0 0
\(501\) −110.641 29.6462i −0.220840 0.0591740i
\(502\) 0 0
\(503\) −334.669 579.664i −0.665346 1.15241i −0.979191 0.202939i \(-0.934951\pi\)
0.313845 0.949474i \(-0.398383\pi\)
\(504\) 0 0
\(505\) −17.4347 65.0673i −0.0345242 0.128846i
\(506\) 0 0
\(507\) 247.433 0.488034
\(508\) 0 0
\(509\) 450.535 120.721i 0.885138 0.237172i 0.212515 0.977158i \(-0.431834\pi\)
0.672623 + 0.739986i \(0.265168\pi\)
\(510\) 0 0
\(511\) −1192.48 + 688.477i −2.33361 + 1.34731i
\(512\) 0 0
\(513\) −134.739 + 502.851i −0.262648 + 0.980217i
\(514\) 0 0
\(515\) 84.4308 84.4308i 0.163943 0.163943i
\(516\) 0 0
\(517\) 224.056 + 129.359i 0.433378 + 0.250211i
\(518\) 0 0
\(519\) 88.8822i 0.171257i
\(520\) 0 0
\(521\) 187.283 0.359469 0.179735 0.983715i \(-0.442476\pi\)
0.179735 + 0.983715i \(0.442476\pi\)
\(522\) 0 0
\(523\) −5.75129 + 9.96152i −0.0109967 + 0.0190469i −0.871471 0.490446i \(-0.836834\pi\)
0.860475 + 0.509493i \(0.170167\pi\)
\(524\) 0 0
\(525\) 264.574 + 264.574i 0.503951 + 0.503951i
\(526\) 0 0
\(527\) −1.26795 0.339746i −0.00240598 0.000644679i
\(528\) 0 0
\(529\) −173.859 301.133i −0.328656 0.569249i
\(530\) 0 0
\(531\) 172.623 + 644.238i 0.325091 + 1.21325i
\(532\) 0 0
\(533\) 838.592 + 224.700i 1.57334 + 0.421576i
\(534\) 0 0
\(535\) 14.5115 3.88835i 0.0271243 0.00726794i
\(536\) 0 0
\(537\) −77.7025 + 44.8616i −0.144697 + 0.0835411i
\(538\) 0 0
\(539\) 389.328 1452.99i 0.722316 2.69572i
\(540\) 0 0
\(541\) −99.4519 + 99.4519i −0.183830 + 0.183830i −0.793022 0.609193i \(-0.791494\pi\)
0.609193 + 0.793022i \(0.291494\pi\)
\(542\) 0 0
\(543\) 292.337 + 168.781i 0.538374 + 0.310830i
\(544\) 0 0
\(545\) 271.850i 0.498807i
\(546\) 0 0
\(547\) 554.438 1.01360 0.506799 0.862064i \(-0.330829\pi\)
0.506799 + 0.862064i \(0.330829\pi\)
\(548\) 0 0
\(549\) 57.2949 99.2377i 0.104362 0.180761i
\(550\) 0 0
\(551\) 243.233 + 243.233i 0.441440 + 0.441440i
\(552\) 0 0
\(553\) 800.841 + 214.585i 1.44818 + 0.388037i
\(554\) 0 0
\(555\) 28.5500 + 49.4500i 0.0514414 + 0.0890991i
\(556\) 0 0
\(557\) −140.766 525.346i −0.252722 0.943171i −0.969344 0.245709i \(-0.920979\pi\)
0.716622 0.697462i \(-0.245687\pi\)
\(558\) 0 0
\(559\) −526.466 −0.941801
\(560\) 0 0
\(561\) −26.9282 + 7.21539i −0.0480004 + 0.0128617i
\(562\) 0 0
\(563\) 595.510 343.818i 1.05774 0.610689i 0.132937 0.991124i \(-0.457559\pi\)
0.924807 + 0.380435i \(0.124226\pi\)
\(564\) 0 0
\(565\) −24.3963 + 91.0481i −0.0431792 + 0.161147i
\(566\) 0 0
\(567\) 221.744 221.744i 0.391082 0.391082i
\(568\) 0 0
\(569\) 411.482 + 237.569i 0.723167 + 0.417521i 0.815917 0.578169i \(-0.196232\pi\)
−0.0927503 + 0.995689i \(0.529566\pi\)
\(570\) 0 0
\(571\) 444.728i 0.778859i 0.921056 + 0.389429i \(0.127328\pi\)
−0.921056 + 0.389429i \(0.872672\pi\)
\(572\) 0 0
\(573\) −142.585 −0.248839
\(574\) 0 0
\(575\) −152.067 + 263.387i −0.264464 + 0.458065i
\(576\) 0 0
\(577\) 374.542 + 374.542i 0.649119 + 0.649119i 0.952780 0.303661i \(-0.0982091\pi\)
−0.303661 + 0.952780i \(0.598209\pi\)
\(578\) 0 0
\(579\) −64.4167 17.2604i −0.111255 0.0298107i
\(580\) 0 0
\(581\) 195.138 + 337.990i 0.335867 + 0.581738i
\(582\) 0 0
\(583\) −397.769 1484.49i −0.682280 2.54630i
\(584\) 0 0
\(585\) −97.8751 + 97.8751i −0.167308 + 0.167308i
\(586\) 0 0
\(587\) −710.582 + 190.400i −1.21053 + 0.324361i −0.806970 0.590592i \(-0.798894\pi\)
−0.403561 + 0.914953i \(0.632228\pi\)
\(588\) 0 0
\(589\) 25.4923 14.7180i 0.0432806 0.0249881i
\(590\) 0 0
\(591\) −64.6541 + 241.292i −0.109398 + 0.408278i
\(592\) 0 0
\(593\) −278.901 + 278.901i −0.470321 + 0.470321i −0.902019 0.431697i \(-0.857915\pi\)
0.431697 + 0.902019i \(0.357915\pi\)
\(594\) 0 0
\(595\) 15.2154 + 8.78461i 0.0255721 + 0.0147640i
\(596\) 0 0
\(597\) 177.836i 0.297882i
\(598\) 0 0
\(599\) −741.059 −1.23716 −0.618580 0.785722i \(-0.712292\pi\)
−0.618580 + 0.785722i \(0.712292\pi\)
\(600\) 0 0
\(601\) −320.339 + 554.844i −0.533010 + 0.923201i 0.466247 + 0.884655i \(0.345606\pi\)
−0.999257 + 0.0385458i \(0.987727\pi\)
\(602\) 0 0
\(603\) 61.9361 + 61.9361i 0.102713 + 0.102713i
\(604\) 0 0
\(605\) 362.346 + 97.0903i 0.598919 + 0.160480i
\(606\) 0 0
\(607\) −0.549981 0.952596i −0.000906065 0.00156935i 0.865572 0.500784i \(-0.166955\pi\)
−0.866478 + 0.499215i \(0.833622\pi\)
\(608\) 0 0
\(609\) 65.7644 + 245.436i 0.107987 + 0.403015i
\(610\) 0 0
\(611\) 170.617 45.7166i 0.279242 0.0748226i
\(612\) 0 0
\(613\) −84.9256 + 22.7558i −0.138541 + 0.0371219i −0.327423 0.944878i \(-0.606180\pi\)
0.188882 + 0.982000i \(0.439514\pi\)
\(614\) 0 0
\(615\) 131.496 75.9193i 0.213815 0.123446i
\(616\) 0 0
\(617\) 188.859 704.831i 0.306092 1.14235i −0.625909 0.779896i \(-0.715272\pi\)
0.932001 0.362456i \(-0.118062\pi\)
\(618\) 0 0
\(619\) −359.138 + 359.138i −0.580191 + 0.580191i −0.934956 0.354764i \(-0.884561\pi\)
0.354764 + 0.934956i \(0.384561\pi\)
\(620\) 0 0
\(621\) −270.697 156.287i −0.435906 0.251670i
\(622\) 0 0
\(623\) 611.446i 0.981455i
\(624\) 0 0
\(625\) −449.950 −0.719920
\(626\) 0 0
\(627\) 312.574 541.395i 0.498524 0.863468i
\(628\) 0 0
\(629\) −17.7583 17.7583i −0.0282326 0.0282326i
\(630\) 0 0
\(631\) 408.918 + 109.569i 0.648047 + 0.173644i 0.567846 0.823135i \(-0.307777\pi\)
0.0802015 + 0.996779i \(0.474444\pi\)
\(632\) 0 0
\(633\) 17.6462 + 30.5641i 0.0278770 + 0.0482845i
\(634\) 0 0
\(635\) 68.5960 + 256.004i 0.108025 + 0.403156i
\(636\) 0 0
\(637\) −513.500 889.408i −0.806122 1.39625i
\(638\) 0 0
\(639\) −339.506 + 90.9705i −0.531309 + 0.142364i
\(640\) 0 0
\(641\) −11.6046 + 6.69993i −0.0181039 + 0.0104523i −0.509025 0.860752i \(-0.669994\pi\)
0.490921 + 0.871204i \(0.336660\pi\)
\(642\) 0 0
\(643\) −114.161 + 426.056i −0.177545 + 0.662607i 0.818559 + 0.574422i \(0.194773\pi\)
−0.996104 + 0.0881847i \(0.971893\pi\)
\(644\) 0 0
\(645\) −65.1075 + 65.1075i −0.100942 + 0.100942i
\(646\) 0 0
\(647\) 173.976 + 100.445i 0.268896 + 0.155247i 0.628386 0.777902i \(-0.283716\pi\)
−0.359490 + 0.933149i \(0.617049\pi\)
\(648\) 0 0
\(649\) 1852.25i 2.85400i
\(650\) 0 0
\(651\) 21.7437 0.0334005
\(652\) 0 0
\(653\) −600.400 + 1039.92i −0.919448 + 1.59253i −0.119194 + 0.992871i \(0.538031\pi\)
−0.800255 + 0.599660i \(0.795302\pi\)
\(654\) 0 0
\(655\) −33.4462 33.4462i −0.0510630 0.0510630i
\(656\) 0 0
\(657\) 806.036 + 215.977i 1.22684 + 0.328732i
\(658\) 0 0
\(659\) 94.3538 + 163.426i 0.143177 + 0.247990i 0.928691 0.370853i \(-0.120935\pi\)
−0.785514 + 0.618844i \(0.787601\pi\)
\(660\) 0 0
\(661\) −58.7820 219.378i −0.0889289 0.331887i 0.907100 0.420915i \(-0.138291\pi\)
−0.996029 + 0.0890273i \(0.971624\pi\)
\(662\) 0 0
\(663\) −9.51666 + 16.4833i −0.0143539 + 0.0248617i
\(664\) 0 0
\(665\) −380.554 + 101.969i −0.572261 + 0.153337i
\(666\) 0 0
\(667\) −178.865 + 103.268i −0.268164 + 0.154825i
\(668\) 0 0
\(669\) 107.733 402.067i 0.161037 0.600996i
\(670\) 0 0
\(671\) −225.023 + 225.023i −0.335355 + 0.335355i
\(672\) 0 0
\(673\) −68.7891 39.7154i −0.102213 0.0590125i 0.448022 0.894022i \(-0.352129\pi\)
−0.550235 + 0.835010i \(0.685462\pi\)
\(674\) 0 0
\(675\) 524.400i 0.776889i
\(676\) 0 0
\(677\) −310.554 −0.458720 −0.229360 0.973342i \(-0.573663\pi\)
−0.229360 + 0.973342i \(0.573663\pi\)
\(678\) 0 0
\(679\) −777.682 + 1346.98i −1.14533 + 1.98378i
\(680\) 0 0
\(681\) −5.07180 5.07180i −0.00744757 0.00744757i
\(682\) 0 0
\(683\) 627.678 + 168.186i 0.919002 + 0.246246i 0.687159 0.726507i \(-0.258858\pi\)
0.231843 + 0.972753i \(0.425524\pi\)
\(684\) 0 0
\(685\) 196.248 + 339.912i 0.286493 + 0.496221i
\(686\) 0 0
\(687\) −116.633 435.282i −0.169772 0.633598i
\(688\) 0 0
\(689\) −908.692 524.633i −1.31886 0.761442i
\(690\) 0 0
\(691\) −294.603 + 78.9385i −0.426342 + 0.114238i −0.465609 0.884991i \(-0.654165\pi\)
0.0392664 + 0.999229i \(0.487498\pi\)
\(692\) 0 0
\(693\) −1279.16 + 738.523i −1.84583 + 1.06569i
\(694\) 0 0
\(695\) −55.0306 + 205.377i −0.0791807 + 0.295506i
\(696\) 0 0
\(697\) −47.2224 + 47.2224i −0.0677510 + 0.0677510i
\(698\) 0 0
\(699\) 330.759 + 190.964i 0.473189 + 0.273196i
\(700\) 0 0
\(701\) 173.692i 0.247778i 0.992296 + 0.123889i \(0.0395366\pi\)
−0.992296 + 0.123889i \(0.960463\pi\)
\(702\) 0 0
\(703\) 563.167 0.801090
\(704\) 0 0
\(705\) 15.4462 26.7537i 0.0219096 0.0379485i
\(706\) 0 0
\(707\) −347.026 347.026i −0.490843 0.490843i
\(708\) 0 0
\(709\) 75.2795 + 20.1711i 0.106177 + 0.0284500i 0.311516 0.950241i \(-0.399163\pi\)
−0.205339 + 0.978691i \(0.565830\pi\)
\(710\) 0 0
\(711\) −251.226 435.136i −0.353341 0.612005i
\(712\) 0 0
\(713\) 4.57437 + 17.0718i 0.00641567 + 0.0239436i
\(714\) 0 0
\(715\) 332.900 192.200i 0.465594 0.268811i
\(716\) 0 0
\(717\) 588.554 157.703i 0.820856 0.219948i
\(718\) 0 0
\(719\) 280.077 161.703i 0.389537 0.224899i −0.292423 0.956289i \(-0.594461\pi\)
0.681959 + 0.731390i \(0.261128\pi\)
\(720\) 0 0
\(721\) 225.149 840.267i 0.312273 1.16542i
\(722\) 0 0
\(723\) −183.198 + 183.198i −0.253385 + 0.253385i
\(724\) 0 0
\(725\) −300.079 173.251i −0.413902 0.238966i
\(726\) 0 0
\(727\) 642.221i 0.883385i 0.897167 + 0.441692i \(0.145622\pi\)
−0.897167 + 0.441692i \(0.854378\pi\)
\(728\) 0 0
\(729\) 115.862 0.158932
\(730\) 0 0
\(731\) 20.2487 35.0718i 0.0277000 0.0479778i
\(732\) 0 0
\(733\) −389.122 389.122i −0.530863 0.530863i 0.389966 0.920829i \(-0.372487\pi\)
−0.920829 + 0.389966i \(0.872487\pi\)
\(734\) 0 0
\(735\) −173.496 46.4881i −0.236049 0.0632491i
\(736\) 0 0
\(737\) −121.626 210.662i −0.165028 0.285837i
\(738\) 0 0
\(739\) −168.610 629.261i −0.228160 0.851504i −0.981114 0.193431i \(-0.938038\pi\)
0.752954 0.658073i \(-0.228628\pi\)
\(740\) 0 0
\(741\) −110.466 412.267i −0.149078 0.556365i
\(742\) 0 0
\(743\) 1049.62 281.244i 1.41267 0.378524i 0.529794 0.848126i \(-0.322269\pi\)
0.882878 + 0.469602i \(0.155603\pi\)
\(744\) 0 0
\(745\) 8.91343 5.14617i 0.0119643 0.00690761i
\(746\) 0 0
\(747\) 61.2154 228.459i 0.0819483 0.305835i
\(748\) 0 0
\(749\) 77.3947 77.3947i 0.103331 0.103331i
\(750\) 0 0
\(751\) −989.587 571.338i −1.31769 0.760770i −0.334336 0.942454i \(-0.608512\pi\)
−0.983357 + 0.181684i \(0.941845\pi\)
\(752\) 0 0
\(753\) 112.071i 0.148833i
\(754\) 0 0
\(755\) −403.146 −0.533968
\(756\) 0 0
\(757\) 86.6462 150.076i 0.114460 0.198250i −0.803104 0.595839i \(-0.796820\pi\)
0.917564 + 0.397589i \(0.130153\pi\)
\(758\) 0 0
\(759\) 265.415 + 265.415i 0.349691 + 0.349691i
\(760\) 0 0
\(761\) −780.638 209.171i −1.02581 0.274864i −0.293586 0.955933i \(-0.594849\pi\)
−0.732219 + 0.681069i \(0.761515\pi\)
\(762\) 0 0
\(763\) 990.277 + 1715.21i 1.29787 + 2.24798i
\(764\) 0 0
\(765\) −2.75575 10.2846i −0.00360229 0.0134439i
\(766\) 0 0
\(767\) −894.200 894.200i −1.16584 1.16584i
\(768\) 0 0
\(769\) −1341.89 + 359.557i −1.74497 + 0.467564i −0.983542 0.180680i \(-0.942170\pi\)
−0.761432 + 0.648245i \(0.775503\pi\)
\(770\) 0 0
\(771\) −126.637 + 73.1140i −0.164251 + 0.0948302i
\(772\) 0 0
\(773\) −66.4007 + 247.811i −0.0859000 + 0.320583i −0.995483 0.0949388i \(-0.969734\pi\)
0.909583 + 0.415522i \(0.136401\pi\)
\(774\) 0 0
\(775\) −20.9667 + 20.9667i −0.0270538 + 0.0270538i
\(776\) 0 0
\(777\) 360.267 + 208.000i 0.463664 + 0.267696i
\(778\) 0 0
\(779\) 1497.56i 1.92241i
\(780\) 0 0
\(781\) 976.113 1.24982
\(782\) 0 0
\(783\) 178.059 308.407i 0.227406 0.393879i
\(784\) 0 0
\(785\) −4.80196 4.80196i −0.00611715 0.00611715i
\(786\) 0 0
\(787\) 406.750 + 108.988i 0.516836 + 0.138486i 0.507803 0.861473i \(-0.330458\pi\)
0.00903330 + 0.999959i \(0.497125\pi\)
\(788\) 0 0
\(789\) 250.200 + 433.359i 0.317110 + 0.549251i
\(790\) 0 0
\(791\) 177.738 + 663.328i 0.224701 + 0.838594i
\(792\) 0 0
\(793\) 217.267i 0.273981i
\(794\) 0 0
\(795\) −177.258 + 47.4960i −0.222966 + 0.0597434i
\(796\) 0 0
\(797\) 502.996 290.405i 0.631112 0.364373i −0.150071 0.988675i \(-0.547950\pi\)
0.781183 + 0.624303i \(0.214617\pi\)
\(798\) 0 0
\(799\) −3.51666 + 13.1244i −0.00440133 + 0.0164260i
\(800\) 0 0
\(801\) −262.020 + 262.020i −0.327116 + 0.327116i
\(802\) 0 0
\(803\) −2006.95 1158.72i −2.49932 1.44298i
\(804\) 0 0
\(805\) 236.554i 0.293856i
\(806\) 0 0
\(807\) −555.713 −0.688616
\(808\) 0 0
\(809\) 584.845 1012.98i 0.722924 1.25214i −0.236899 0.971534i \(-0.576131\pi\)
0.959823 0.280607i \(-0.0905356\pi\)
\(810\) 0 0
\(811\) −559.177 559.177i −0.689491 0.689491i 0.272629 0.962119i \(-0.412107\pi\)
−0.962119 + 0.272629i \(0.912107\pi\)
\(812\) 0 0
\(813\) −106.144 28.4411i −0.130558 0.0349829i
\(814\) 0 0
\(815\) 151.408 + 262.246i 0.185776 + 0.321774i
\(816\) 0 0
\(817\) 235.041 + 877.184i 0.287688 + 1.07367i
\(818\) 0 0
\(819\) −261.000 + 974.067i −0.318682 + 1.18934i
\(820\) 0 0
\(821\) 657.570 176.195i 0.800938 0.214611i 0.164942 0.986303i \(-0.447256\pi\)
0.635996 + 0.771693i \(0.280590\pi\)
\(822\) 0 0
\(823\) −386.718 + 223.272i −0.469888 + 0.271290i −0.716193 0.697902i \(-0.754117\pi\)
0.246305 + 0.969192i \(0.420784\pi\)
\(824\) 0 0
\(825\) −162.985 + 608.267i −0.197557 + 0.737293i
\(826\) 0 0
\(827\) −364.833 + 364.833i −0.441153 + 0.441153i −0.892399 0.451247i \(-0.850980\pi\)
0.451247 + 0.892399i \(0.350980\pi\)
\(828\) 0 0
\(829\) 1060.17 + 612.090i 1.27886 + 0.738348i 0.976638 0.214891i \(-0.0689396\pi\)
0.302218 + 0.953239i \(0.402273\pi\)
\(830\) 0 0
\(831\) 656.798i 0.790370i
\(832\) 0 0
\(833\) 79.0000 0.0948379
\(834\) 0 0
\(835\) −60.7461 + 105.215i −0.0727499 + 0.126006i
\(836\) 0 0
\(837\) −21.5486 21.5486i −0.0257450 0.0257450i
\(838\) 0 0
\(839\) 1283.45 + 343.899i 1.52973 + 0.409891i 0.922932 0.384962i \(-0.125785\pi\)
0.606802 + 0.794853i \(0.292452\pi\)
\(840\) 0 0
\(841\) 302.846 + 524.545i 0.360102 + 0.623716i
\(842\) 0 0
\(843\) 123.404 + 460.550i 0.146387 + 0.546323i
\(844\) 0 0
\(845\) 67.9251 253.500i 0.0803848 0.300000i
\(846\) 0 0
\(847\) 2639.86 707.349i 3.11672 0.835122i
\(848\) 0 0
\(849\) −367.959 + 212.441i −0.433403 + 0.250225i
\(850\) 0 0
\(851\) −87.5167 + 326.617i −0.102840 + 0.383803i
\(852\) 0 0
\(853\) −787.174 + 787.174i −0.922830 + 0.922830i −0.997229 0.0743990i \(-0.976296\pi\)
0.0743990 + 0.997229i \(0.476296\pi\)
\(854\) 0 0
\(855\) 206.773 + 119.381i 0.241840 + 0.139626i
\(856\) 0 0
\(857\) 673.732i 0.786152i 0.919506 + 0.393076i \(0.128589\pi\)
−0.919506 + 0.393076i \(0.871411\pi\)
\(858\) 0 0
\(859\) −487.167 −0.567132 −0.283566 0.958953i \(-0.591518\pi\)
−0.283566 + 0.958953i \(0.591518\pi\)
\(860\) 0 0
\(861\) 553.108 958.010i 0.642401 1.11267i
\(862\) 0 0
\(863\) 499.061 + 499.061i 0.578287 + 0.578287i 0.934431 0.356144i \(-0.115909\pi\)
−0.356144 + 0.934431i \(0.615909\pi\)
\(864\) 0 0
\(865\) −91.0615 24.3999i −0.105273 0.0282079i
\(866\) 0 0
\(867\) 210.831 + 365.169i 0.243173 + 0.421187i
\(868\) 0 0
\(869\) 361.149 + 1347.83i 0.415591 + 1.55101i
\(870\) 0 0
\(871\) −160.417 42.9835i −0.184175 0.0493496i
\(872\) 0 0
\(873\) 910.474 243.961i 1.04293 0.279451i
\(874\) 0 0
\(875\) 724.077 418.046i 0.827517 0.477767i
\(876\) 0 0
\(877\) 243.962 910.479i 0.278178 1.03817i −0.675503 0.737357i \(-0.736074\pi\)
0.953682 0.300818i \(-0.0972597\pi\)
\(878\) 0 0
\(879\) 293.384 293.384i 0.333771 0.333771i
\(880\) 0 0
\(881\) 405.459 + 234.092i 0.460226 + 0.265711i 0.712139 0.702038i \(-0.247727\pi\)
−0.251914 + 0.967750i \(0.581060\pi\)
\(882\) 0 0
\(883\) 782.536i 0.886224i −0.896466 0.443112i \(-0.853874\pi\)
0.896466 0.443112i \(-0.146126\pi\)
\(884\) 0 0
\(885\) −221.169 −0.249909
\(886\) 0 0
\(887\) −60.4102 + 104.633i −0.0681062 + 0.117963i −0.898068 0.439857i \(-0.855029\pi\)
0.829961 + 0.557821i \(0.188362\pi\)
\(888\) 0 0
\(889\) 1365.35 + 1365.35i 1.53583 + 1.53583i
\(890\) 0 0
\(891\) 509.797 + 136.600i 0.572163 + 0.153311i
\(892\) 0 0
\(893\) −152.344 263.867i −0.170597 0.295483i
\(894\) 0 0
\(895\) 24.6307 + 91.9230i 0.0275203 + 0.102707i
\(896\) 0 0
\(897\) 256.267 0.285693
\(898\) 0 0
\(899\) −19.4500 + 5.21162i −0.0216352 + 0.00579713i
\(900\) 0 0
\(901\) 69.8993 40.3564i 0.0775797 0.0447907i
\(902\) 0 0
\(903\) −173.620 + 647.959i −0.192270 + 0.717562i
\(904\) 0 0
\(905\) 253.171 253.171i 0.279747 0.279747i
\(906\) 0 0
\(907\) −761.867 439.864i −0.839985 0.484966i 0.0172739 0.999851i \(-0.494501\pi\)
−0.857259 + 0.514885i \(0.827835\pi\)
\(908\) 0 0
\(909\) 297.419i 0.327193i
\(910\) 0 0
\(911\) −1522.73 −1.67150 −0.835748 0.549113i \(-0.814966\pi\)
−0.835748 + 0.549113i \(0.814966\pi\)
\(912\) 0 0
\(913\) −328.420 + 568.841i −0.359716 + 0.623046i
\(914\) 0 0
\(915\) 26.8691 + 26.8691i 0.0293651 + 0.0293651i
\(916\) 0 0
\(917\) −332.862 89.1900i −0.362990 0.0972628i
\(918\) 0 0
\(919\) −648.196 1122.71i −0.705328 1.22166i −0.966573 0.256391i \(-0.917467\pi\)
0.261245 0.965272i \(-0.415867\pi\)
\(920\) 0 0
\(921\) −67.2566 251.005i −0.0730257 0.272535i
\(922\) 0 0
\(923\) 471.233 471.233i 0.510545 0.510545i
\(924\) 0 0
\(925\) −547.958 + 146.825i −0.592387 + 0.158730i
\(926\) 0 0
\(927\) −456.558 + 263.594i −0.492511 + 0.284351i
\(928\) 0 0
\(929\) 188.056 701.833i 0.202428 0.755472i −0.787790 0.615944i \(-0.788775\pi\)
0.990218 0.139528i \(-0.0445585\pi\)
\(930\) 0 0
\(931\) −1252.66 + 1252.66i −1.34550 + 1.34550i
\(932\) 0 0
\(933\) 622.046 + 359.138i 0.666716 + 0.384929i
\(934\) 0 0
\(935\) 29.5692i 0.0316248i
\(936\) 0 0
\(937\) −388.015 −0.414104 −0.207052 0.978330i \(-0.566387\pi\)
−0.207052 + 0.978330i \(0.566387\pi\)
\(938\) 0 0
\(939\) −145.036 + 251.210i −0.154458 + 0.267529i
\(940\) 0 0
\(941\) −698.815 698.815i −0.742630 0.742630i 0.230453 0.973083i \(-0.425979\pi\)
−0.973083 + 0.230453i \(0.925979\pi\)
\(942\) 0 0
\(943\) 868.529 + 232.722i 0.921028 + 0.246789i
\(944\) 0 0
\(945\) 203.938 + 353.231i 0.215808 + 0.373790i
\(946\) 0 0
\(947\) 345.135 + 1288.06i 0.364451 + 1.36015i 0.868164 + 0.496277i \(0.165300\pi\)
−0.503714 + 0.863871i \(0.668033\pi\)
\(948\) 0 0
\(949\) −1528.27 + 409.500i −1.61041 + 0.431507i
\(950\) 0 0
\(951\) 628.022 168.278i 0.660380 0.176948i
\(952\) 0 0
\(953\) −929.569 + 536.687i −0.975414 + 0.563155i −0.900882 0.434063i \(-0.857079\pi\)
−0.0745313 + 0.997219i \(0.523746\pi\)
\(954\) 0 0
\(955\) −39.1422 + 146.081i −0.0409866 + 0.152964i
\(956\) 0 0
\(957\) −302.390 + 302.390i −0.315977 + 0.315977i
\(958\) 0 0
\(959\) 2476.41 + 1429.76i 2.58229 + 1.49089i
\(960\) 0 0
\(961\) 959.277i 0.998207i
\(962\) 0 0
\(963\) −66.3312 −0.0688797
\(964\) 0 0
\(965\) −35.3672 + 61.2578i −0.0366500 + 0.0634796i
\(966\) 0 0
\(967\) 640.508 + 640.508i 0.662366 + 0.662366i 0.955937 0.293571i \(-0.0948438\pi\)
−0.293571 + 0.955937i \(0.594844\pi\)
\(968\) 0 0
\(969\) 31.7128 + 8.49742i 0.0327274 + 0.00876927i
\(970\) 0 0
\(971\) 23.6781 + 41.0117i 0.0243853 + 0.0422366i 0.877961 0.478733i \(-0.158904\pi\)
−0.853575 + 0.520970i \(0.825570\pi\)
\(972\) 0 0
\(973\) 400.923 + 1496.27i 0.412049 + 1.53779i
\(974\) 0 0
\(975\) 214.967 + 372.333i 0.220479 + 0.381880i
\(976\) 0 0
\(977\) 827.625 221.761i 0.847108 0.226982i 0.190945 0.981601i \(-0.438845\pi\)
0.656163 + 0.754619i \(0.272178\pi\)
\(978\) 0 0
\(979\) 891.202 514.536i 0.910319 0.525573i
\(980\) 0 0
\(981\) 310.652 1159.37i 0.316669 1.18182i
\(982\) 0 0
\(983\) 303.513 303.513i 0.308762 0.308762i −0.535667 0.844429i \(-0.679940\pi\)
0.844429 + 0.535667i \(0.179940\pi\)
\(984\) 0 0
\(985\) 229.460 + 132.479i 0.232954 + 0.134496i
\(986\) 0 0
\(987\) 225.066i 0.228031i
\(988\) 0 0
\(989\) −545.261 −0.551326
\(990\) 0 0
\(991\) 413.373 715.983i 0.417127 0.722486i −0.578522 0.815667i \(-0.696370\pi\)
0.995649 + 0.0931813i \(0.0297036\pi\)
\(992\) 0 0
\(993\) −562.410 562.410i −0.566375 0.566375i
\(994\) 0 0
\(995\) −182.196 48.8193i −0.183112 0.0490646i
\(996\) 0 0
\(997\) −666.761 1154.86i −0.668768 1.15834i −0.978249 0.207434i \(-0.933489\pi\)
0.309481 0.950906i \(-0.399845\pi\)
\(998\) 0 0
\(999\) −150.900 563.167i −0.151051 0.563730i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.3.bd.b.33.1 4
4.3 odd 2 104.3.v.b.33.1 4
13.2 odd 12 inner 208.3.bd.b.145.1 4
52.15 even 12 104.3.v.b.41.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.3.v.b.33.1 4 4.3 odd 2
104.3.v.b.41.1 yes 4 52.15 even 12
208.3.bd.b.33.1 4 1.1 even 1 trivial
208.3.bd.b.145.1 4 13.2 odd 12 inner