Properties

Label 208.3.bd.b.145.1
Level $208$
Weight $3$
Character 208.145
Analytic conductor $5.668$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,3,Mod(33,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.33"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 208.bd (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,6,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.66758949869\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 145.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 208.145
Dual form 208.3.bd.b.33.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.732051 + 1.26795i) q^{3} +(-1.09808 + 1.09808i) q^{5} +(-10.9282 + 2.92820i) q^{7} +(3.42820 - 5.93782i) q^{9} +(-4.92820 + 18.3923i) q^{11} +(-11.2583 + 6.50000i) q^{13} +(-2.19615 - 0.588457i) q^{15} +(0.866025 + 0.500000i) q^{17} +(-5.80385 - 21.6603i) q^{19} +(-11.7128 - 11.7128i) q^{21} +(-11.6603 + 6.73205i) q^{23} +22.5885i q^{25} +23.2154 q^{27} +(7.66987 + 13.2846i) q^{29} +(-0.928203 + 0.928203i) q^{31} +(-26.9282 + 7.21539i) q^{33} +(8.78461 - 15.2154i) q^{35} +(-6.50000 + 24.2583i) q^{37} +(-16.4833 - 9.51666i) q^{39} +(-64.5070 - 17.2846i) q^{41} +(35.0718 + 20.2487i) q^{43} +(2.75575 + 10.2846i) q^{45} +(-9.60770 - 9.60770i) q^{47} +(68.4160 - 39.5000i) q^{49} +1.46410i q^{51} +80.7128 q^{53} +(-14.7846 - 25.6077i) q^{55} +(23.2154 - 23.2154i) q^{57} +(93.9615 - 25.1769i) q^{59} +(-8.35641 + 14.4737i) q^{61} +(-20.0770 + 74.9282i) q^{63} +(5.22501 - 19.5000i) q^{65} +(12.3397 + 3.30642i) q^{67} +(-17.0718 - 9.85641i) q^{69} +(-13.2679 - 49.5167i) q^{71} +(86.0596 + 86.0596i) q^{73} +(-28.6410 + 16.5359i) q^{75} -215.426i q^{77} -73.2820 q^{79} +(-13.8590 - 24.0045i) q^{81} +(-24.3923 + 24.3923i) q^{83} +(-1.50000 + 0.401924i) q^{85} +(-11.2295 + 19.4500i) q^{87} +(13.9878 - 52.2032i) q^{89} +(104.000 - 104.000i) q^{91} +(-1.85641 - 0.497423i) q^{93} +(30.1577 + 17.4115i) q^{95} +(35.5814 + 132.792i) q^{97} +(92.3154 + 92.3154i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 6 q^{5} - 16 q^{7} - 14 q^{9} + 8 q^{11} + 12 q^{15} - 44 q^{19} + 64 q^{21} - 12 q^{23} + 176 q^{27} + 48 q^{29} + 24 q^{31} - 80 q^{33} - 48 q^{35} - 26 q^{37} - 156 q^{39} - 116 q^{41}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.732051 + 1.26795i 0.244017 + 0.422650i 0.961855 0.273561i \(-0.0882014\pi\)
−0.717838 + 0.696210i \(0.754868\pi\)
\(4\) 0 0
\(5\) −1.09808 + 1.09808i −0.219615 + 0.219615i −0.808336 0.588721i \(-0.799632\pi\)
0.588721 + 0.808336i \(0.299632\pi\)
\(6\) 0 0
\(7\) −10.9282 + 2.92820i −1.56117 + 0.418315i −0.933034 0.359788i \(-0.882849\pi\)
−0.628138 + 0.778102i \(0.716183\pi\)
\(8\) 0 0
\(9\) 3.42820 5.93782i 0.380911 0.659758i
\(10\) 0 0
\(11\) −4.92820 + 18.3923i −0.448018 + 1.67203i 0.259823 + 0.965656i \(0.416336\pi\)
−0.707841 + 0.706371i \(0.750331\pi\)
\(12\) 0 0
\(13\) −11.2583 + 6.50000i −0.866025 + 0.500000i
\(14\) 0 0
\(15\) −2.19615 0.588457i −0.146410 0.0392305i
\(16\) 0 0
\(17\) 0.866025 + 0.500000i 0.0509427 + 0.0294118i 0.525255 0.850945i \(-0.323970\pi\)
−0.474312 + 0.880357i \(0.657303\pi\)
\(18\) 0 0
\(19\) −5.80385 21.6603i −0.305466 1.14001i −0.932544 0.361057i \(-0.882416\pi\)
0.627078 0.778956i \(-0.284251\pi\)
\(20\) 0 0
\(21\) −11.7128 11.7128i −0.557753 0.557753i
\(22\) 0 0
\(23\) −11.6603 + 6.73205i −0.506968 + 0.292698i −0.731586 0.681749i \(-0.761220\pi\)
0.224619 + 0.974447i \(0.427886\pi\)
\(24\) 0 0
\(25\) 22.5885i 0.903538i
\(26\) 0 0
\(27\) 23.2154 0.859829
\(28\) 0 0
\(29\) 7.66987 + 13.2846i 0.264478 + 0.458090i 0.967427 0.253151i \(-0.0814669\pi\)
−0.702948 + 0.711241i \(0.748134\pi\)
\(30\) 0 0
\(31\) −0.928203 + 0.928203i −0.0299420 + 0.0299420i −0.721919 0.691977i \(-0.756740\pi\)
0.691977 + 0.721919i \(0.256740\pi\)
\(32\) 0 0
\(33\) −26.9282 + 7.21539i −0.816006 + 0.218648i
\(34\) 0 0
\(35\) 8.78461 15.2154i 0.250989 0.434725i
\(36\) 0 0
\(37\) −6.50000 + 24.2583i −0.175676 + 0.655631i 0.820760 + 0.571273i \(0.193550\pi\)
−0.996436 + 0.0843572i \(0.973116\pi\)
\(38\) 0 0
\(39\) −16.4833 9.51666i −0.422650 0.244017i
\(40\) 0 0
\(41\) −64.5070 17.2846i −1.57334 0.421576i −0.636486 0.771289i \(-0.719613\pi\)
−0.936857 + 0.349713i \(0.886279\pi\)
\(42\) 0 0
\(43\) 35.0718 + 20.2487i 0.815623 + 0.470900i 0.848905 0.528546i \(-0.177262\pi\)
−0.0332816 + 0.999446i \(0.510596\pi\)
\(44\) 0 0
\(45\) 2.75575 + 10.2846i 0.0612390 + 0.228547i
\(46\) 0 0
\(47\) −9.60770 9.60770i −0.204419 0.204419i 0.597471 0.801890i \(-0.296172\pi\)
−0.801890 + 0.597471i \(0.796172\pi\)
\(48\) 0 0
\(49\) 68.4160 39.5000i 1.39625 0.806122i
\(50\) 0 0
\(51\) 1.46410i 0.0287079i
\(52\) 0 0
\(53\) 80.7128 1.52288 0.761442 0.648233i \(-0.224492\pi\)
0.761442 + 0.648233i \(0.224492\pi\)
\(54\) 0 0
\(55\) −14.7846 25.6077i −0.268811 0.465594i
\(56\) 0 0
\(57\) 23.2154 23.2154i 0.407288 0.407288i
\(58\) 0 0
\(59\) 93.9615 25.1769i 1.59257 0.426727i 0.649781 0.760122i \(-0.274861\pi\)
0.942787 + 0.333394i \(0.108194\pi\)
\(60\) 0 0
\(61\) −8.35641 + 14.4737i −0.136990 + 0.237274i −0.926356 0.376649i \(-0.877076\pi\)
0.789366 + 0.613923i \(0.210410\pi\)
\(62\) 0 0
\(63\) −20.0770 + 74.9282i −0.318682 + 1.18934i
\(64\) 0 0
\(65\) 5.22501 19.5000i 0.0803848 0.300000i
\(66\) 0 0
\(67\) 12.3397 + 3.30642i 0.184175 + 0.0493496i 0.349728 0.936851i \(-0.386274\pi\)
−0.165553 + 0.986201i \(0.552941\pi\)
\(68\) 0 0
\(69\) −17.0718 9.85641i −0.247417 0.142846i
\(70\) 0 0
\(71\) −13.2679 49.5167i −0.186873 0.697418i −0.994222 0.107344i \(-0.965765\pi\)
0.807349 0.590074i \(-0.200901\pi\)
\(72\) 0 0
\(73\) 86.0596 + 86.0596i 1.17890 + 1.17890i 0.980025 + 0.198873i \(0.0637283\pi\)
0.198873 + 0.980025i \(0.436272\pi\)
\(74\) 0 0
\(75\) −28.6410 + 16.5359i −0.381880 + 0.220479i
\(76\) 0 0
\(77\) 215.426i 2.79774i
\(78\) 0 0
\(79\) −73.2820 −0.927621 −0.463810 0.885935i \(-0.653518\pi\)
−0.463810 + 0.885935i \(0.653518\pi\)
\(80\) 0 0
\(81\) −13.8590 24.0045i −0.171099 0.296351i
\(82\) 0 0
\(83\) −24.3923 + 24.3923i −0.293883 + 0.293883i −0.838612 0.544729i \(-0.816633\pi\)
0.544729 + 0.838612i \(0.316633\pi\)
\(84\) 0 0
\(85\) −1.50000 + 0.401924i −0.0176471 + 0.00472852i
\(86\) 0 0
\(87\) −11.2295 + 19.4500i −0.129074 + 0.223563i
\(88\) 0 0
\(89\) 13.9878 52.2032i 0.157166 0.586553i −0.841744 0.539877i \(-0.818471\pi\)
0.998910 0.0466755i \(-0.0148627\pi\)
\(90\) 0 0
\(91\) 104.000 104.000i 1.14286 1.14286i
\(92\) 0 0
\(93\) −1.85641 0.497423i −0.0199614 0.00534863i
\(94\) 0 0
\(95\) 30.1577 + 17.4115i 0.317449 + 0.183279i
\(96\) 0 0
\(97\) 35.5814 + 132.792i 0.366819 + 1.36899i 0.864939 + 0.501878i \(0.167357\pi\)
−0.498120 + 0.867108i \(0.665976\pi\)
\(98\) 0 0
\(99\) 92.3154 + 92.3154i 0.932478 + 0.932478i
\(100\) 0 0
\(101\) 37.5666 21.6891i 0.371947 0.214744i −0.302362 0.953193i \(-0.597775\pi\)
0.674309 + 0.738450i \(0.264442\pi\)
\(102\) 0 0
\(103\) 76.8897i 0.746502i −0.927730 0.373251i \(-0.878243\pi\)
0.927730 0.373251i \(-0.121757\pi\)
\(104\) 0 0
\(105\) 25.7231 0.244982
\(106\) 0 0
\(107\) −4.83717 8.37822i −0.0452072 0.0783011i 0.842536 0.538639i \(-0.181061\pi\)
−0.887744 + 0.460338i \(0.847728\pi\)
\(108\) 0 0
\(109\) −123.785 + 123.785i −1.13564 + 1.13564i −0.146415 + 0.989223i \(0.546774\pi\)
−0.989223 + 0.146415i \(0.953226\pi\)
\(110\) 0 0
\(111\) −35.5167 + 9.51666i −0.319970 + 0.0857357i
\(112\) 0 0
\(113\) −30.3494 + 52.5666i −0.268578 + 0.465192i −0.968495 0.249033i \(-0.919887\pi\)
0.699917 + 0.714225i \(0.253221\pi\)
\(114\) 0 0
\(115\) 5.41154 20.1962i 0.0470569 0.175619i
\(116\) 0 0
\(117\) 89.1333i 0.761823i
\(118\) 0 0
\(119\) −10.9282 2.92820i −0.0918336 0.0246067i
\(120\) 0 0
\(121\) −209.201 120.782i −1.72893 0.998199i
\(122\) 0 0
\(123\) −25.3064 94.4449i −0.205743 0.767844i
\(124\) 0 0
\(125\) −52.2558 52.2558i −0.418046 0.418046i
\(126\) 0 0
\(127\) −147.804 + 85.3346i −1.16381 + 0.671926i −0.952214 0.305431i \(-0.901199\pi\)
−0.211596 + 0.977357i \(0.567866\pi\)
\(128\) 0 0
\(129\) 59.2923i 0.459631i
\(130\) 0 0
\(131\) 30.4589 0.232511 0.116256 0.993219i \(-0.462911\pi\)
0.116256 + 0.993219i \(0.462911\pi\)
\(132\) 0 0
\(133\) 126.851 + 219.713i 0.953769 + 1.65198i
\(134\) 0 0
\(135\) −25.4923 + 25.4923i −0.188832 + 0.188832i
\(136\) 0 0
\(137\) −244.136 + 65.4160i −1.78201 + 0.477489i −0.990948 0.134243i \(-0.957140\pi\)
−0.791065 + 0.611732i \(0.790473\pi\)
\(138\) 0 0
\(139\) −68.4589 + 118.574i −0.492510 + 0.853053i −0.999963 0.00862675i \(-0.997254\pi\)
0.507452 + 0.861680i \(0.330587\pi\)
\(140\) 0 0
\(141\) 5.14875 19.2154i 0.0365159 0.136279i
\(142\) 0 0
\(143\) −64.0666 239.100i −0.448018 1.67203i
\(144\) 0 0
\(145\) −23.0096 6.16541i −0.158687 0.0425201i
\(146\) 0 0
\(147\) 100.168 + 57.8320i 0.681415 + 0.393415i
\(148\) 0 0
\(149\) −1.71539 6.40192i −0.0115127 0.0429659i 0.959931 0.280238i \(-0.0904134\pi\)
−0.971443 + 0.237272i \(0.923747\pi\)
\(150\) 0 0
\(151\) 183.569 + 183.569i 1.21569 + 1.21569i 0.969127 + 0.246564i \(0.0793014\pi\)
0.246564 + 0.969127i \(0.420699\pi\)
\(152\) 0 0
\(153\) 5.93782 3.42820i 0.0388093 0.0224066i
\(154\) 0 0
\(155\) 2.03848i 0.0131515i
\(156\) 0 0
\(157\) 4.37307 0.0278539 0.0139270 0.999903i \(-0.495567\pi\)
0.0139270 + 0.999903i \(0.495567\pi\)
\(158\) 0 0
\(159\) 59.0859 + 102.340i 0.371609 + 0.643646i
\(160\) 0 0
\(161\) 107.713 107.713i 0.669024 0.669024i
\(162\) 0 0
\(163\) −188.354 + 50.4693i −1.15554 + 0.309627i −0.785185 0.619261i \(-0.787432\pi\)
−0.370360 + 0.928888i \(0.620766\pi\)
\(164\) 0 0
\(165\) 21.6462 37.4923i 0.131189 0.227226i
\(166\) 0 0
\(167\) −20.2487 + 75.5692i −0.121250 + 0.452510i −0.999678 0.0253635i \(-0.991926\pi\)
0.878429 + 0.477874i \(0.158592\pi\)
\(168\) 0 0
\(169\) 84.5000 146.358i 0.500000 0.866025i
\(170\) 0 0
\(171\) −148.512 39.7935i −0.868488 0.232711i
\(172\) 0 0
\(173\) 52.5744 + 30.3538i 0.303898 + 0.175456i 0.644193 0.764863i \(-0.277193\pi\)
−0.340295 + 0.940319i \(0.610527\pi\)
\(174\) 0 0
\(175\) −66.1436 246.851i −0.377963 1.41058i
\(176\) 0 0
\(177\) 100.708 + 100.708i 0.568970 + 0.568970i
\(178\) 0 0
\(179\) −53.0718 + 30.6410i −0.296490 + 0.171179i −0.640865 0.767653i \(-0.721424\pi\)
0.344375 + 0.938832i \(0.388091\pi\)
\(180\) 0 0
\(181\) 230.559i 1.27381i −0.770944 0.636903i \(-0.780215\pi\)
0.770944 0.636903i \(-0.219785\pi\)
\(182\) 0 0
\(183\) −24.4693 −0.133712
\(184\) 0 0
\(185\) −19.5000 33.7750i −0.105405 0.182568i
\(186\) 0 0
\(187\) −13.4641 + 13.4641i −0.0720005 + 0.0720005i
\(188\) 0 0
\(189\) −253.703 + 67.9794i −1.34234 + 0.359679i
\(190\) 0 0
\(191\) −48.6936 + 84.3397i −0.254940 + 0.441569i −0.964879 0.262694i \(-0.915389\pi\)
0.709939 + 0.704263i \(0.248722\pi\)
\(192\) 0 0
\(193\) −11.7891 + 43.9974i −0.0610833 + 0.227966i −0.989719 0.143028i \(-0.954316\pi\)
0.928635 + 0.370994i \(0.120983\pi\)
\(194\) 0 0
\(195\) 28.5500 7.64994i 0.146410 0.0392305i
\(196\) 0 0
\(197\) −164.806 44.1596i −0.836577 0.224160i −0.184996 0.982739i \(-0.559227\pi\)
−0.651581 + 0.758579i \(0.725894\pi\)
\(198\) 0 0
\(199\) 105.191 + 60.7321i 0.528598 + 0.305186i 0.740445 0.672117i \(-0.234615\pi\)
−0.211847 + 0.977303i \(0.567948\pi\)
\(200\) 0 0
\(201\) 4.84094 + 18.0666i 0.0240843 + 0.0898838i
\(202\) 0 0
\(203\) −122.718 122.718i −0.604522 0.604522i
\(204\) 0 0
\(205\) 89.8135 51.8538i 0.438114 0.252946i
\(206\) 0 0
\(207\) 92.3154i 0.445968i
\(208\) 0 0
\(209\) 426.985 2.04299
\(210\) 0 0
\(211\) −12.0526 20.8756i −0.0571211 0.0989367i 0.836051 0.548652i \(-0.184859\pi\)
−0.893172 + 0.449715i \(0.851525\pi\)
\(212\) 0 0
\(213\) 53.0718 53.0718i 0.249163 0.249163i
\(214\) 0 0
\(215\) −60.7461 + 16.2769i −0.282540 + 0.0757064i
\(216\) 0 0
\(217\) 7.42563 12.8616i 0.0342195 0.0592699i
\(218\) 0 0
\(219\) −46.1192 + 172.119i −0.210590 + 0.785932i
\(220\) 0 0
\(221\) −13.0000 −0.0588235
\(222\) 0 0
\(223\) 274.617 + 73.5833i 1.23146 + 0.329970i 0.815150 0.579250i \(-0.196655\pi\)
0.416315 + 0.909220i \(0.363321\pi\)
\(224\) 0 0
\(225\) 134.126 + 77.4378i 0.596117 + 0.344168i
\(226\) 0 0
\(227\) 1.26795 + 4.73205i 0.00558568 + 0.0208460i 0.968662 0.248381i \(-0.0798985\pi\)
−0.963077 + 0.269227i \(0.913232\pi\)
\(228\) 0 0
\(229\) 217.641 + 217.641i 0.950397 + 0.950397i 0.998827 0.0484292i \(-0.0154215\pi\)
−0.0484292 + 0.998827i \(0.515422\pi\)
\(230\) 0 0
\(231\) 273.149 157.703i 1.18246 0.682695i
\(232\) 0 0
\(233\) 260.862i 1.11958i −0.828635 0.559789i \(-0.810882\pi\)
0.828635 0.559789i \(-0.189118\pi\)
\(234\) 0 0
\(235\) 21.1000 0.0897871
\(236\) 0 0
\(237\) −53.6462 92.9179i −0.226355 0.392059i
\(238\) 0 0
\(239\) 294.277 294.277i 1.23128 1.23128i 0.267813 0.963471i \(-0.413699\pi\)
0.963471 0.267813i \(-0.0863010\pi\)
\(240\) 0 0
\(241\) −170.926 + 45.7994i −0.709235 + 0.190039i −0.595363 0.803457i \(-0.702992\pi\)
−0.113872 + 0.993495i \(0.536325\pi\)
\(242\) 0 0
\(243\) 124.760 216.091i 0.513417 0.889264i
\(244\) 0 0
\(245\) −31.7520 + 118.500i −0.129600 + 0.483673i
\(246\) 0 0
\(247\) 206.133 + 206.133i 0.834548 + 0.834548i
\(248\) 0 0
\(249\) −48.7846 13.0718i −0.195922 0.0524972i
\(250\) 0 0
\(251\) 66.2910 + 38.2731i 0.264107 + 0.152482i 0.626207 0.779657i \(-0.284607\pi\)
−0.362099 + 0.932139i \(0.617940\pi\)
\(252\) 0 0
\(253\) −66.3538 247.636i −0.262268 0.978798i
\(254\) 0 0
\(255\) −1.60770 1.60770i −0.00630469 0.00630469i
\(256\) 0 0
\(257\) −86.4948 + 49.9378i −0.336556 + 0.194311i −0.658748 0.752364i \(-0.728914\pi\)
0.322192 + 0.946674i \(0.395580\pi\)
\(258\) 0 0
\(259\) 284.133i 1.09704i
\(260\) 0 0
\(261\) 105.176 0.402971
\(262\) 0 0
\(263\) −170.890 295.990i −0.649771 1.12544i −0.983177 0.182653i \(-0.941532\pi\)
0.333407 0.942783i \(-0.391802\pi\)
\(264\) 0 0
\(265\) −88.6288 + 88.6288i −0.334448 + 0.334448i
\(266\) 0 0
\(267\) 76.4308 20.4796i 0.286258 0.0767025i
\(268\) 0 0
\(269\) −189.779 + 328.708i −0.705500 + 1.22196i 0.261011 + 0.965336i \(0.415944\pi\)
−0.966511 + 0.256626i \(0.917389\pi\)
\(270\) 0 0
\(271\) −19.4256 + 72.4974i −0.0716813 + 0.267518i −0.992460 0.122566i \(-0.960888\pi\)
0.920779 + 0.390085i \(0.127554\pi\)
\(272\) 0 0
\(273\) 208.000 + 55.7334i 0.761905 + 0.204152i
\(274\) 0 0
\(275\) −415.454 111.321i −1.51074 0.404802i
\(276\) 0 0
\(277\) 388.500 + 224.301i 1.40253 + 0.809749i 0.994651 0.103288i \(-0.0329364\pi\)
0.407876 + 0.913038i \(0.366270\pi\)
\(278\) 0 0
\(279\) 2.32944 + 8.69358i 0.00834923 + 0.0311598i
\(280\) 0 0
\(281\) −230.275 230.275i −0.819484 0.819484i 0.166549 0.986033i \(-0.446738\pi\)
−0.986033 + 0.166549i \(0.946738\pi\)
\(282\) 0 0
\(283\) −251.321 + 145.100i −0.888058 + 0.512721i −0.873307 0.487170i \(-0.838029\pi\)
−0.0147514 + 0.999891i \(0.504696\pi\)
\(284\) 0 0
\(285\) 50.9845i 0.178893i
\(286\) 0 0
\(287\) 755.559 2.63261
\(288\) 0 0
\(289\) −144.000 249.415i −0.498270 0.863029i
\(290\) 0 0
\(291\) −142.326 + 142.326i −0.489092 + 0.489092i
\(292\) 0 0
\(293\) 273.731 73.3461i 0.934237 0.250328i 0.240576 0.970630i \(-0.422664\pi\)
0.693660 + 0.720302i \(0.255997\pi\)
\(294\) 0 0
\(295\) −75.5307 + 130.823i −0.256036 + 0.443468i
\(296\) 0 0
\(297\) −114.410 + 426.985i −0.385219 + 1.43766i
\(298\) 0 0
\(299\) 87.5167 151.583i 0.292698 0.506968i
\(300\) 0 0
\(301\) −442.564 118.585i −1.47031 0.393969i
\(302\) 0 0
\(303\) 55.0014 + 31.7551i 0.181523 + 0.104802i
\(304\) 0 0
\(305\) −6.71728 25.0692i −0.0220239 0.0821942i
\(306\) 0 0
\(307\) 125.503 + 125.503i 0.408803 + 0.408803i 0.881321 0.472518i \(-0.156655\pi\)
−0.472518 + 0.881321i \(0.656655\pi\)
\(308\) 0 0
\(309\) 97.4923 56.2872i 0.315509 0.182159i
\(310\) 0 0
\(311\) 490.592i 1.57747i −0.614735 0.788733i \(-0.710737\pi\)
0.614735 0.788733i \(-0.289263\pi\)
\(312\) 0 0
\(313\) −198.123 −0.632981 −0.316490 0.948596i \(-0.602504\pi\)
−0.316490 + 0.948596i \(0.602504\pi\)
\(314\) 0 0
\(315\) −60.2309 104.323i −0.191209 0.331184i
\(316\) 0 0
\(317\) 314.011 314.011i 0.990570 0.990570i −0.00938556 0.999956i \(-0.502988\pi\)
0.999956 + 0.00938556i \(0.00298756\pi\)
\(318\) 0 0
\(319\) −282.133 + 75.5974i −0.884430 + 0.236982i
\(320\) 0 0
\(321\) 7.08211 12.2666i 0.0220626 0.0382136i
\(322\) 0 0
\(323\) 5.80385 21.6603i 0.0179686 0.0670596i
\(324\) 0 0
\(325\) −146.825 254.308i −0.451769 0.782487i
\(326\) 0 0
\(327\) −247.569 66.3360i −0.757092 0.202862i
\(328\) 0 0
\(329\) 133.128 + 76.8616i 0.404645 + 0.233622i
\(330\) 0 0
\(331\) 140.603 + 524.736i 0.424781 + 1.58530i 0.764401 + 0.644742i \(0.223035\pi\)
−0.339619 + 0.940563i \(0.610298\pi\)
\(332\) 0 0
\(333\) 121.758 + 121.758i 0.365641 + 0.365641i
\(334\) 0 0
\(335\) −17.1807 + 9.91927i −0.0512856 + 0.0296098i
\(336\) 0 0
\(337\) 15.4205i 0.0457581i 0.999738 + 0.0228790i \(0.00728326\pi\)
−0.999738 + 0.0228790i \(0.992717\pi\)
\(338\) 0 0
\(339\) −88.8691 −0.262151
\(340\) 0 0
\(341\) −12.4974 21.6462i −0.0366493 0.0634785i
\(342\) 0 0
\(343\) −240.000 + 240.000i −0.699708 + 0.699708i
\(344\) 0 0
\(345\) 29.5692 7.92305i 0.0857079 0.0229654i
\(346\) 0 0
\(347\) −232.970 + 403.517i −0.671385 + 1.16287i 0.306127 + 0.951991i \(0.400967\pi\)
−0.977512 + 0.210882i \(0.932367\pi\)
\(348\) 0 0
\(349\) 106.538 397.604i 0.305266 1.13927i −0.627450 0.778657i \(-0.715901\pi\)
0.932716 0.360611i \(-0.117432\pi\)
\(350\) 0 0
\(351\) −261.367 + 150.900i −0.744634 + 0.429915i
\(352\) 0 0
\(353\) 467.556 + 125.281i 1.32452 + 0.354905i 0.850670 0.525700i \(-0.176196\pi\)
0.473852 + 0.880604i \(0.342863\pi\)
\(354\) 0 0
\(355\) 68.9423 + 39.8038i 0.194204 + 0.112124i
\(356\) 0 0
\(357\) −4.28719 16.0000i −0.0120089 0.0448179i
\(358\) 0 0
\(359\) 254.985 + 254.985i 0.710263 + 0.710263i 0.966590 0.256327i \(-0.0825123\pi\)
−0.256327 + 0.966590i \(0.582512\pi\)
\(360\) 0 0
\(361\) −122.847 + 70.9256i −0.340296 + 0.196470i
\(362\) 0 0
\(363\) 353.674i 0.974309i
\(364\) 0 0
\(365\) −189.000 −0.517808
\(366\) 0 0
\(367\) 206.435 + 357.555i 0.562492 + 0.974265i 0.997278 + 0.0737310i \(0.0234906\pi\)
−0.434786 + 0.900534i \(0.643176\pi\)
\(368\) 0 0
\(369\) −323.776 + 323.776i −0.877442 + 0.877442i
\(370\) 0 0
\(371\) −882.046 + 236.344i −2.37748 + 0.637045i
\(372\) 0 0
\(373\) −121.325 + 210.141i −0.325268 + 0.563381i −0.981567 0.191121i \(-0.938788\pi\)
0.656299 + 0.754501i \(0.272121\pi\)
\(374\) 0 0
\(375\) 28.0038 104.512i 0.0746767 0.278697i
\(376\) 0 0
\(377\) −172.700 99.7083i −0.458090 0.264478i
\(378\) 0 0
\(379\) −186.981 50.1013i −0.493353 0.132194i 0.00356045 0.999994i \(-0.498867\pi\)
−0.496913 + 0.867800i \(0.665533\pi\)
\(380\) 0 0
\(381\) −216.400 124.939i −0.567979 0.327923i
\(382\) 0 0
\(383\) −23.9230 89.2820i −0.0624623 0.233112i 0.927637 0.373484i \(-0.121837\pi\)
−0.990099 + 0.140372i \(0.955170\pi\)
\(384\) 0 0
\(385\) 236.554 + 236.554i 0.614425 + 0.614425i
\(386\) 0 0
\(387\) 240.466 138.833i 0.621360 0.358743i
\(388\) 0 0
\(389\) 493.256i 1.26801i 0.773329 + 0.634005i \(0.218590\pi\)
−0.773329 + 0.634005i \(0.781410\pi\)
\(390\) 0 0
\(391\) −13.4641 −0.0344350
\(392\) 0 0
\(393\) 22.2975 + 38.6204i 0.0567366 + 0.0982707i
\(394\) 0 0
\(395\) 80.4693 80.4693i 0.203720 0.203720i
\(396\) 0 0
\(397\) −94.1647 + 25.2314i −0.237191 + 0.0635551i −0.375456 0.926840i \(-0.622514\pi\)
0.138265 + 0.990395i \(0.455847\pi\)
\(398\) 0 0
\(399\) −185.723 + 321.682i −0.465471 + 0.806220i
\(400\) 0 0
\(401\) 46.2795 172.717i 0.115410 0.430716i −0.883907 0.467662i \(-0.845096\pi\)
0.999317 + 0.0369460i \(0.0117630\pi\)
\(402\) 0 0
\(403\) 4.41670 16.4833i 0.0109595 0.0409016i
\(404\) 0 0
\(405\) 41.5770 + 11.1405i 0.102659 + 0.0275074i
\(406\) 0 0
\(407\) −414.133 239.100i −1.01753 0.587469i
\(408\) 0 0
\(409\) −159.635 595.767i −0.390306 1.45664i −0.829630 0.558313i \(-0.811449\pi\)
0.439324 0.898329i \(-0.355218\pi\)
\(410\) 0 0
\(411\) −261.664 261.664i −0.636652 0.636652i
\(412\) 0 0
\(413\) −953.108 + 550.277i −2.30777 + 1.33239i
\(414\) 0 0
\(415\) 53.5692i 0.129082i
\(416\) 0 0
\(417\) −200.462 −0.480724
\(418\) 0 0
\(419\) 327.727 + 567.640i 0.782164 + 1.35475i 0.930678 + 0.365838i \(0.119218\pi\)
−0.148514 + 0.988910i \(0.547449\pi\)
\(420\) 0 0
\(421\) 101.107 101.107i 0.240159 0.240159i −0.576757 0.816916i \(-0.695682\pi\)
0.816916 + 0.576757i \(0.195682\pi\)
\(422\) 0 0
\(423\) −89.9859 + 24.1117i −0.212733 + 0.0570015i
\(424\) 0 0
\(425\) −11.2942 + 19.5622i −0.0265747 + 0.0460287i
\(426\) 0 0
\(427\) 48.9385 182.641i 0.114610 0.427731i
\(428\) 0 0
\(429\) 256.267 256.267i 0.597358 0.597358i
\(430\) 0 0
\(431\) 413.387 + 110.767i 0.959135 + 0.256999i 0.704234 0.709968i \(-0.251291\pi\)
0.254901 + 0.966967i \(0.417957\pi\)
\(432\) 0 0
\(433\) 671.264 + 387.554i 1.55026 + 0.895045i 0.998120 + 0.0612959i \(0.0195233\pi\)
0.552144 + 0.833749i \(0.313810\pi\)
\(434\) 0 0
\(435\) −9.02679 33.6884i −0.0207512 0.0774446i
\(436\) 0 0
\(437\) 213.492 + 213.492i 0.488541 + 0.488541i
\(438\) 0 0
\(439\) 445.741 257.349i 1.01536 0.586216i 0.102600 0.994723i \(-0.467284\pi\)
0.912755 + 0.408507i \(0.133950\pi\)
\(440\) 0 0
\(441\) 541.656i 1.22825i
\(442\) 0 0
\(443\) 39.4256 0.0889969 0.0444984 0.999009i \(-0.485831\pi\)
0.0444984 + 0.999009i \(0.485831\pi\)
\(444\) 0 0
\(445\) 41.9634 + 72.6828i 0.0942998 + 0.163332i
\(446\) 0 0
\(447\) 6.86156 6.86156i 0.0153502 0.0153502i
\(448\) 0 0
\(449\) −55.1314 + 14.7724i −0.122787 + 0.0329007i −0.319689 0.947522i \(-0.603579\pi\)
0.196902 + 0.980423i \(0.436912\pi\)
\(450\) 0 0
\(451\) 635.808 1101.25i 1.40977 2.44180i
\(452\) 0 0
\(453\) −98.3744 + 367.138i −0.217162 + 0.810460i
\(454\) 0 0
\(455\) 228.400i 0.501978i
\(456\) 0 0
\(457\) 183.435 + 49.1513i 0.401390 + 0.107552i 0.453866 0.891070i \(-0.350045\pi\)
−0.0524757 + 0.998622i \(0.516711\pi\)
\(458\) 0 0
\(459\) 20.1051 + 11.6077i 0.0438020 + 0.0252891i
\(460\) 0 0
\(461\) −30.0538 112.162i −0.0651925 0.243302i 0.925638 0.378409i \(-0.123529\pi\)
−0.990831 + 0.135107i \(0.956862\pi\)
\(462\) 0 0
\(463\) −23.3205 23.3205i −0.0503683 0.0503683i 0.681474 0.731842i \(-0.261339\pi\)
−0.731842 + 0.681474i \(0.761339\pi\)
\(464\) 0 0
\(465\) 2.58468 1.49227i 0.00555846 0.00320918i
\(466\) 0 0
\(467\) 427.482i 0.915379i 0.889112 + 0.457689i \(0.151323\pi\)
−0.889112 + 0.457689i \(0.848677\pi\)
\(468\) 0 0
\(469\) −144.533 −0.308173
\(470\) 0 0
\(471\) 3.20131 + 5.54483i 0.00679683 + 0.0117725i
\(472\) 0 0
\(473\) −545.261 + 545.261i −1.15277 + 1.15277i
\(474\) 0 0
\(475\) 489.272 131.100i 1.03005 0.276000i
\(476\) 0 0
\(477\) 276.700 479.258i 0.580084 1.00473i
\(478\) 0 0
\(479\) 190.483 710.894i 0.397669 1.48412i −0.419518 0.907747i \(-0.637801\pi\)
0.817187 0.576373i \(-0.195532\pi\)
\(480\) 0 0
\(481\) −84.5000 315.358i −0.175676 0.655631i
\(482\) 0 0
\(483\) 215.426 + 57.7231i 0.446016 + 0.119510i
\(484\) 0 0
\(485\) −184.886 106.744i −0.381209 0.220091i
\(486\) 0 0
\(487\) −55.3308 206.497i −0.113616 0.424019i 0.885564 0.464517i \(-0.153772\pi\)
−0.999180 + 0.0404981i \(0.987106\pi\)
\(488\) 0 0
\(489\) −201.877 201.877i −0.412836 0.412836i
\(490\) 0 0
\(491\) 143.885 83.0718i 0.293044 0.169189i −0.346270 0.938135i \(-0.612552\pi\)
0.639314 + 0.768946i \(0.279219\pi\)
\(492\) 0 0
\(493\) 15.3397i 0.0311151i
\(494\) 0 0
\(495\) −202.739 −0.409573
\(496\) 0 0
\(497\) 289.990 + 502.277i 0.583480 + 1.01062i
\(498\) 0 0
\(499\) −53.6359 + 53.6359i −0.107487 + 0.107487i −0.758805 0.651318i \(-0.774216\pi\)
0.651318 + 0.758805i \(0.274216\pi\)
\(500\) 0 0
\(501\) −110.641 + 29.6462i −0.220840 + 0.0591740i
\(502\) 0 0
\(503\) −334.669 + 579.664i −0.665346 + 1.15241i 0.313845 + 0.949474i \(0.398383\pi\)
−0.979191 + 0.202939i \(0.934951\pi\)
\(504\) 0 0
\(505\) −17.4347 + 65.0673i −0.0345242 + 0.128846i
\(506\) 0 0
\(507\) 247.433 0.488034
\(508\) 0 0
\(509\) 450.535 + 120.721i 0.885138 + 0.237172i 0.672623 0.739986i \(-0.265168\pi\)
0.212515 + 0.977158i \(0.431834\pi\)
\(510\) 0 0
\(511\) −1192.48 688.477i −2.33361 1.34731i
\(512\) 0 0
\(513\) −134.739 502.851i −0.262648 0.980217i
\(514\) 0 0
\(515\) 84.4308 + 84.4308i 0.163943 + 0.163943i
\(516\) 0 0
\(517\) 224.056 129.359i 0.433378 0.250211i
\(518\) 0 0
\(519\) 88.8822i 0.171257i
\(520\) 0 0
\(521\) 187.283 0.359469 0.179735 0.983715i \(-0.442476\pi\)
0.179735 + 0.983715i \(0.442476\pi\)
\(522\) 0 0
\(523\) −5.75129 9.96152i −0.0109967 0.0190469i 0.860475 0.509493i \(-0.170167\pi\)
−0.871471 + 0.490446i \(0.836834\pi\)
\(524\) 0 0
\(525\) 264.574 264.574i 0.503951 0.503951i
\(526\) 0 0
\(527\) −1.26795 + 0.339746i −0.00240598 + 0.000644679i
\(528\) 0 0
\(529\) −173.859 + 301.133i −0.328656 + 0.569249i
\(530\) 0 0
\(531\) 172.623 644.238i 0.325091 1.21325i
\(532\) 0 0
\(533\) 838.592 224.700i 1.57334 0.421576i
\(534\) 0 0
\(535\) 14.5115 + 3.88835i 0.0271243 + 0.00726794i
\(536\) 0 0
\(537\) −77.7025 44.8616i −0.144697 0.0835411i
\(538\) 0 0
\(539\) 389.328 + 1452.99i 0.722316 + 2.69572i
\(540\) 0 0
\(541\) −99.4519 99.4519i −0.183830 0.183830i 0.609193 0.793022i \(-0.291494\pi\)
−0.793022 + 0.609193i \(0.791494\pi\)
\(542\) 0 0
\(543\) 292.337 168.781i 0.538374 0.310830i
\(544\) 0 0
\(545\) 271.850i 0.498807i
\(546\) 0 0
\(547\) 554.438 1.01360 0.506799 0.862064i \(-0.330829\pi\)
0.506799 + 0.862064i \(0.330829\pi\)
\(548\) 0 0
\(549\) 57.2949 + 99.2377i 0.104362 + 0.180761i
\(550\) 0 0
\(551\) 243.233 243.233i 0.441440 0.441440i
\(552\) 0 0
\(553\) 800.841 214.585i 1.44818 0.388037i
\(554\) 0 0
\(555\) 28.5500 49.4500i 0.0514414 0.0890991i
\(556\) 0 0
\(557\) −140.766 + 525.346i −0.252722 + 0.943171i 0.716622 + 0.697462i \(0.245687\pi\)
−0.969344 + 0.245709i \(0.920979\pi\)
\(558\) 0 0
\(559\) −526.466 −0.941801
\(560\) 0 0
\(561\) −26.9282 7.21539i −0.0480004 0.0128617i
\(562\) 0 0
\(563\) 595.510 + 343.818i 1.05774 + 0.610689i 0.924807 0.380435i \(-0.124226\pi\)
0.132937 + 0.991124i \(0.457559\pi\)
\(564\) 0 0
\(565\) −24.3963 91.0481i −0.0431792 0.161147i
\(566\) 0 0
\(567\) 221.744 + 221.744i 0.391082 + 0.391082i
\(568\) 0 0
\(569\) 411.482 237.569i 0.723167 0.417521i −0.0927503 0.995689i \(-0.529566\pi\)
0.815917 + 0.578169i \(0.196232\pi\)
\(570\) 0 0
\(571\) 444.728i 0.778859i −0.921056 0.389429i \(-0.872672\pi\)
0.921056 0.389429i \(-0.127328\pi\)
\(572\) 0 0
\(573\) −142.585 −0.248839
\(574\) 0 0
\(575\) −152.067 263.387i −0.264464 0.458065i
\(576\) 0 0
\(577\) 374.542 374.542i 0.649119 0.649119i −0.303661 0.952780i \(-0.598209\pi\)
0.952780 + 0.303661i \(0.0982091\pi\)
\(578\) 0 0
\(579\) −64.4167 + 17.2604i −0.111255 + 0.0298107i
\(580\) 0 0
\(581\) 195.138 337.990i 0.335867 0.581738i
\(582\) 0 0
\(583\) −397.769 + 1484.49i −0.682280 + 2.54630i
\(584\) 0 0
\(585\) −97.8751 97.8751i −0.167308 0.167308i
\(586\) 0 0
\(587\) −710.582 190.400i −1.21053 0.324361i −0.403561 0.914953i \(-0.632228\pi\)
−0.806970 + 0.590592i \(0.798894\pi\)
\(588\) 0 0
\(589\) 25.4923 + 14.7180i 0.0432806 + 0.0249881i
\(590\) 0 0
\(591\) −64.6541 241.292i −0.109398 0.408278i
\(592\) 0 0
\(593\) −278.901 278.901i −0.470321 0.470321i 0.431697 0.902019i \(-0.357915\pi\)
−0.902019 + 0.431697i \(0.857915\pi\)
\(594\) 0 0
\(595\) 15.2154 8.78461i 0.0255721 0.0147640i
\(596\) 0 0
\(597\) 177.836i 0.297882i
\(598\) 0 0
\(599\) −741.059 −1.23716 −0.618580 0.785722i \(-0.712292\pi\)
−0.618580 + 0.785722i \(0.712292\pi\)
\(600\) 0 0
\(601\) −320.339 554.844i −0.533010 0.923201i −0.999257 0.0385458i \(-0.987727\pi\)
0.466247 0.884655i \(-0.345606\pi\)
\(602\) 0 0
\(603\) 61.9361 61.9361i 0.102713 0.102713i
\(604\) 0 0
\(605\) 362.346 97.0903i 0.598919 0.160480i
\(606\) 0 0
\(607\) −0.549981 + 0.952596i −0.000906065 + 0.00156935i −0.866478 0.499215i \(-0.833622\pi\)
0.865572 + 0.500784i \(0.166955\pi\)
\(608\) 0 0
\(609\) 65.7644 245.436i 0.107987 0.403015i
\(610\) 0 0
\(611\) 170.617 + 45.7166i 0.279242 + 0.0748226i
\(612\) 0 0
\(613\) −84.9256 22.7558i −0.138541 0.0371219i 0.188882 0.982000i \(-0.439514\pi\)
−0.327423 + 0.944878i \(0.606180\pi\)
\(614\) 0 0
\(615\) 131.496 + 75.9193i 0.213815 + 0.123446i
\(616\) 0 0
\(617\) 188.859 + 704.831i 0.306092 + 1.14235i 0.932001 + 0.362456i \(0.118062\pi\)
−0.625909 + 0.779896i \(0.715272\pi\)
\(618\) 0 0
\(619\) −359.138 359.138i −0.580191 0.580191i 0.354764 0.934956i \(-0.384561\pi\)
−0.934956 + 0.354764i \(0.884561\pi\)
\(620\) 0 0
\(621\) −270.697 + 156.287i −0.435906 + 0.251670i
\(622\) 0 0
\(623\) 611.446i 0.981455i
\(624\) 0 0
\(625\) −449.950 −0.719920
\(626\) 0 0
\(627\) 312.574 + 541.395i 0.498524 + 0.863468i
\(628\) 0 0
\(629\) −17.7583 + 17.7583i −0.0282326 + 0.0282326i
\(630\) 0 0
\(631\) 408.918 109.569i 0.648047 0.173644i 0.0802015 0.996779i \(-0.474444\pi\)
0.567846 + 0.823135i \(0.307777\pi\)
\(632\) 0 0
\(633\) 17.6462 30.5641i 0.0278770 0.0482845i
\(634\) 0 0
\(635\) 68.5960 256.004i 0.108025 0.403156i
\(636\) 0 0
\(637\) −513.500 + 889.408i −0.806122 + 1.39625i
\(638\) 0 0
\(639\) −339.506 90.9705i −0.531309 0.142364i
\(640\) 0 0
\(641\) −11.6046 6.69993i −0.0181039 0.0104523i 0.490921 0.871204i \(-0.336660\pi\)
−0.509025 + 0.860752i \(0.669994\pi\)
\(642\) 0 0
\(643\) −114.161 426.056i −0.177545 0.662607i −0.996104 0.0881847i \(-0.971893\pi\)
0.818559 0.574422i \(-0.194773\pi\)
\(644\) 0 0
\(645\) −65.1075 65.1075i −0.100942 0.100942i
\(646\) 0 0
\(647\) 173.976 100.445i 0.268896 0.155247i −0.359490 0.933149i \(-0.617049\pi\)
0.628386 + 0.777902i \(0.283716\pi\)
\(648\) 0 0
\(649\) 1852.25i 2.85400i
\(650\) 0 0
\(651\) 21.7437 0.0334005
\(652\) 0 0
\(653\) −600.400 1039.92i −0.919448 1.59253i −0.800255 0.599660i \(-0.795302\pi\)
−0.119194 0.992871i \(-0.538031\pi\)
\(654\) 0 0
\(655\) −33.4462 + 33.4462i −0.0510630 + 0.0510630i
\(656\) 0 0
\(657\) 806.036 215.977i 1.22684 0.328732i
\(658\) 0 0
\(659\) 94.3538 163.426i 0.143177 0.247990i −0.785514 0.618844i \(-0.787601\pi\)
0.928691 + 0.370853i \(0.120935\pi\)
\(660\) 0 0
\(661\) −58.7820 + 219.378i −0.0889289 + 0.331887i −0.996029 0.0890273i \(-0.971624\pi\)
0.907100 + 0.420915i \(0.138291\pi\)
\(662\) 0 0
\(663\) −9.51666 16.4833i −0.0143539 0.0248617i
\(664\) 0 0
\(665\) −380.554 101.969i −0.572261 0.153337i
\(666\) 0 0
\(667\) −178.865 103.268i −0.268164 0.154825i
\(668\) 0 0
\(669\) 107.733 + 402.067i 0.161037 + 0.600996i
\(670\) 0 0
\(671\) −225.023 225.023i −0.335355 0.335355i
\(672\) 0 0
\(673\) −68.7891 + 39.7154i −0.102213 + 0.0590125i −0.550235 0.835010i \(-0.685462\pi\)
0.448022 + 0.894022i \(0.352129\pi\)
\(674\) 0 0
\(675\) 524.400i 0.776889i
\(676\) 0 0
\(677\) −310.554 −0.458720 −0.229360 0.973342i \(-0.573663\pi\)
−0.229360 + 0.973342i \(0.573663\pi\)
\(678\) 0 0
\(679\) −777.682 1346.98i −1.14533 1.98378i
\(680\) 0 0
\(681\) −5.07180 + 5.07180i −0.00744757 + 0.00744757i
\(682\) 0 0
\(683\) 627.678 168.186i 0.919002 0.246246i 0.231843 0.972753i \(-0.425524\pi\)
0.687159 + 0.726507i \(0.258858\pi\)
\(684\) 0 0
\(685\) 196.248 339.912i 0.286493 0.496221i
\(686\) 0 0
\(687\) −116.633 + 435.282i −0.169772 + 0.633598i
\(688\) 0 0
\(689\) −908.692 + 524.633i −1.31886 + 0.761442i
\(690\) 0 0
\(691\) −294.603 78.9385i −0.426342 0.114238i 0.0392664 0.999229i \(-0.487498\pi\)
−0.465609 + 0.884991i \(0.654165\pi\)
\(692\) 0 0
\(693\) −1279.16 738.523i −1.84583 1.06569i
\(694\) 0 0
\(695\) −55.0306 205.377i −0.0791807 0.295506i
\(696\) 0 0
\(697\) −47.2224 47.2224i −0.0677510 0.0677510i
\(698\) 0 0
\(699\) 330.759 190.964i 0.473189 0.273196i
\(700\) 0 0
\(701\) 173.692i 0.247778i −0.992296 0.123889i \(-0.960463\pi\)
0.992296 0.123889i \(-0.0395366\pi\)
\(702\) 0 0
\(703\) 563.167 0.801090
\(704\) 0 0
\(705\) 15.4462 + 26.7537i 0.0219096 + 0.0379485i
\(706\) 0 0
\(707\) −347.026 + 347.026i −0.490843 + 0.490843i
\(708\) 0 0
\(709\) 75.2795 20.1711i 0.106177 0.0284500i −0.205339 0.978691i \(-0.565830\pi\)
0.311516 + 0.950241i \(0.399163\pi\)
\(710\) 0 0
\(711\) −251.226 + 435.136i −0.353341 + 0.612005i
\(712\) 0 0
\(713\) 4.57437 17.0718i 0.00641567 0.0239436i
\(714\) 0 0
\(715\) 332.900 + 192.200i 0.465594 + 0.268811i
\(716\) 0 0
\(717\) 588.554 + 157.703i 0.820856 + 0.219948i
\(718\) 0 0
\(719\) 280.077 + 161.703i 0.389537 + 0.224899i 0.681959 0.731390i \(-0.261128\pi\)
−0.292423 + 0.956289i \(0.594461\pi\)
\(720\) 0 0
\(721\) 225.149 + 840.267i 0.312273 + 1.16542i
\(722\) 0 0
\(723\) −183.198 183.198i −0.253385 0.253385i
\(724\) 0 0
\(725\) −300.079 + 173.251i −0.413902 + 0.238966i
\(726\) 0 0
\(727\) 642.221i 0.883385i −0.897167 0.441692i \(-0.854378\pi\)
0.897167 0.441692i \(-0.145622\pi\)
\(728\) 0 0
\(729\) 115.862 0.158932
\(730\) 0 0
\(731\) 20.2487 + 35.0718i 0.0277000 + 0.0479778i
\(732\) 0 0
\(733\) −389.122 + 389.122i −0.530863 + 0.530863i −0.920829 0.389966i \(-0.872487\pi\)
0.389966 + 0.920829i \(0.372487\pi\)
\(734\) 0 0
\(735\) −173.496 + 46.4881i −0.236049 + 0.0632491i
\(736\) 0 0
\(737\) −121.626 + 210.662i −0.165028 + 0.285837i
\(738\) 0 0
\(739\) −168.610 + 629.261i −0.228160 + 0.851504i 0.752954 + 0.658073i \(0.228628\pi\)
−0.981114 + 0.193431i \(0.938038\pi\)
\(740\) 0 0
\(741\) −110.466 + 412.267i −0.149078 + 0.556365i
\(742\) 0 0
\(743\) 1049.62 + 281.244i 1.41267 + 0.378524i 0.882878 0.469602i \(-0.155603\pi\)
0.529794 + 0.848126i \(0.322269\pi\)
\(744\) 0 0
\(745\) 8.91343 + 5.14617i 0.0119643 + 0.00690761i
\(746\) 0 0
\(747\) 61.2154 + 228.459i 0.0819483 + 0.305835i
\(748\) 0 0
\(749\) 77.3947 + 77.3947i 0.103331 + 0.103331i
\(750\) 0 0
\(751\) −989.587 + 571.338i −1.31769 + 0.760770i −0.983357 0.181684i \(-0.941845\pi\)
−0.334336 + 0.942454i \(0.608512\pi\)
\(752\) 0 0
\(753\) 112.071i 0.148833i
\(754\) 0 0
\(755\) −403.146 −0.533968
\(756\) 0 0
\(757\) 86.6462 + 150.076i 0.114460 + 0.198250i 0.917564 0.397589i \(-0.130153\pi\)
−0.803104 + 0.595839i \(0.796820\pi\)
\(758\) 0 0
\(759\) 265.415 265.415i 0.349691 0.349691i
\(760\) 0 0
\(761\) −780.638 + 209.171i −1.02581 + 0.274864i −0.732219 0.681069i \(-0.761515\pi\)
−0.293586 + 0.955933i \(0.594849\pi\)
\(762\) 0 0
\(763\) 990.277 1715.21i 1.29787 2.24798i
\(764\) 0 0
\(765\) −2.75575 + 10.2846i −0.00360229 + 0.0134439i
\(766\) 0 0
\(767\) −894.200 + 894.200i −1.16584 + 1.16584i
\(768\) 0 0
\(769\) −1341.89 359.557i −1.74497 0.467564i −0.761432 0.648245i \(-0.775503\pi\)
−0.983542 + 0.180680i \(0.942170\pi\)
\(770\) 0 0
\(771\) −126.637 73.1140i −0.164251 0.0948302i
\(772\) 0 0
\(773\) −66.4007 247.811i −0.0859000 0.320583i 0.909583 0.415522i \(-0.136401\pi\)
−0.995483 + 0.0949388i \(0.969734\pi\)
\(774\) 0 0
\(775\) −20.9667 20.9667i −0.0270538 0.0270538i
\(776\) 0 0
\(777\) 360.267 208.000i 0.463664 0.267696i
\(778\) 0 0
\(779\) 1497.56i 1.92241i
\(780\) 0 0
\(781\) 976.113 1.24982
\(782\) 0 0
\(783\) 178.059 + 308.407i 0.227406 + 0.393879i
\(784\) 0 0
\(785\) −4.80196 + 4.80196i −0.00611715 + 0.00611715i
\(786\) 0 0
\(787\) 406.750 108.988i 0.516836 0.138486i 0.00903330 0.999959i \(-0.497125\pi\)
0.507803 + 0.861473i \(0.330458\pi\)
\(788\) 0 0
\(789\) 250.200 433.359i 0.317110 0.549251i
\(790\) 0 0
\(791\) 177.738 663.328i 0.224701 0.838594i
\(792\) 0 0
\(793\) 217.267i 0.273981i
\(794\) 0 0
\(795\) −177.258 47.4960i −0.222966 0.0597434i
\(796\) 0 0
\(797\) 502.996 + 290.405i 0.631112 + 0.364373i 0.781183 0.624303i \(-0.214617\pi\)
−0.150071 + 0.988675i \(0.547950\pi\)
\(798\) 0 0
\(799\) −3.51666 13.1244i −0.00440133 0.0164260i
\(800\) 0 0
\(801\) −262.020 262.020i −0.327116 0.327116i
\(802\) 0 0
\(803\) −2006.95 + 1158.72i −2.49932 + 1.44298i
\(804\) 0 0
\(805\) 236.554i 0.293856i
\(806\) 0 0
\(807\) −555.713 −0.688616
\(808\) 0 0
\(809\) 584.845 + 1012.98i 0.722924 + 1.25214i 0.959823 + 0.280607i \(0.0905356\pi\)
−0.236899 + 0.971534i \(0.576131\pi\)
\(810\) 0 0
\(811\) −559.177 + 559.177i −0.689491 + 0.689491i −0.962119 0.272629i \(-0.912107\pi\)
0.272629 + 0.962119i \(0.412107\pi\)
\(812\) 0 0
\(813\) −106.144 + 28.4411i −0.130558 + 0.0349829i
\(814\) 0 0
\(815\) 151.408 262.246i 0.185776 0.321774i
\(816\) 0 0
\(817\) 235.041 877.184i 0.287688 1.07367i
\(818\) 0 0
\(819\) −261.000 974.067i −0.318682 1.18934i
\(820\) 0 0
\(821\) 657.570 + 176.195i 0.800938 + 0.214611i 0.635996 0.771693i \(-0.280590\pi\)
0.164942 + 0.986303i \(0.447256\pi\)
\(822\) 0 0
\(823\) −386.718 223.272i −0.469888 0.271290i 0.246305 0.969192i \(-0.420784\pi\)
−0.716193 + 0.697902i \(0.754117\pi\)
\(824\) 0 0
\(825\) −162.985 608.267i −0.197557 0.737293i
\(826\) 0 0
\(827\) −364.833 364.833i −0.441153 0.441153i 0.451247 0.892399i \(-0.350980\pi\)
−0.892399 + 0.451247i \(0.850980\pi\)
\(828\) 0 0
\(829\) 1060.17 612.090i 1.27886 0.738348i 0.302218 0.953239i \(-0.402273\pi\)
0.976638 + 0.214891i \(0.0689396\pi\)
\(830\) 0 0
\(831\) 656.798i 0.790370i
\(832\) 0 0
\(833\) 79.0000 0.0948379
\(834\) 0 0
\(835\) −60.7461 105.215i −0.0727499 0.126006i
\(836\) 0 0
\(837\) −21.5486 + 21.5486i −0.0257450 + 0.0257450i
\(838\) 0 0
\(839\) 1283.45 343.899i 1.52973 0.409891i 0.606802 0.794853i \(-0.292452\pi\)
0.922932 + 0.384962i \(0.125785\pi\)
\(840\) 0 0
\(841\) 302.846 524.545i 0.360102 0.623716i
\(842\) 0 0
\(843\) 123.404 460.550i 0.146387 0.546323i
\(844\) 0 0
\(845\) 67.9251 + 253.500i 0.0803848 + 0.300000i
\(846\) 0 0
\(847\) 2639.86 + 707.349i 3.11672 + 0.835122i
\(848\) 0 0
\(849\) −367.959 212.441i −0.433403 0.250225i
\(850\) 0 0
\(851\) −87.5167 326.617i −0.102840 0.383803i
\(852\) 0 0
\(853\) −787.174 787.174i −0.922830 0.922830i 0.0743990 0.997229i \(-0.476296\pi\)
−0.997229 + 0.0743990i \(0.976296\pi\)
\(854\) 0 0
\(855\) 206.773 119.381i 0.241840 0.139626i
\(856\) 0 0
\(857\) 673.732i 0.786152i −0.919506 0.393076i \(-0.871411\pi\)
0.919506 0.393076i \(-0.128589\pi\)
\(858\) 0 0
\(859\) −487.167 −0.567132 −0.283566 0.958953i \(-0.591518\pi\)
−0.283566 + 0.958953i \(0.591518\pi\)
\(860\) 0 0
\(861\) 553.108 + 958.010i 0.642401 + 1.11267i
\(862\) 0 0
\(863\) 499.061 499.061i 0.578287 0.578287i −0.356144 0.934431i \(-0.615909\pi\)
0.934431 + 0.356144i \(0.115909\pi\)
\(864\) 0 0
\(865\) −91.0615 + 24.3999i −0.105273 + 0.0282079i
\(866\) 0 0
\(867\) 210.831 365.169i 0.243173 0.421187i
\(868\) 0 0
\(869\) 361.149 1347.83i 0.415591 1.55101i
\(870\) 0 0
\(871\) −160.417 + 42.9835i −0.184175 + 0.0493496i
\(872\) 0 0
\(873\) 910.474 + 243.961i 1.04293 + 0.279451i
\(874\) 0 0
\(875\) 724.077 + 418.046i 0.827517 + 0.477767i
\(876\) 0 0
\(877\) 243.962 + 910.479i 0.278178 + 1.03817i 0.953682 + 0.300818i \(0.0972597\pi\)
−0.675503 + 0.737357i \(0.736074\pi\)
\(878\) 0 0
\(879\) 293.384 + 293.384i 0.333771 + 0.333771i
\(880\) 0 0
\(881\) 405.459 234.092i 0.460226 0.265711i −0.251914 0.967750i \(-0.581060\pi\)
0.712139 + 0.702038i \(0.247727\pi\)
\(882\) 0 0
\(883\) 782.536i 0.886224i 0.896466 + 0.443112i \(0.146126\pi\)
−0.896466 + 0.443112i \(0.853874\pi\)
\(884\) 0 0
\(885\) −221.169 −0.249909
\(886\) 0 0
\(887\) −60.4102 104.633i −0.0681062 0.117963i 0.829961 0.557821i \(-0.188362\pi\)
−0.898068 + 0.439857i \(0.855029\pi\)
\(888\) 0 0
\(889\) 1365.35 1365.35i 1.53583 1.53583i
\(890\) 0 0
\(891\) 509.797 136.600i 0.572163 0.153311i
\(892\) 0 0
\(893\) −152.344 + 263.867i −0.170597 + 0.295483i
\(894\) 0 0
\(895\) 24.6307 91.9230i 0.0275203 0.102707i
\(896\) 0 0
\(897\) 256.267 0.285693
\(898\) 0 0
\(899\) −19.4500 5.21162i −0.0216352 0.00579713i
\(900\) 0 0
\(901\) 69.8993 + 40.3564i 0.0775797 + 0.0447907i
\(902\) 0 0
\(903\) −173.620 647.959i −0.192270 0.717562i
\(904\) 0 0
\(905\) 253.171 + 253.171i 0.279747 + 0.279747i
\(906\) 0 0
\(907\) −761.867 + 439.864i −0.839985 + 0.484966i −0.857259 0.514885i \(-0.827835\pi\)
0.0172739 + 0.999851i \(0.494501\pi\)
\(908\) 0 0
\(909\) 297.419i 0.327193i
\(910\) 0 0
\(911\) −1522.73 −1.67150 −0.835748 0.549113i \(-0.814966\pi\)
−0.835748 + 0.549113i \(0.814966\pi\)
\(912\) 0 0
\(913\) −328.420 568.841i −0.359716 0.623046i
\(914\) 0 0
\(915\) 26.8691 26.8691i 0.0293651 0.0293651i
\(916\) 0 0
\(917\) −332.862 + 89.1900i −0.362990 + 0.0972628i
\(918\) 0 0
\(919\) −648.196 + 1122.71i −0.705328 + 1.22166i 0.261245 + 0.965272i \(0.415867\pi\)
−0.966573 + 0.256391i \(0.917467\pi\)
\(920\) 0 0
\(921\) −67.2566 + 251.005i −0.0730257 + 0.272535i
\(922\) 0 0
\(923\) 471.233 + 471.233i 0.510545 + 0.510545i
\(924\) 0 0
\(925\) −547.958 146.825i −0.592387 0.158730i
\(926\) 0 0
\(927\) −456.558 263.594i −0.492511 0.284351i
\(928\) 0 0
\(929\) 188.056 + 701.833i 0.202428 + 0.755472i 0.990218 + 0.139528i \(0.0445585\pi\)
−0.787790 + 0.615944i \(0.788775\pi\)
\(930\) 0 0
\(931\) −1252.66 1252.66i −1.34550 1.34550i
\(932\) 0 0
\(933\) 622.046 359.138i 0.666716 0.384929i
\(934\) 0 0
\(935\) 29.5692i 0.0316248i
\(936\) 0 0
\(937\) −388.015 −0.414104 −0.207052 0.978330i \(-0.566387\pi\)
−0.207052 + 0.978330i \(0.566387\pi\)
\(938\) 0 0
\(939\) −145.036 251.210i −0.154458 0.267529i
\(940\) 0 0
\(941\) −698.815 + 698.815i −0.742630 + 0.742630i −0.973083 0.230453i \(-0.925979\pi\)
0.230453 + 0.973083i \(0.425979\pi\)
\(942\) 0 0
\(943\) 868.529 232.722i 0.921028 0.246789i
\(944\) 0 0
\(945\) 203.938 353.231i 0.215808 0.373790i
\(946\) 0 0
\(947\) 345.135 1288.06i 0.364451 1.36015i −0.503714 0.863871i \(-0.668033\pi\)
0.868164 0.496277i \(-0.165300\pi\)
\(948\) 0 0
\(949\) −1528.27 409.500i −1.61041 0.431507i
\(950\) 0 0
\(951\) 628.022 + 168.278i 0.660380 + 0.176948i
\(952\) 0 0
\(953\) −929.569 536.687i −0.975414 0.563155i −0.0745313 0.997219i \(-0.523746\pi\)
−0.900882 + 0.434063i \(0.857079\pi\)
\(954\) 0 0
\(955\) −39.1422 146.081i −0.0409866 0.152964i
\(956\) 0 0
\(957\) −302.390 302.390i −0.315977 0.315977i
\(958\) 0 0
\(959\) 2476.41 1429.76i 2.58229 1.49089i
\(960\) 0 0
\(961\) 959.277i 0.998207i
\(962\) 0 0
\(963\) −66.3312 −0.0688797
\(964\) 0 0
\(965\) −35.3672 61.2578i −0.0366500 0.0634796i
\(966\) 0 0
\(967\) 640.508 640.508i 0.662366 0.662366i −0.293571 0.955937i \(-0.594844\pi\)
0.955937 + 0.293571i \(0.0948438\pi\)
\(968\) 0 0
\(969\) 31.7128 8.49742i 0.0327274 0.00876927i
\(970\) 0 0
\(971\) 23.6781 41.0117i 0.0243853 0.0422366i −0.853575 0.520970i \(-0.825570\pi\)
0.877961 + 0.478733i \(0.158904\pi\)
\(972\) 0 0
\(973\) 400.923 1496.27i 0.412049 1.53779i
\(974\) 0 0
\(975\) 214.967 372.333i 0.220479 0.381880i
\(976\) 0 0
\(977\) 827.625 + 221.761i 0.847108 + 0.226982i 0.656163 0.754619i \(-0.272178\pi\)
0.190945 + 0.981601i \(0.438845\pi\)
\(978\) 0 0
\(979\) 891.202 + 514.536i 0.910319 + 0.525573i
\(980\) 0 0
\(981\) 310.652 + 1159.37i 0.316669 + 1.18182i
\(982\) 0 0
\(983\) 303.513 + 303.513i 0.308762 + 0.308762i 0.844429 0.535667i \(-0.179940\pi\)
−0.535667 + 0.844429i \(0.679940\pi\)
\(984\) 0 0
\(985\) 229.460 132.479i 0.232954 0.134496i
\(986\) 0 0
\(987\) 225.066i 0.228031i
\(988\) 0 0
\(989\) −545.261 −0.551326
\(990\) 0 0
\(991\) 413.373 + 715.983i 0.417127 + 0.722486i 0.995649 0.0931813i \(-0.0297036\pi\)
−0.578522 + 0.815667i \(0.696370\pi\)
\(992\) 0 0
\(993\) −562.410 + 562.410i −0.566375 + 0.566375i
\(994\) 0 0
\(995\) −182.196 + 48.8193i −0.183112 + 0.0490646i
\(996\) 0 0
\(997\) −666.761 + 1154.86i −0.668768 + 1.15834i 0.309481 + 0.950906i \(0.399845\pi\)
−0.978249 + 0.207434i \(0.933489\pi\)
\(998\) 0 0
\(999\) −150.900 + 563.167i −0.151051 + 0.563730i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.3.bd.b.145.1 4
4.3 odd 2 104.3.v.b.41.1 yes 4
13.7 odd 12 inner 208.3.bd.b.33.1 4
52.7 even 12 104.3.v.b.33.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.3.v.b.33.1 4 52.7 even 12
104.3.v.b.41.1 yes 4 4.3 odd 2
208.3.bd.b.33.1 4 13.7 odd 12 inner
208.3.bd.b.145.1 4 1.1 even 1 trivial