Properties

Label 208.10.a.i.1.5
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,147] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 5049x^{3} - 87027x^{2} + 2867800x + 48215700 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 52)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-49.9322\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+179.797 q^{3} +2632.50 q^{5} +5669.07 q^{7} +12643.9 q^{9} -8955.44 q^{11} -28561.0 q^{13} +473315. q^{15} -213770. q^{17} +192892. q^{19} +1.01928e6 q^{21} -927462. q^{23} +4.97693e6 q^{25} -1.26562e6 q^{27} +6.36060e6 q^{29} +3.37329e6 q^{31} -1.61016e6 q^{33} +1.49238e7 q^{35} +1.95683e7 q^{37} -5.13517e6 q^{39} +1.82849e6 q^{41} -2.75317e7 q^{43} +3.32850e7 q^{45} +1.35834e7 q^{47} -8.21523e6 q^{49} -3.84351e7 q^{51} +4.04014e7 q^{53} -2.35752e7 q^{55} +3.46813e7 q^{57} +1.46844e8 q^{59} +1.35392e8 q^{61} +7.16789e7 q^{63} -7.51868e7 q^{65} -2.89686e8 q^{67} -1.66755e8 q^{69} +7.81904e7 q^{71} -5.03612e7 q^{73} +8.94836e8 q^{75} -5.07691e7 q^{77} -4.72679e8 q^{79} -4.76422e8 q^{81} -2.16097e8 q^{83} -5.62749e8 q^{85} +1.14361e9 q^{87} +1.11485e8 q^{89} -1.61914e8 q^{91} +6.06506e8 q^{93} +5.07788e8 q^{95} +1.48535e9 q^{97} -1.13231e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 147 q^{3} + 1721 q^{5} - 3317 q^{7} - 3204 q^{9} - 6562 q^{11} - 142805 q^{13} - 80283 q^{15} - 146493 q^{17} - 110250 q^{19} + 2250015 q^{21} - 1675652 q^{23} + 6048610 q^{25} - 4937895 q^{27} + 7019714 q^{29}+ \cdots - 302611248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 179.797 1.28155 0.640776 0.767728i \(-0.278613\pi\)
0.640776 + 0.767728i \(0.278613\pi\)
\(4\) 0 0
\(5\) 2632.50 1.88366 0.941832 0.336084i \(-0.109103\pi\)
0.941832 + 0.336084i \(0.109103\pi\)
\(6\) 0 0
\(7\) 5669.07 0.892423 0.446212 0.894928i \(-0.352773\pi\)
0.446212 + 0.894928i \(0.352773\pi\)
\(8\) 0 0
\(9\) 12643.9 0.642374
\(10\) 0 0
\(11\) −8955.44 −0.184425 −0.0922126 0.995739i \(-0.529394\pi\)
−0.0922126 + 0.995739i \(0.529394\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) 473315. 2.41401
\(16\) 0 0
\(17\) −213770. −0.620763 −0.310382 0.950612i \(-0.600457\pi\)
−0.310382 + 0.950612i \(0.600457\pi\)
\(18\) 0 0
\(19\) 192892. 0.339565 0.169782 0.985482i \(-0.445694\pi\)
0.169782 + 0.985482i \(0.445694\pi\)
\(20\) 0 0
\(21\) 1.01928e6 1.14369
\(22\) 0 0
\(23\) −927462. −0.691068 −0.345534 0.938406i \(-0.612302\pi\)
−0.345534 + 0.938406i \(0.612302\pi\)
\(24\) 0 0
\(25\) 4.97693e6 2.54819
\(26\) 0 0
\(27\) −1.26562e6 −0.458316
\(28\) 0 0
\(29\) 6.36060e6 1.66996 0.834981 0.550278i \(-0.185478\pi\)
0.834981 + 0.550278i \(0.185478\pi\)
\(30\) 0 0
\(31\) 3.37329e6 0.656033 0.328016 0.944672i \(-0.393620\pi\)
0.328016 + 0.944672i \(0.393620\pi\)
\(32\) 0 0
\(33\) −1.61016e6 −0.236350
\(34\) 0 0
\(35\) 1.49238e7 1.68103
\(36\) 0 0
\(37\) 1.95683e7 1.71651 0.858254 0.513226i \(-0.171550\pi\)
0.858254 + 0.513226i \(0.171550\pi\)
\(38\) 0 0
\(39\) −5.13517e6 −0.355438
\(40\) 0 0
\(41\) 1.82849e6 0.101057 0.0505283 0.998723i \(-0.483909\pi\)
0.0505283 + 0.998723i \(0.483909\pi\)
\(42\) 0 0
\(43\) −2.75317e7 −1.22808 −0.614038 0.789276i \(-0.710456\pi\)
−0.614038 + 0.789276i \(0.710456\pi\)
\(44\) 0 0
\(45\) 3.32850e7 1.21002
\(46\) 0 0
\(47\) 1.35834e7 0.406039 0.203019 0.979175i \(-0.434925\pi\)
0.203019 + 0.979175i \(0.434925\pi\)
\(48\) 0 0
\(49\) −8.21523e6 −0.203581
\(50\) 0 0
\(51\) −3.84351e7 −0.795540
\(52\) 0 0
\(53\) 4.04014e7 0.703323 0.351662 0.936127i \(-0.385617\pi\)
0.351662 + 0.936127i \(0.385617\pi\)
\(54\) 0 0
\(55\) −2.35752e7 −0.347395
\(56\) 0 0
\(57\) 3.46813e7 0.435170
\(58\) 0 0
\(59\) 1.46844e8 1.57769 0.788844 0.614594i \(-0.210680\pi\)
0.788844 + 0.614594i \(0.210680\pi\)
\(60\) 0 0
\(61\) 1.35392e8 1.25201 0.626004 0.779820i \(-0.284689\pi\)
0.626004 + 0.779820i \(0.284689\pi\)
\(62\) 0 0
\(63\) 7.16789e7 0.573270
\(64\) 0 0
\(65\) −7.51868e7 −0.522434
\(66\) 0 0
\(67\) −2.89686e8 −1.75627 −0.878135 0.478413i \(-0.841212\pi\)
−0.878135 + 0.478413i \(0.841212\pi\)
\(68\) 0 0
\(69\) −1.66755e8 −0.885639
\(70\) 0 0
\(71\) 7.81904e7 0.365166 0.182583 0.983190i \(-0.441554\pi\)
0.182583 + 0.983190i \(0.441554\pi\)
\(72\) 0 0
\(73\) −5.03612e7 −0.207560 −0.103780 0.994600i \(-0.533094\pi\)
−0.103780 + 0.994600i \(0.533094\pi\)
\(74\) 0 0
\(75\) 8.94836e8 3.26564
\(76\) 0 0
\(77\) −5.07691e7 −0.164585
\(78\) 0 0
\(79\) −4.72679e8 −1.36535 −0.682676 0.730721i \(-0.739184\pi\)
−0.682676 + 0.730721i \(0.739184\pi\)
\(80\) 0 0
\(81\) −4.76422e8 −1.22973
\(82\) 0 0
\(83\) −2.16097e8 −0.499801 −0.249900 0.968272i \(-0.580398\pi\)
−0.249900 + 0.968272i \(0.580398\pi\)
\(84\) 0 0
\(85\) −5.62749e8 −1.16931
\(86\) 0 0
\(87\) 1.14361e9 2.14014
\(88\) 0 0
\(89\) 1.11485e8 0.188349 0.0941744 0.995556i \(-0.469979\pi\)
0.0941744 + 0.995556i \(0.469979\pi\)
\(90\) 0 0
\(91\) −1.61914e8 −0.247514
\(92\) 0 0
\(93\) 6.06506e8 0.840740
\(94\) 0 0
\(95\) 5.07788e8 0.639626
\(96\) 0 0
\(97\) 1.48535e9 1.70356 0.851779 0.523902i \(-0.175524\pi\)
0.851779 + 0.523902i \(0.175524\pi\)
\(98\) 0 0
\(99\) −1.13231e8 −0.118470
\(100\) 0 0
\(101\) −2.45128e8 −0.234394 −0.117197 0.993109i \(-0.537391\pi\)
−0.117197 + 0.993109i \(0.537391\pi\)
\(102\) 0 0
\(103\) −2.38832e8 −0.209086 −0.104543 0.994520i \(-0.533338\pi\)
−0.104543 + 0.994520i \(0.533338\pi\)
\(104\) 0 0
\(105\) 2.68326e9 2.15432
\(106\) 0 0
\(107\) −2.49128e9 −1.83737 −0.918683 0.394995i \(-0.870746\pi\)
−0.918683 + 0.394995i \(0.870746\pi\)
\(108\) 0 0
\(109\) −6.58467e8 −0.446801 −0.223401 0.974727i \(-0.571716\pi\)
−0.223401 + 0.974727i \(0.571716\pi\)
\(110\) 0 0
\(111\) 3.51832e9 2.19979
\(112\) 0 0
\(113\) −3.08304e9 −1.77879 −0.889397 0.457135i \(-0.848876\pi\)
−0.889397 + 0.457135i \(0.848876\pi\)
\(114\) 0 0
\(115\) −2.44154e9 −1.30174
\(116\) 0 0
\(117\) −3.61121e8 −0.178163
\(118\) 0 0
\(119\) −1.21188e9 −0.553984
\(120\) 0 0
\(121\) −2.27775e9 −0.965987
\(122\) 0 0
\(123\) 3.28756e8 0.129509
\(124\) 0 0
\(125\) 7.96018e9 2.91627
\(126\) 0 0
\(127\) 4.74367e9 1.61807 0.809036 0.587760i \(-0.199990\pi\)
0.809036 + 0.587760i \(0.199990\pi\)
\(128\) 0 0
\(129\) −4.95011e9 −1.57384
\(130\) 0 0
\(131\) −4.82156e9 −1.43043 −0.715215 0.698904i \(-0.753671\pi\)
−0.715215 + 0.698904i \(0.753671\pi\)
\(132\) 0 0
\(133\) 1.09352e9 0.303035
\(134\) 0 0
\(135\) −3.33173e9 −0.863313
\(136\) 0 0
\(137\) 6.84563e9 1.66024 0.830120 0.557584i \(-0.188272\pi\)
0.830120 + 0.557584i \(0.188272\pi\)
\(138\) 0 0
\(139\) 1.40576e9 0.319407 0.159704 0.987165i \(-0.448946\pi\)
0.159704 + 0.987165i \(0.448946\pi\)
\(140\) 0 0
\(141\) 2.44225e9 0.520360
\(142\) 0 0
\(143\) 2.55776e8 0.0511503
\(144\) 0 0
\(145\) 1.67443e10 3.14565
\(146\) 0 0
\(147\) −1.47707e9 −0.260900
\(148\) 0 0
\(149\) −5.00961e9 −0.832657 −0.416328 0.909214i \(-0.636683\pi\)
−0.416328 + 0.909214i \(0.636683\pi\)
\(150\) 0 0
\(151\) 5.20038e9 0.814028 0.407014 0.913422i \(-0.366570\pi\)
0.407014 + 0.913422i \(0.366570\pi\)
\(152\) 0 0
\(153\) −2.70287e9 −0.398763
\(154\) 0 0
\(155\) 8.88018e9 1.23575
\(156\) 0 0
\(157\) −1.10243e10 −1.44811 −0.724055 0.689743i \(-0.757724\pi\)
−0.724055 + 0.689743i \(0.757724\pi\)
\(158\) 0 0
\(159\) 7.26404e9 0.901345
\(160\) 0 0
\(161\) −5.25785e9 −0.616725
\(162\) 0 0
\(163\) 3.80298e9 0.421968 0.210984 0.977489i \(-0.432333\pi\)
0.210984 + 0.977489i \(0.432333\pi\)
\(164\) 0 0
\(165\) −4.23875e9 −0.445205
\(166\) 0 0
\(167\) 9.08007e9 0.903369 0.451685 0.892178i \(-0.350823\pi\)
0.451685 + 0.892178i \(0.350823\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 2.43890e9 0.218128
\(172\) 0 0
\(173\) 6.99066e9 0.593349 0.296675 0.954979i \(-0.404122\pi\)
0.296675 + 0.954979i \(0.404122\pi\)
\(174\) 0 0
\(175\) 2.82146e10 2.27406
\(176\) 0 0
\(177\) 2.64020e10 2.02189
\(178\) 0 0
\(179\) 9.27045e9 0.674935 0.337468 0.941337i \(-0.390430\pi\)
0.337468 + 0.941337i \(0.390430\pi\)
\(180\) 0 0
\(181\) −8.93118e9 −0.618522 −0.309261 0.950977i \(-0.600082\pi\)
−0.309261 + 0.950977i \(0.600082\pi\)
\(182\) 0 0
\(183\) 2.43430e10 1.60451
\(184\) 0 0
\(185\) 5.15136e10 3.23332
\(186\) 0 0
\(187\) 1.91440e9 0.114484
\(188\) 0 0
\(189\) −7.17486e9 −0.409011
\(190\) 0 0
\(191\) 1.76817e9 0.0961332 0.0480666 0.998844i \(-0.484694\pi\)
0.0480666 + 0.998844i \(0.484694\pi\)
\(192\) 0 0
\(193\) 3.18546e10 1.65259 0.826294 0.563239i \(-0.190445\pi\)
0.826294 + 0.563239i \(0.190445\pi\)
\(194\) 0 0
\(195\) −1.35183e10 −0.669527
\(196\) 0 0
\(197\) −1.86231e10 −0.880955 −0.440478 0.897764i \(-0.645191\pi\)
−0.440478 + 0.897764i \(0.645191\pi\)
\(198\) 0 0
\(199\) −7.85919e9 −0.355254 −0.177627 0.984098i \(-0.556842\pi\)
−0.177627 + 0.984098i \(0.556842\pi\)
\(200\) 0 0
\(201\) −5.20846e10 −2.25075
\(202\) 0 0
\(203\) 3.60587e10 1.49031
\(204\) 0 0
\(205\) 4.81349e9 0.190357
\(206\) 0 0
\(207\) −1.17267e10 −0.443924
\(208\) 0 0
\(209\) −1.72743e9 −0.0626242
\(210\) 0 0
\(211\) −2.89592e10 −1.00581 −0.502904 0.864342i \(-0.667735\pi\)
−0.502904 + 0.864342i \(0.667735\pi\)
\(212\) 0 0
\(213\) 1.40584e10 0.467979
\(214\) 0 0
\(215\) −7.24773e10 −2.31328
\(216\) 0 0
\(217\) 1.91234e10 0.585459
\(218\) 0 0
\(219\) −9.05478e9 −0.265999
\(220\) 0 0
\(221\) 6.10548e9 0.172169
\(222\) 0 0
\(223\) −2.62550e10 −0.710951 −0.355475 0.934686i \(-0.615681\pi\)
−0.355475 + 0.934686i \(0.615681\pi\)
\(224\) 0 0
\(225\) 6.29276e10 1.63689
\(226\) 0 0
\(227\) 5.10050e10 1.27496 0.637479 0.770467i \(-0.279977\pi\)
0.637479 + 0.770467i \(0.279977\pi\)
\(228\) 0 0
\(229\) −2.73225e10 −0.656539 −0.328269 0.944584i \(-0.606465\pi\)
−0.328269 + 0.944584i \(0.606465\pi\)
\(230\) 0 0
\(231\) −9.12811e9 −0.210924
\(232\) 0 0
\(233\) 5.31510e9 0.118144 0.0590718 0.998254i \(-0.481186\pi\)
0.0590718 + 0.998254i \(0.481186\pi\)
\(234\) 0 0
\(235\) 3.57583e10 0.764841
\(236\) 0 0
\(237\) −8.49862e10 −1.74977
\(238\) 0 0
\(239\) −8.67256e10 −1.71932 −0.859660 0.510866i \(-0.829325\pi\)
−0.859660 + 0.510866i \(0.829325\pi\)
\(240\) 0 0
\(241\) −3.11273e10 −0.594381 −0.297190 0.954818i \(-0.596050\pi\)
−0.297190 + 0.954818i \(0.596050\pi\)
\(242\) 0 0
\(243\) −6.07481e10 −1.11765
\(244\) 0 0
\(245\) −2.16266e10 −0.383478
\(246\) 0 0
\(247\) −5.50918e9 −0.0941783
\(248\) 0 0
\(249\) −3.88535e10 −0.640520
\(250\) 0 0
\(251\) 1.39275e10 0.221484 0.110742 0.993849i \(-0.464677\pi\)
0.110742 + 0.993849i \(0.464677\pi\)
\(252\) 0 0
\(253\) 8.30583e9 0.127450
\(254\) 0 0
\(255\) −1.01180e11 −1.49853
\(256\) 0 0
\(257\) −9.46548e10 −1.35345 −0.676727 0.736234i \(-0.736602\pi\)
−0.676727 + 0.736234i \(0.736602\pi\)
\(258\) 0 0
\(259\) 1.10934e11 1.53185
\(260\) 0 0
\(261\) 8.04224e10 1.07274
\(262\) 0 0
\(263\) −9.11688e10 −1.17502 −0.587510 0.809217i \(-0.699892\pi\)
−0.587510 + 0.809217i \(0.699892\pi\)
\(264\) 0 0
\(265\) 1.06357e11 1.32482
\(266\) 0 0
\(267\) 2.00447e10 0.241379
\(268\) 0 0
\(269\) 3.28436e10 0.382442 0.191221 0.981547i \(-0.438755\pi\)
0.191221 + 0.981547i \(0.438755\pi\)
\(270\) 0 0
\(271\) 1.09848e11 1.23717 0.618586 0.785717i \(-0.287706\pi\)
0.618586 + 0.785717i \(0.287706\pi\)
\(272\) 0 0
\(273\) −2.91117e10 −0.317201
\(274\) 0 0
\(275\) −4.45707e10 −0.469950
\(276\) 0 0
\(277\) −5.21653e10 −0.532381 −0.266190 0.963920i \(-0.585765\pi\)
−0.266190 + 0.963920i \(0.585765\pi\)
\(278\) 0 0
\(279\) 4.26513e10 0.421419
\(280\) 0 0
\(281\) −9.83370e9 −0.0940889 −0.0470444 0.998893i \(-0.514980\pi\)
−0.0470444 + 0.998893i \(0.514980\pi\)
\(282\) 0 0
\(283\) −1.63436e11 −1.51464 −0.757319 0.653045i \(-0.773491\pi\)
−0.757319 + 0.653045i \(0.773491\pi\)
\(284\) 0 0
\(285\) 9.12985e10 0.819713
\(286\) 0 0
\(287\) 1.03658e10 0.0901852
\(288\) 0 0
\(289\) −7.28904e10 −0.614653
\(290\) 0 0
\(291\) 2.67061e11 2.18320
\(292\) 0 0
\(293\) −2.07425e11 −1.64421 −0.822104 0.569338i \(-0.807200\pi\)
−0.822104 + 0.569338i \(0.807200\pi\)
\(294\) 0 0
\(295\) 3.86566e11 2.97183
\(296\) 0 0
\(297\) 1.13341e10 0.0845249
\(298\) 0 0
\(299\) 2.64892e10 0.191668
\(300\) 0 0
\(301\) −1.56079e11 −1.09596
\(302\) 0 0
\(303\) −4.40732e10 −0.300388
\(304\) 0 0
\(305\) 3.56418e11 2.35836
\(306\) 0 0
\(307\) 2.39297e11 1.53750 0.768748 0.639552i \(-0.220880\pi\)
0.768748 + 0.639552i \(0.220880\pi\)
\(308\) 0 0
\(309\) −4.29413e10 −0.267955
\(310\) 0 0
\(311\) −1.68255e11 −1.01987 −0.509936 0.860213i \(-0.670331\pi\)
−0.509936 + 0.860213i \(0.670331\pi\)
\(312\) 0 0
\(313\) 1.61730e11 0.952449 0.476225 0.879324i \(-0.342005\pi\)
0.476225 + 0.879324i \(0.342005\pi\)
\(314\) 0 0
\(315\) 1.88695e11 1.07985
\(316\) 0 0
\(317\) 4.04406e10 0.224932 0.112466 0.993656i \(-0.464125\pi\)
0.112466 + 0.993656i \(0.464125\pi\)
\(318\) 0 0
\(319\) −5.69620e10 −0.307983
\(320\) 0 0
\(321\) −4.47924e11 −2.35468
\(322\) 0 0
\(323\) −4.12344e10 −0.210789
\(324\) 0 0
\(325\) −1.42146e11 −0.706741
\(326\) 0 0
\(327\) −1.18390e11 −0.572599
\(328\) 0 0
\(329\) 7.70052e10 0.362358
\(330\) 0 0
\(331\) −2.68780e11 −1.23076 −0.615378 0.788232i \(-0.710996\pi\)
−0.615378 + 0.788232i \(0.710996\pi\)
\(332\) 0 0
\(333\) 2.47419e11 1.10264
\(334\) 0 0
\(335\) −7.62599e11 −3.30822
\(336\) 0 0
\(337\) −9.14118e10 −0.386072 −0.193036 0.981192i \(-0.561833\pi\)
−0.193036 + 0.981192i \(0.561833\pi\)
\(338\) 0 0
\(339\) −5.54320e11 −2.27962
\(340\) 0 0
\(341\) −3.02093e10 −0.120989
\(342\) 0 0
\(343\) −2.75340e11 −1.07410
\(344\) 0 0
\(345\) −4.38982e11 −1.66825
\(346\) 0 0
\(347\) −3.75389e11 −1.38995 −0.694975 0.719033i \(-0.744585\pi\)
−0.694975 + 0.719033i \(0.744585\pi\)
\(348\) 0 0
\(349\) −5.23032e10 −0.188718 −0.0943592 0.995538i \(-0.530080\pi\)
−0.0943592 + 0.995538i \(0.530080\pi\)
\(350\) 0 0
\(351\) 3.61472e10 0.127114
\(352\) 0 0
\(353\) 2.20823e11 0.756933 0.378466 0.925615i \(-0.376452\pi\)
0.378466 + 0.925615i \(0.376452\pi\)
\(354\) 0 0
\(355\) 2.05836e11 0.687851
\(356\) 0 0
\(357\) −2.17891e11 −0.709959
\(358\) 0 0
\(359\) −7.53809e10 −0.239517 −0.119758 0.992803i \(-0.538212\pi\)
−0.119758 + 0.992803i \(0.538212\pi\)
\(360\) 0 0
\(361\) −2.85480e11 −0.884696
\(362\) 0 0
\(363\) −4.09532e11 −1.23796
\(364\) 0 0
\(365\) −1.32576e11 −0.390973
\(366\) 0 0
\(367\) −2.75198e10 −0.0791859 −0.0395929 0.999216i \(-0.512606\pi\)
−0.0395929 + 0.999216i \(0.512606\pi\)
\(368\) 0 0
\(369\) 2.31191e10 0.0649161
\(370\) 0 0
\(371\) 2.29038e11 0.627662
\(372\) 0 0
\(373\) 3.11639e11 0.833610 0.416805 0.908996i \(-0.363150\pi\)
0.416805 + 0.908996i \(0.363150\pi\)
\(374\) 0 0
\(375\) 1.43121e12 3.73735
\(376\) 0 0
\(377\) −1.81665e11 −0.463164
\(378\) 0 0
\(379\) 1.28321e11 0.319464 0.159732 0.987160i \(-0.448937\pi\)
0.159732 + 0.987160i \(0.448937\pi\)
\(380\) 0 0
\(381\) 8.52896e11 2.07364
\(382\) 0 0
\(383\) −3.34432e11 −0.794169 −0.397085 0.917782i \(-0.629978\pi\)
−0.397085 + 0.917782i \(0.629978\pi\)
\(384\) 0 0
\(385\) −1.33650e11 −0.310023
\(386\) 0 0
\(387\) −3.48107e11 −0.788885
\(388\) 0 0
\(389\) −3.73715e11 −0.827499 −0.413749 0.910391i \(-0.635781\pi\)
−0.413749 + 0.910391i \(0.635781\pi\)
\(390\) 0 0
\(391\) 1.98263e11 0.428990
\(392\) 0 0
\(393\) −8.66901e11 −1.83317
\(394\) 0 0
\(395\) −1.24433e12 −2.57187
\(396\) 0 0
\(397\) 6.40261e11 1.29360 0.646799 0.762660i \(-0.276107\pi\)
0.646799 + 0.762660i \(0.276107\pi\)
\(398\) 0 0
\(399\) 1.96611e11 0.388355
\(400\) 0 0
\(401\) 7.61577e11 1.47084 0.735418 0.677614i \(-0.236986\pi\)
0.735418 + 0.677614i \(0.236986\pi\)
\(402\) 0 0
\(403\) −9.63444e10 −0.181951
\(404\) 0 0
\(405\) −1.25418e12 −2.31640
\(406\) 0 0
\(407\) −1.75243e11 −0.316567
\(408\) 0 0
\(409\) 4.53304e10 0.0801004 0.0400502 0.999198i \(-0.487248\pi\)
0.0400502 + 0.999198i \(0.487248\pi\)
\(410\) 0 0
\(411\) 1.23082e12 2.12768
\(412\) 0 0
\(413\) 8.32467e11 1.40796
\(414\) 0 0
\(415\) −5.68875e11 −0.941456
\(416\) 0 0
\(417\) 2.52751e11 0.409337
\(418\) 0 0
\(419\) −4.33209e11 −0.686649 −0.343324 0.939217i \(-0.611553\pi\)
−0.343324 + 0.939217i \(0.611553\pi\)
\(420\) 0 0
\(421\) 2.32634e11 0.360914 0.180457 0.983583i \(-0.442242\pi\)
0.180457 + 0.983583i \(0.442242\pi\)
\(422\) 0 0
\(423\) 1.71746e11 0.260829
\(424\) 0 0
\(425\) −1.06392e12 −1.58182
\(426\) 0 0
\(427\) 7.67545e11 1.11732
\(428\) 0 0
\(429\) 4.59878e10 0.0655518
\(430\) 0 0
\(431\) 8.52061e11 1.18939 0.594693 0.803953i \(-0.297274\pi\)
0.594693 + 0.803953i \(0.297274\pi\)
\(432\) 0 0
\(433\) 9.97062e11 1.36310 0.681549 0.731773i \(-0.261307\pi\)
0.681549 + 0.731773i \(0.261307\pi\)
\(434\) 0 0
\(435\) 3.01056e12 4.03131
\(436\) 0 0
\(437\) −1.78900e11 −0.234662
\(438\) 0 0
\(439\) 4.94971e10 0.0636047 0.0318023 0.999494i \(-0.489875\pi\)
0.0318023 + 0.999494i \(0.489875\pi\)
\(440\) 0 0
\(441\) −1.03872e11 −0.130775
\(442\) 0 0
\(443\) 1.69415e11 0.208994 0.104497 0.994525i \(-0.466677\pi\)
0.104497 + 0.994525i \(0.466677\pi\)
\(444\) 0 0
\(445\) 2.93485e11 0.354786
\(446\) 0 0
\(447\) −9.00712e11 −1.06709
\(448\) 0 0
\(449\) −6.66846e11 −0.774313 −0.387157 0.922014i \(-0.626543\pi\)
−0.387157 + 0.922014i \(0.626543\pi\)
\(450\) 0 0
\(451\) −1.63749e10 −0.0186374
\(452\) 0 0
\(453\) 9.35012e11 1.04322
\(454\) 0 0
\(455\) −4.26240e11 −0.466233
\(456\) 0 0
\(457\) −8.94784e11 −0.959611 −0.479806 0.877375i \(-0.659293\pi\)
−0.479806 + 0.877375i \(0.659293\pi\)
\(458\) 0 0
\(459\) 2.70550e11 0.284506
\(460\) 0 0
\(461\) −1.29373e12 −1.33410 −0.667052 0.745011i \(-0.732444\pi\)
−0.667052 + 0.745011i \(0.732444\pi\)
\(462\) 0 0
\(463\) −4.54513e11 −0.459655 −0.229827 0.973231i \(-0.573816\pi\)
−0.229827 + 0.973231i \(0.573816\pi\)
\(464\) 0 0
\(465\) 1.59663e12 1.58367
\(466\) 0 0
\(467\) −6.41780e10 −0.0624396 −0.0312198 0.999513i \(-0.509939\pi\)
−0.0312198 + 0.999513i \(0.509939\pi\)
\(468\) 0 0
\(469\) −1.64225e12 −1.56734
\(470\) 0 0
\(471\) −1.98213e12 −1.85583
\(472\) 0 0
\(473\) 2.46559e11 0.226488
\(474\) 0 0
\(475\) 9.60010e11 0.865275
\(476\) 0 0
\(477\) 5.10829e11 0.451797
\(478\) 0 0
\(479\) 1.28336e12 1.11388 0.556942 0.830551i \(-0.311975\pi\)
0.556942 + 0.830551i \(0.311975\pi\)
\(480\) 0 0
\(481\) −5.58891e11 −0.476073
\(482\) 0 0
\(483\) −9.45344e11 −0.790365
\(484\) 0 0
\(485\) 3.91019e12 3.20893
\(486\) 0 0
\(487\) 2.14921e12 1.73140 0.865701 0.500561i \(-0.166873\pi\)
0.865701 + 0.500561i \(0.166873\pi\)
\(488\) 0 0
\(489\) 6.83763e11 0.540774
\(490\) 0 0
\(491\) 7.79359e10 0.0605161 0.0302580 0.999542i \(-0.490367\pi\)
0.0302580 + 0.999542i \(0.490367\pi\)
\(492\) 0 0
\(493\) −1.35970e12 −1.03665
\(494\) 0 0
\(495\) −2.98082e11 −0.223158
\(496\) 0 0
\(497\) 4.43267e11 0.325883
\(498\) 0 0
\(499\) −1.15785e12 −0.835985 −0.417992 0.908450i \(-0.637266\pi\)
−0.417992 + 0.908450i \(0.637266\pi\)
\(500\) 0 0
\(501\) 1.63257e12 1.15771
\(502\) 0 0
\(503\) 7.69460e11 0.535958 0.267979 0.963425i \(-0.413644\pi\)
0.267979 + 0.963425i \(0.413644\pi\)
\(504\) 0 0
\(505\) −6.45300e11 −0.441520
\(506\) 0 0
\(507\) 1.46666e11 0.0985809
\(508\) 0 0
\(509\) 1.25208e12 0.826801 0.413401 0.910549i \(-0.364341\pi\)
0.413401 + 0.910549i \(0.364341\pi\)
\(510\) 0 0
\(511\) −2.85501e11 −0.185231
\(512\) 0 0
\(513\) −2.44127e11 −0.155628
\(514\) 0 0
\(515\) −6.28726e11 −0.393848
\(516\) 0 0
\(517\) −1.21645e11 −0.0748838
\(518\) 0 0
\(519\) 1.25690e12 0.760408
\(520\) 0 0
\(521\) 2.68068e12 1.59395 0.796977 0.604010i \(-0.206431\pi\)
0.796977 + 0.604010i \(0.206431\pi\)
\(522\) 0 0
\(523\) 1.64731e12 0.962759 0.481380 0.876512i \(-0.340136\pi\)
0.481380 + 0.876512i \(0.340136\pi\)
\(524\) 0 0
\(525\) 5.07289e12 2.91433
\(526\) 0 0
\(527\) −7.21106e11 −0.407241
\(528\) 0 0
\(529\) −9.40967e11 −0.522425
\(530\) 0 0
\(531\) 1.85667e12 1.01347
\(532\) 0 0
\(533\) −5.22234e10 −0.0280280
\(534\) 0 0
\(535\) −6.55830e12 −3.46098
\(536\) 0 0
\(537\) 1.66680e12 0.864964
\(538\) 0 0
\(539\) 7.35710e10 0.0375455
\(540\) 0 0
\(541\) 9.59735e11 0.481685 0.240843 0.970564i \(-0.422576\pi\)
0.240843 + 0.970564i \(0.422576\pi\)
\(542\) 0 0
\(543\) −1.60580e12 −0.792668
\(544\) 0 0
\(545\) −1.73341e12 −0.841624
\(546\) 0 0
\(547\) 3.82447e11 0.182653 0.0913267 0.995821i \(-0.470889\pi\)
0.0913267 + 0.995821i \(0.470889\pi\)
\(548\) 0 0
\(549\) 1.71187e12 0.804258
\(550\) 0 0
\(551\) 1.22691e12 0.567060
\(552\) 0 0
\(553\) −2.67965e12 −1.21847
\(554\) 0 0
\(555\) 9.26197e12 4.14367
\(556\) 0 0
\(557\) 1.03867e12 0.457224 0.228612 0.973518i \(-0.426581\pi\)
0.228612 + 0.973518i \(0.426581\pi\)
\(558\) 0 0
\(559\) 7.86334e11 0.340607
\(560\) 0 0
\(561\) 3.44203e11 0.146718
\(562\) 0 0
\(563\) 9.49393e11 0.398252 0.199126 0.979974i \(-0.436190\pi\)
0.199126 + 0.979974i \(0.436190\pi\)
\(564\) 0 0
\(565\) −8.11610e12 −3.35065
\(566\) 0 0
\(567\) −2.70087e12 −1.09744
\(568\) 0 0
\(569\) −4.62973e12 −1.85161 −0.925807 0.377996i \(-0.876613\pi\)
−0.925807 + 0.377996i \(0.876613\pi\)
\(570\) 0 0
\(571\) −3.03010e11 −0.119288 −0.0596438 0.998220i \(-0.518996\pi\)
−0.0596438 + 0.998220i \(0.518996\pi\)
\(572\) 0 0
\(573\) 3.17911e11 0.123200
\(574\) 0 0
\(575\) −4.61592e12 −1.76097
\(576\) 0 0
\(577\) 1.10138e12 0.413663 0.206832 0.978377i \(-0.433685\pi\)
0.206832 + 0.978377i \(0.433685\pi\)
\(578\) 0 0
\(579\) 5.72735e12 2.11788
\(580\) 0 0
\(581\) −1.22507e12 −0.446034
\(582\) 0 0
\(583\) −3.61812e11 −0.129710
\(584\) 0 0
\(585\) −9.50652e11 −0.335598
\(586\) 0 0
\(587\) 3.99914e12 1.39026 0.695128 0.718886i \(-0.255347\pi\)
0.695128 + 0.718886i \(0.255347\pi\)
\(588\) 0 0
\(589\) 6.50679e11 0.222765
\(590\) 0 0
\(591\) −3.34837e12 −1.12899
\(592\) 0 0
\(593\) 8.78271e11 0.291664 0.145832 0.989309i \(-0.453414\pi\)
0.145832 + 0.989309i \(0.453414\pi\)
\(594\) 0 0
\(595\) −3.19026e12 −1.04352
\(596\) 0 0
\(597\) −1.41306e12 −0.455276
\(598\) 0 0
\(599\) −5.17796e12 −1.64338 −0.821690 0.569935i \(-0.806968\pi\)
−0.821690 + 0.569935i \(0.806968\pi\)
\(600\) 0 0
\(601\) −2.53790e12 −0.793486 −0.396743 0.917930i \(-0.629860\pi\)
−0.396743 + 0.917930i \(0.629860\pi\)
\(602\) 0 0
\(603\) −3.66275e12 −1.12818
\(604\) 0 0
\(605\) −5.99617e12 −1.81960
\(606\) 0 0
\(607\) 2.92326e12 0.874013 0.437006 0.899458i \(-0.356039\pi\)
0.437006 + 0.899458i \(0.356039\pi\)
\(608\) 0 0
\(609\) 6.48323e12 1.90991
\(610\) 0 0
\(611\) −3.87955e11 −0.112615
\(612\) 0 0
\(613\) −1.89601e12 −0.542335 −0.271168 0.962532i \(-0.587410\pi\)
−0.271168 + 0.962532i \(0.587410\pi\)
\(614\) 0 0
\(615\) 8.65450e11 0.243952
\(616\) 0 0
\(617\) −7.27725e11 −0.202155 −0.101077 0.994879i \(-0.532229\pi\)
−0.101077 + 0.994879i \(0.532229\pi\)
\(618\) 0 0
\(619\) −4.35291e12 −1.19171 −0.595857 0.803090i \(-0.703188\pi\)
−0.595857 + 0.803090i \(0.703188\pi\)
\(620\) 0 0
\(621\) 1.17381e12 0.316727
\(622\) 0 0
\(623\) 6.32019e11 0.168087
\(624\) 0 0
\(625\) 1.12346e13 2.94508
\(626\) 0 0
\(627\) −3.10586e11 −0.0802562
\(628\) 0 0
\(629\) −4.18311e12 −1.06554
\(630\) 0 0
\(631\) −1.83736e12 −0.461383 −0.230692 0.973027i \(-0.574099\pi\)
−0.230692 + 0.973027i \(0.574099\pi\)
\(632\) 0 0
\(633\) −5.20677e12 −1.28900
\(634\) 0 0
\(635\) 1.24877e13 3.04790
\(636\) 0 0
\(637\) 2.34635e11 0.0564632
\(638\) 0 0
\(639\) 9.88628e11 0.234573
\(640\) 0 0
\(641\) 4.54945e12 1.06438 0.532191 0.846624i \(-0.321369\pi\)
0.532191 + 0.846624i \(0.321369\pi\)
\(642\) 0 0
\(643\) −4.75234e12 −1.09637 −0.548186 0.836356i \(-0.684681\pi\)
−0.548186 + 0.836356i \(0.684681\pi\)
\(644\) 0 0
\(645\) −1.30312e13 −2.96459
\(646\) 0 0
\(647\) 5.58258e11 0.125247 0.0626233 0.998037i \(-0.480053\pi\)
0.0626233 + 0.998037i \(0.480053\pi\)
\(648\) 0 0
\(649\) −1.31505e12 −0.290965
\(650\) 0 0
\(651\) 3.43832e12 0.750296
\(652\) 0 0
\(653\) −8.16374e11 −0.175703 −0.0878516 0.996134i \(-0.528000\pi\)
−0.0878516 + 0.996134i \(0.528000\pi\)
\(654\) 0 0
\(655\) −1.26928e13 −2.69445
\(656\) 0 0
\(657\) −6.36760e11 −0.133331
\(658\) 0 0
\(659\) 5.10551e12 1.05452 0.527260 0.849704i \(-0.323219\pi\)
0.527260 + 0.849704i \(0.323219\pi\)
\(660\) 0 0
\(661\) −4.50499e12 −0.917884 −0.458942 0.888466i \(-0.651771\pi\)
−0.458942 + 0.888466i \(0.651771\pi\)
\(662\) 0 0
\(663\) 1.09774e12 0.220643
\(664\) 0 0
\(665\) 2.87868e12 0.570817
\(666\) 0 0
\(667\) −5.89921e12 −1.15406
\(668\) 0 0
\(669\) −4.72055e12 −0.911120
\(670\) 0 0
\(671\) −1.21249e12 −0.230902
\(672\) 0 0
\(673\) −5.92192e11 −0.111274 −0.0556372 0.998451i \(-0.517719\pi\)
−0.0556372 + 0.998451i \(0.517719\pi\)
\(674\) 0 0
\(675\) −6.29888e12 −1.16788
\(676\) 0 0
\(677\) −3.80993e12 −0.697056 −0.348528 0.937298i \(-0.613318\pi\)
−0.348528 + 0.937298i \(0.613318\pi\)
\(678\) 0 0
\(679\) 8.42057e12 1.52029
\(680\) 0 0
\(681\) 9.17053e12 1.63393
\(682\) 0 0
\(683\) 9.05115e11 0.159151 0.0795757 0.996829i \(-0.474643\pi\)
0.0795757 + 0.996829i \(0.474643\pi\)
\(684\) 0 0
\(685\) 1.80211e13 3.12734
\(686\) 0 0
\(687\) −4.91249e12 −0.841388
\(688\) 0 0
\(689\) −1.15390e12 −0.195067
\(690\) 0 0
\(691\) −6.55695e12 −1.09408 −0.547042 0.837105i \(-0.684246\pi\)
−0.547042 + 0.837105i \(0.684246\pi\)
\(692\) 0 0
\(693\) −6.41917e11 −0.105725
\(694\) 0 0
\(695\) 3.70067e12 0.601656
\(696\) 0 0
\(697\) −3.90875e11 −0.0627322
\(698\) 0 0
\(699\) 9.55638e11 0.151407
\(700\) 0 0
\(701\) 3.06995e12 0.480176 0.240088 0.970751i \(-0.422824\pi\)
0.240088 + 0.970751i \(0.422824\pi\)
\(702\) 0 0
\(703\) 3.77457e12 0.582865
\(704\) 0 0
\(705\) 6.42922e12 0.980183
\(706\) 0 0
\(707\) −1.38965e12 −0.209179
\(708\) 0 0
\(709\) 7.61524e12 1.13182 0.565908 0.824469i \(-0.308526\pi\)
0.565908 + 0.824469i \(0.308526\pi\)
\(710\) 0 0
\(711\) −5.97649e12 −0.877067
\(712\) 0 0
\(713\) −3.12859e12 −0.453363
\(714\) 0 0
\(715\) 6.73332e11 0.0963500
\(716\) 0 0
\(717\) −1.55930e13 −2.20340
\(718\) 0 0
\(719\) −9.51130e12 −1.32727 −0.663636 0.748056i \(-0.730988\pi\)
−0.663636 + 0.748056i \(0.730988\pi\)
\(720\) 0 0
\(721\) −1.35396e12 −0.186593
\(722\) 0 0
\(723\) −5.59659e12 −0.761729
\(724\) 0 0
\(725\) 3.16563e13 4.25538
\(726\) 0 0
\(727\) −9.21476e12 −1.22343 −0.611715 0.791078i \(-0.709520\pi\)
−0.611715 + 0.791078i \(0.709520\pi\)
\(728\) 0 0
\(729\) −1.54488e12 −0.202592
\(730\) 0 0
\(731\) 5.88545e12 0.762345
\(732\) 0 0
\(733\) −5.85946e12 −0.749704 −0.374852 0.927085i \(-0.622306\pi\)
−0.374852 + 0.927085i \(0.622306\pi\)
\(734\) 0 0
\(735\) −3.88839e12 −0.491447
\(736\) 0 0
\(737\) 2.59427e12 0.323900
\(738\) 0 0
\(739\) 1.07791e13 1.32948 0.664740 0.747075i \(-0.268543\pi\)
0.664740 + 0.747075i \(0.268543\pi\)
\(740\) 0 0
\(741\) −9.90533e11 −0.120694
\(742\) 0 0
\(743\) 1.46255e13 1.76061 0.880303 0.474411i \(-0.157339\pi\)
0.880303 + 0.474411i \(0.157339\pi\)
\(744\) 0 0
\(745\) −1.31878e13 −1.56845
\(746\) 0 0
\(747\) −2.73230e12 −0.321059
\(748\) 0 0
\(749\) −1.41233e13 −1.63971
\(750\) 0 0
\(751\) 4.52434e12 0.519010 0.259505 0.965742i \(-0.416441\pi\)
0.259505 + 0.965742i \(0.416441\pi\)
\(752\) 0 0
\(753\) 2.50412e12 0.283843
\(754\) 0 0
\(755\) 1.36900e13 1.53335
\(756\) 0 0
\(757\) −4.43997e12 −0.491415 −0.245708 0.969344i \(-0.579020\pi\)
−0.245708 + 0.969344i \(0.579020\pi\)
\(758\) 0 0
\(759\) 1.49336e12 0.163334
\(760\) 0 0
\(761\) −1.21097e13 −1.30888 −0.654442 0.756112i \(-0.727096\pi\)
−0.654442 + 0.756112i \(0.727096\pi\)
\(762\) 0 0
\(763\) −3.73290e12 −0.398736
\(764\) 0 0
\(765\) −7.11532e12 −0.751135
\(766\) 0 0
\(767\) −4.19400e12 −0.437572
\(768\) 0 0
\(769\) −2.20914e12 −0.227800 −0.113900 0.993492i \(-0.536334\pi\)
−0.113900 + 0.993492i \(0.536334\pi\)
\(770\) 0 0
\(771\) −1.70186e13 −1.73452
\(772\) 0 0
\(773\) 2.35745e12 0.237484 0.118742 0.992925i \(-0.462114\pi\)
0.118742 + 0.992925i \(0.462114\pi\)
\(774\) 0 0
\(775\) 1.67886e13 1.67170
\(776\) 0 0
\(777\) 1.99456e13 1.96315
\(778\) 0 0
\(779\) 3.52700e11 0.0343152
\(780\) 0 0
\(781\) −7.00229e11 −0.0673458
\(782\) 0 0
\(783\) −8.05007e12 −0.765370
\(784\) 0 0
\(785\) −2.90214e13 −2.72775
\(786\) 0 0
\(787\) −1.12444e13 −1.04484 −0.522418 0.852689i \(-0.674970\pi\)
−0.522418 + 0.852689i \(0.674970\pi\)
\(788\) 0 0
\(789\) −1.63918e13 −1.50585
\(790\) 0 0
\(791\) −1.74780e13 −1.58744
\(792\) 0 0
\(793\) −3.86692e12 −0.347245
\(794\) 0 0
\(795\) 1.91226e13 1.69783
\(796\) 0 0
\(797\) 2.64697e12 0.232374 0.116187 0.993227i \(-0.462933\pi\)
0.116187 + 0.993227i \(0.462933\pi\)
\(798\) 0 0
\(799\) −2.90372e12 −0.252054
\(800\) 0 0
\(801\) 1.40961e12 0.120990
\(802\) 0 0
\(803\) 4.51007e11 0.0382792
\(804\) 0 0
\(805\) −1.38413e13 −1.16170
\(806\) 0 0
\(807\) 5.90518e12 0.490120
\(808\) 0 0
\(809\) −2.90663e10 −0.00238573 −0.00119286 0.999999i \(-0.500380\pi\)
−0.00119286 + 0.999999i \(0.500380\pi\)
\(810\) 0 0
\(811\) −3.57442e12 −0.290143 −0.145071 0.989421i \(-0.546341\pi\)
−0.145071 + 0.989421i \(0.546341\pi\)
\(812\) 0 0
\(813\) 1.97503e13 1.58550
\(814\) 0 0
\(815\) 1.00113e13 0.794846
\(816\) 0 0
\(817\) −5.31064e12 −0.417011
\(818\) 0 0
\(819\) −2.04722e12 −0.158996
\(820\) 0 0
\(821\) 6.57405e12 0.504997 0.252498 0.967597i \(-0.418748\pi\)
0.252498 + 0.967597i \(0.418748\pi\)
\(822\) 0 0
\(823\) −9.79180e12 −0.743983 −0.371992 0.928236i \(-0.621325\pi\)
−0.371992 + 0.928236i \(0.621325\pi\)
\(824\) 0 0
\(825\) −8.01366e12 −0.602266
\(826\) 0 0
\(827\) −9.38817e12 −0.697921 −0.348961 0.937137i \(-0.613465\pi\)
−0.348961 + 0.937137i \(0.613465\pi\)
\(828\) 0 0
\(829\) −7.04824e12 −0.518305 −0.259152 0.965836i \(-0.583443\pi\)
−0.259152 + 0.965836i \(0.583443\pi\)
\(830\) 0 0
\(831\) −9.37914e12 −0.682274
\(832\) 0 0
\(833\) 1.75617e12 0.126376
\(834\) 0 0
\(835\) 2.39033e13 1.70164
\(836\) 0 0
\(837\) −4.26928e12 −0.300670
\(838\) 0 0
\(839\) 1.83602e13 1.27923 0.639617 0.768694i \(-0.279093\pi\)
0.639617 + 0.768694i \(0.279093\pi\)
\(840\) 0 0
\(841\) 2.59500e13 1.78878
\(842\) 0 0
\(843\) −1.76807e12 −0.120580
\(844\) 0 0
\(845\) 2.14741e12 0.144897
\(846\) 0 0
\(847\) −1.29127e13 −0.862069
\(848\) 0 0
\(849\) −2.93853e13 −1.94109
\(850\) 0 0
\(851\) −1.81489e13 −1.18622
\(852\) 0 0
\(853\) 1.28564e13 0.831472 0.415736 0.909485i \(-0.363524\pi\)
0.415736 + 0.909485i \(0.363524\pi\)
\(854\) 0 0
\(855\) 6.42039e12 0.410879
\(856\) 0 0
\(857\) −1.31309e13 −0.831538 −0.415769 0.909470i \(-0.636487\pi\)
−0.415769 + 0.909470i \(0.636487\pi\)
\(858\) 0 0
\(859\) 2.20323e13 1.38067 0.690337 0.723488i \(-0.257462\pi\)
0.690337 + 0.723488i \(0.257462\pi\)
\(860\) 0 0
\(861\) 1.86374e12 0.115577
\(862\) 0 0
\(863\) −2.44095e13 −1.49799 −0.748997 0.662573i \(-0.769464\pi\)
−0.748997 + 0.662573i \(0.769464\pi\)
\(864\) 0 0
\(865\) 1.84029e13 1.11767
\(866\) 0 0
\(867\) −1.31054e13 −0.787709
\(868\) 0 0
\(869\) 4.23305e12 0.251805
\(870\) 0 0
\(871\) 8.27373e12 0.487102
\(872\) 0 0
\(873\) 1.87806e13 1.09432
\(874\) 0 0
\(875\) 4.51268e13 2.60255
\(876\) 0 0
\(877\) 9.70479e12 0.553972 0.276986 0.960874i \(-0.410664\pi\)
0.276986 + 0.960874i \(0.410664\pi\)
\(878\) 0 0
\(879\) −3.72943e13 −2.10714
\(880\) 0 0
\(881\) −1.44632e13 −0.808859 −0.404430 0.914569i \(-0.632530\pi\)
−0.404430 + 0.914569i \(0.632530\pi\)
\(882\) 0 0
\(883\) −1.02994e13 −0.570152 −0.285076 0.958505i \(-0.592019\pi\)
−0.285076 + 0.958505i \(0.592019\pi\)
\(884\) 0 0
\(885\) 6.95033e13 3.80856
\(886\) 0 0
\(887\) −1.16087e13 −0.629688 −0.314844 0.949143i \(-0.601952\pi\)
−0.314844 + 0.949143i \(0.601952\pi\)
\(888\) 0 0
\(889\) 2.68922e13 1.44400
\(890\) 0 0
\(891\) 4.26657e12 0.226793
\(892\) 0 0
\(893\) 2.62012e12 0.137876
\(894\) 0 0
\(895\) 2.44045e13 1.27135
\(896\) 0 0
\(897\) 4.76268e12 0.245632
\(898\) 0 0
\(899\) 2.14561e13 1.09555
\(900\) 0 0
\(901\) −8.63660e12 −0.436597
\(902\) 0 0
\(903\) −2.80626e13 −1.40453
\(904\) 0 0
\(905\) −2.35113e13 −1.16509
\(906\) 0 0
\(907\) 3.89275e13 1.90996 0.954979 0.296675i \(-0.0958777\pi\)
0.954979 + 0.296675i \(0.0958777\pi\)
\(908\) 0 0
\(909\) −3.09936e12 −0.150569
\(910\) 0 0
\(911\) 1.89482e13 0.911453 0.455726 0.890120i \(-0.349380\pi\)
0.455726 + 0.890120i \(0.349380\pi\)
\(912\) 0 0
\(913\) 1.93524e12 0.0921758
\(914\) 0 0
\(915\) 6.40829e13 3.02236
\(916\) 0 0
\(917\) −2.73338e13 −1.27655
\(918\) 0 0
\(919\) 1.56774e12 0.0725029 0.0362514 0.999343i \(-0.488458\pi\)
0.0362514 + 0.999343i \(0.488458\pi\)
\(920\) 0 0
\(921\) 4.30247e13 1.97038
\(922\) 0 0
\(923\) −2.23320e12 −0.101279
\(924\) 0 0
\(925\) 9.73902e13 4.37399
\(926\) 0 0
\(927\) −3.01976e12 −0.134312
\(928\) 0 0
\(929\) 1.43481e13 0.632010 0.316005 0.948758i \(-0.397658\pi\)
0.316005 + 0.948758i \(0.397658\pi\)
\(930\) 0 0
\(931\) −1.58465e12 −0.0691289
\(932\) 0 0
\(933\) −3.02516e13 −1.30702
\(934\) 0 0
\(935\) 5.03967e12 0.215650
\(936\) 0 0
\(937\) 1.16894e13 0.495410 0.247705 0.968836i \(-0.420324\pi\)
0.247705 + 0.968836i \(0.420324\pi\)
\(938\) 0 0
\(939\) 2.90786e13 1.22061
\(940\) 0 0
\(941\) −1.54364e13 −0.641792 −0.320896 0.947115i \(-0.603984\pi\)
−0.320896 + 0.947115i \(0.603984\pi\)
\(942\) 0 0
\(943\) −1.69585e12 −0.0698370
\(944\) 0 0
\(945\) −1.88878e13 −0.770440
\(946\) 0 0
\(947\) −4.57619e13 −1.84897 −0.924483 0.381224i \(-0.875503\pi\)
−0.924483 + 0.381224i \(0.875503\pi\)
\(948\) 0 0
\(949\) 1.43837e12 0.0575667
\(950\) 0 0
\(951\) 7.27108e12 0.288261
\(952\) 0 0
\(953\) 4.10090e13 1.61050 0.805250 0.592935i \(-0.202031\pi\)
0.805250 + 0.592935i \(0.202031\pi\)
\(954\) 0 0
\(955\) 4.65470e12 0.181083
\(956\) 0 0
\(957\) −1.02416e13 −0.394696
\(958\) 0 0
\(959\) 3.88084e13 1.48164
\(960\) 0 0
\(961\) −1.50606e13 −0.569621
\(962\) 0 0
\(963\) −3.14994e13 −1.18028
\(964\) 0 0
\(965\) 8.38573e13 3.11292
\(966\) 0 0
\(967\) −9.77642e12 −0.359551 −0.179776 0.983708i \(-0.557537\pi\)
−0.179776 + 0.983708i \(0.557537\pi\)
\(968\) 0 0
\(969\) −7.41381e12 −0.270137
\(970\) 0 0
\(971\) 3.19450e13 1.15323 0.576616 0.817015i \(-0.304373\pi\)
0.576616 + 0.817015i \(0.304373\pi\)
\(972\) 0 0
\(973\) 7.96936e12 0.285046
\(974\) 0 0
\(975\) −2.55574e13 −0.905725
\(976\) 0 0
\(977\) −2.10587e13 −0.739444 −0.369722 0.929142i \(-0.620547\pi\)
−0.369722 + 0.929142i \(0.620547\pi\)
\(978\) 0 0
\(979\) −9.98401e11 −0.0347363
\(980\) 0 0
\(981\) −8.32556e12 −0.287014
\(982\) 0 0
\(983\) −3.15106e13 −1.07638 −0.538189 0.842824i \(-0.680892\pi\)
−0.538189 + 0.842824i \(0.680892\pi\)
\(984\) 0 0
\(985\) −4.90253e13 −1.65942
\(986\) 0 0
\(987\) 1.38453e13 0.464381
\(988\) 0 0
\(989\) 2.55346e13 0.848685
\(990\) 0 0
\(991\) −2.57481e13 −0.848037 −0.424018 0.905654i \(-0.639381\pi\)
−0.424018 + 0.905654i \(0.639381\pi\)
\(992\) 0 0
\(993\) −4.83258e13 −1.57728
\(994\) 0 0
\(995\) −2.06893e13 −0.669179
\(996\) 0 0
\(997\) 9.81382e12 0.314565 0.157282 0.987554i \(-0.449727\pi\)
0.157282 + 0.987554i \(0.449727\pi\)
\(998\) 0 0
\(999\) −2.47660e13 −0.786702
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.i.1.5 5
4.3 odd 2 52.10.a.b.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.10.a.b.1.1 5 4.3 odd 2
208.10.a.i.1.5 5 1.1 even 1 trivial