Properties

Label 208.10.a.i.1.2
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,147] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 5049x^{3} - 87027x^{2} + 2867800x + 48215700 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 52)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(24.5519\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-43.6557 q^{3} -1118.78 q^{5} +2400.89 q^{7} -17777.2 q^{9} -89423.9 q^{11} -28561.0 q^{13} +48841.2 q^{15} +6922.38 q^{17} -953407. q^{19} -104812. q^{21} +219400. q^{23} -701452. q^{25} +1.63535e6 q^{27} +3.05756e6 q^{29} -7.36697e6 q^{31} +3.90386e6 q^{33} -2.68607e6 q^{35} +2.13197e7 q^{37} +1.24685e6 q^{39} -2.82208e7 q^{41} -3.92754e7 q^{43} +1.98888e7 q^{45} -6.24103e7 q^{47} -3.45893e7 q^{49} -302201. q^{51} +2.98002e7 q^{53} +1.00046e8 q^{55} +4.16216e7 q^{57} -4.75092e7 q^{59} +6.17261e7 q^{61} -4.26810e7 q^{63} +3.19535e7 q^{65} +2.57132e8 q^{67} -9.57806e6 q^{69} +1.59261e8 q^{71} -2.29436e8 q^{73} +3.06223e7 q^{75} -2.14697e8 q^{77} +3.23364e8 q^{79} +2.78516e8 q^{81} -2.81009e8 q^{83} -7.74463e6 q^{85} -1.33480e8 q^{87} -8.03235e8 q^{89} -6.85718e7 q^{91} +3.21610e8 q^{93} +1.06665e9 q^{95} -6.00909e8 q^{97} +1.58970e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 147 q^{3} + 1721 q^{5} - 3317 q^{7} - 3204 q^{9} - 6562 q^{11} - 142805 q^{13} - 80283 q^{15} - 146493 q^{17} - 110250 q^{19} + 2250015 q^{21} - 1675652 q^{23} + 6048610 q^{25} - 4937895 q^{27} + 7019714 q^{29}+ \cdots - 302611248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −43.6557 −0.311168 −0.155584 0.987823i \(-0.549726\pi\)
−0.155584 + 0.987823i \(0.549726\pi\)
\(4\) 0 0
\(5\) −1118.78 −0.800535 −0.400268 0.916398i \(-0.631083\pi\)
−0.400268 + 0.916398i \(0.631083\pi\)
\(6\) 0 0
\(7\) 2400.89 0.377947 0.188973 0.981982i \(-0.439484\pi\)
0.188973 + 0.981982i \(0.439484\pi\)
\(8\) 0 0
\(9\) −17777.2 −0.903174
\(10\) 0 0
\(11\) −89423.9 −1.84156 −0.920781 0.390079i \(-0.872448\pi\)
−0.920781 + 0.390079i \(0.872448\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) 48841.2 0.249101
\(16\) 0 0
\(17\) 6922.38 0.0201018 0.0100509 0.999949i \(-0.496801\pi\)
0.0100509 + 0.999949i \(0.496801\pi\)
\(18\) 0 0
\(19\) −953407. −1.67837 −0.839184 0.543848i \(-0.816967\pi\)
−0.839184 + 0.543848i \(0.816967\pi\)
\(20\) 0 0
\(21\) −104812. −0.117605
\(22\) 0 0
\(23\) 219400. 0.163479 0.0817394 0.996654i \(-0.473952\pi\)
0.0817394 + 0.996654i \(0.473952\pi\)
\(24\) 0 0
\(25\) −701452. −0.359143
\(26\) 0 0
\(27\) 1.63535e6 0.592207
\(28\) 0 0
\(29\) 3.05756e6 0.802756 0.401378 0.915912i \(-0.368531\pi\)
0.401378 + 0.915912i \(0.368531\pi\)
\(30\) 0 0
\(31\) −7.36697e6 −1.43272 −0.716360 0.697731i \(-0.754193\pi\)
−0.716360 + 0.697731i \(0.754193\pi\)
\(32\) 0 0
\(33\) 3.90386e6 0.573035
\(34\) 0 0
\(35\) −2.68607e6 −0.302560
\(36\) 0 0
\(37\) 2.13197e7 1.87014 0.935068 0.354469i \(-0.115338\pi\)
0.935068 + 0.354469i \(0.115338\pi\)
\(38\) 0 0
\(39\) 1.24685e6 0.0863025
\(40\) 0 0
\(41\) −2.82208e7 −1.55970 −0.779852 0.625964i \(-0.784706\pi\)
−0.779852 + 0.625964i \(0.784706\pi\)
\(42\) 0 0
\(43\) −3.92754e7 −1.75192 −0.875958 0.482388i \(-0.839770\pi\)
−0.875958 + 0.482388i \(0.839770\pi\)
\(44\) 0 0
\(45\) 1.98888e7 0.723023
\(46\) 0 0
\(47\) −6.24103e7 −1.86559 −0.932794 0.360409i \(-0.882637\pi\)
−0.932794 + 0.360409i \(0.882637\pi\)
\(48\) 0 0
\(49\) −3.45893e7 −0.857156
\(50\) 0 0
\(51\) −302201. −0.00625504
\(52\) 0 0
\(53\) 2.98002e7 0.518773 0.259386 0.965774i \(-0.416480\pi\)
0.259386 + 0.965774i \(0.416480\pi\)
\(54\) 0 0
\(55\) 1.00046e8 1.47424
\(56\) 0 0
\(57\) 4.16216e7 0.522254
\(58\) 0 0
\(59\) −4.75092e7 −0.510439 −0.255219 0.966883i \(-0.582148\pi\)
−0.255219 + 0.966883i \(0.582148\pi\)
\(60\) 0 0
\(61\) 6.17261e7 0.570801 0.285400 0.958408i \(-0.407873\pi\)
0.285400 + 0.958408i \(0.407873\pi\)
\(62\) 0 0
\(63\) −4.26810e7 −0.341352
\(64\) 0 0
\(65\) 3.19535e7 0.222029
\(66\) 0 0
\(67\) 2.57132e8 1.55891 0.779453 0.626461i \(-0.215497\pi\)
0.779453 + 0.626461i \(0.215497\pi\)
\(68\) 0 0
\(69\) −9.57806e6 −0.0508694
\(70\) 0 0
\(71\) 1.59261e8 0.743786 0.371893 0.928276i \(-0.378709\pi\)
0.371893 + 0.928276i \(0.378709\pi\)
\(72\) 0 0
\(73\) −2.29436e8 −0.945604 −0.472802 0.881169i \(-0.656757\pi\)
−0.472802 + 0.881169i \(0.656757\pi\)
\(74\) 0 0
\(75\) 3.06223e7 0.111754
\(76\) 0 0
\(77\) −2.14697e8 −0.696013
\(78\) 0 0
\(79\) 3.23364e8 0.934048 0.467024 0.884245i \(-0.345326\pi\)
0.467024 + 0.884245i \(0.345326\pi\)
\(80\) 0 0
\(81\) 2.78516e8 0.718899
\(82\) 0 0
\(83\) −2.81009e8 −0.649933 −0.324966 0.945726i \(-0.605353\pi\)
−0.324966 + 0.945726i \(0.605353\pi\)
\(84\) 0 0
\(85\) −7.74463e6 −0.0160922
\(86\) 0 0
\(87\) −1.33480e8 −0.249792
\(88\) 0 0
\(89\) −8.03235e8 −1.35702 −0.678512 0.734589i \(-0.737375\pi\)
−0.678512 + 0.734589i \(0.737375\pi\)
\(90\) 0 0
\(91\) −6.85718e7 −0.104824
\(92\) 0 0
\(93\) 3.21610e8 0.445817
\(94\) 0 0
\(95\) 1.06665e9 1.34359
\(96\) 0 0
\(97\) −6.00909e8 −0.689185 −0.344593 0.938752i \(-0.611983\pi\)
−0.344593 + 0.938752i \(0.611983\pi\)
\(98\) 0 0
\(99\) 1.58970e9 1.66325
\(100\) 0 0
\(101\) 1.50762e9 1.44160 0.720801 0.693143i \(-0.243774\pi\)
0.720801 + 0.693143i \(0.243774\pi\)
\(102\) 0 0
\(103\) −1.41394e9 −1.23784 −0.618918 0.785456i \(-0.712429\pi\)
−0.618918 + 0.785456i \(0.712429\pi\)
\(104\) 0 0
\(105\) 1.17262e8 0.0941469
\(106\) 0 0
\(107\) −4.88063e8 −0.359955 −0.179978 0.983671i \(-0.557603\pi\)
−0.179978 + 0.983671i \(0.557603\pi\)
\(108\) 0 0
\(109\) −1.57823e9 −1.07090 −0.535451 0.844566i \(-0.679858\pi\)
−0.535451 + 0.844566i \(0.679858\pi\)
\(110\) 0 0
\(111\) −9.30725e8 −0.581926
\(112\) 0 0
\(113\) 1.93883e9 1.11863 0.559315 0.828955i \(-0.311064\pi\)
0.559315 + 0.828955i \(0.311064\pi\)
\(114\) 0 0
\(115\) −2.45461e8 −0.130871
\(116\) 0 0
\(117\) 5.07734e8 0.250496
\(118\) 0 0
\(119\) 1.66199e7 0.00759741
\(120\) 0 0
\(121\) 5.63868e9 2.39135
\(122\) 0 0
\(123\) 1.23200e9 0.485330
\(124\) 0 0
\(125\) 2.96989e9 1.08804
\(126\) 0 0
\(127\) −5.49035e8 −0.187276 −0.0936382 0.995606i \(-0.529850\pi\)
−0.0936382 + 0.995606i \(0.529850\pi\)
\(128\) 0 0
\(129\) 1.71460e9 0.545140
\(130\) 0 0
\(131\) 4.67425e9 1.38673 0.693364 0.720587i \(-0.256128\pi\)
0.693364 + 0.720587i \(0.256128\pi\)
\(132\) 0 0
\(133\) −2.28902e9 −0.634334
\(134\) 0 0
\(135\) −1.82960e9 −0.474083
\(136\) 0 0
\(137\) 1.31544e9 0.319028 0.159514 0.987196i \(-0.449007\pi\)
0.159514 + 0.987196i \(0.449007\pi\)
\(138\) 0 0
\(139\) −1.67356e8 −0.0380255 −0.0190128 0.999819i \(-0.506052\pi\)
−0.0190128 + 0.999819i \(0.506052\pi\)
\(140\) 0 0
\(141\) 2.72456e9 0.580512
\(142\) 0 0
\(143\) 2.55404e9 0.510758
\(144\) 0 0
\(145\) −3.42074e9 −0.642635
\(146\) 0 0
\(147\) 1.51002e9 0.266720
\(148\) 0 0
\(149\) 6.81714e9 1.13309 0.566544 0.824031i \(-0.308280\pi\)
0.566544 + 0.824031i \(0.308280\pi\)
\(150\) 0 0
\(151\) 1.96107e9 0.306970 0.153485 0.988151i \(-0.450950\pi\)
0.153485 + 0.988151i \(0.450950\pi\)
\(152\) 0 0
\(153\) −1.23060e8 −0.0181554
\(154\) 0 0
\(155\) 8.24203e9 1.14694
\(156\) 0 0
\(157\) 5.66617e8 0.0744288 0.0372144 0.999307i \(-0.488152\pi\)
0.0372144 + 0.999307i \(0.488152\pi\)
\(158\) 0 0
\(159\) −1.30095e9 −0.161426
\(160\) 0 0
\(161\) 5.26755e8 0.0617863
\(162\) 0 0
\(163\) 2.63411e9 0.292274 0.146137 0.989264i \(-0.453316\pi\)
0.146137 + 0.989264i \(0.453316\pi\)
\(164\) 0 0
\(165\) −4.36757e9 −0.458735
\(166\) 0 0
\(167\) 1.46991e9 0.146240 0.0731202 0.997323i \(-0.476704\pi\)
0.0731202 + 0.997323i \(0.476704\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 1.69489e10 1.51586
\(172\) 0 0
\(173\) −3.61967e9 −0.307229 −0.153614 0.988131i \(-0.549091\pi\)
−0.153614 + 0.988131i \(0.549091\pi\)
\(174\) 0 0
\(175\) −1.68411e9 −0.135737
\(176\) 0 0
\(177\) 2.07405e9 0.158832
\(178\) 0 0
\(179\) 1.76991e9 0.128858 0.0644291 0.997922i \(-0.479477\pi\)
0.0644291 + 0.997922i \(0.479477\pi\)
\(180\) 0 0
\(181\) 3.82763e9 0.265079 0.132540 0.991178i \(-0.457687\pi\)
0.132540 + 0.991178i \(0.457687\pi\)
\(182\) 0 0
\(183\) −2.69469e9 −0.177615
\(184\) 0 0
\(185\) −2.38521e10 −1.49711
\(186\) 0 0
\(187\) −6.19026e8 −0.0370187
\(188\) 0 0
\(189\) 3.92629e9 0.223823
\(190\) 0 0
\(191\) 6.46855e9 0.351687 0.175844 0.984418i \(-0.443735\pi\)
0.175844 + 0.984418i \(0.443735\pi\)
\(192\) 0 0
\(193\) −2.13263e10 −1.10639 −0.553194 0.833053i \(-0.686591\pi\)
−0.553194 + 0.833053i \(0.686591\pi\)
\(194\) 0 0
\(195\) −1.39495e9 −0.0690882
\(196\) 0 0
\(197\) 3.34250e10 1.58115 0.790575 0.612365i \(-0.209782\pi\)
0.790575 + 0.612365i \(0.209782\pi\)
\(198\) 0 0
\(199\) 2.74180e10 1.23936 0.619678 0.784856i \(-0.287263\pi\)
0.619678 + 0.784856i \(0.287263\pi\)
\(200\) 0 0
\(201\) −1.12253e10 −0.485082
\(202\) 0 0
\(203\) 7.34085e9 0.303399
\(204\) 0 0
\(205\) 3.15729e10 1.24860
\(206\) 0 0
\(207\) −3.90032e9 −0.147650
\(208\) 0 0
\(209\) 8.52574e10 3.09082
\(210\) 0 0
\(211\) −3.67676e10 −1.27701 −0.638505 0.769618i \(-0.720447\pi\)
−0.638505 + 0.769618i \(0.720447\pi\)
\(212\) 0 0
\(213\) −6.95267e9 −0.231443
\(214\) 0 0
\(215\) 4.39407e10 1.40247
\(216\) 0 0
\(217\) −1.76873e10 −0.541492
\(218\) 0 0
\(219\) 1.00162e10 0.294242
\(220\) 0 0
\(221\) −1.97710e8 −0.00557524
\(222\) 0 0
\(223\) −3.79284e9 −0.102705 −0.0513526 0.998681i \(-0.516353\pi\)
−0.0513526 + 0.998681i \(0.516353\pi\)
\(224\) 0 0
\(225\) 1.24698e10 0.324369
\(226\) 0 0
\(227\) −6.16898e10 −1.54205 −0.771023 0.636808i \(-0.780254\pi\)
−0.771023 + 0.636808i \(0.780254\pi\)
\(228\) 0 0
\(229\) −1.14559e10 −0.275276 −0.137638 0.990483i \(-0.543951\pi\)
−0.137638 + 0.990483i \(0.543951\pi\)
\(230\) 0 0
\(231\) 9.37273e9 0.216577
\(232\) 0 0
\(233\) 5.80159e10 1.28957 0.644786 0.764363i \(-0.276946\pi\)
0.644786 + 0.764363i \(0.276946\pi\)
\(234\) 0 0
\(235\) 6.98235e10 1.49347
\(236\) 0 0
\(237\) −1.41167e10 −0.290646
\(238\) 0 0
\(239\) −6.92877e10 −1.37362 −0.686808 0.726839i \(-0.740989\pi\)
−0.686808 + 0.726839i \(0.740989\pi\)
\(240\) 0 0
\(241\) 2.01694e10 0.385138 0.192569 0.981283i \(-0.438318\pi\)
0.192569 + 0.981283i \(0.438318\pi\)
\(242\) 0 0
\(243\) −4.43474e10 −0.815905
\(244\) 0 0
\(245\) 3.86979e10 0.686184
\(246\) 0 0
\(247\) 2.72303e10 0.465495
\(248\) 0 0
\(249\) 1.22676e10 0.202238
\(250\) 0 0
\(251\) −7.40441e10 −1.17749 −0.588747 0.808317i \(-0.700379\pi\)
−0.588747 + 0.808317i \(0.700379\pi\)
\(252\) 0 0
\(253\) −1.96196e10 −0.301057
\(254\) 0 0
\(255\) 3.38097e8 0.00500738
\(256\) 0 0
\(257\) −7.66758e10 −1.09638 −0.548188 0.836355i \(-0.684682\pi\)
−0.548188 + 0.836355i \(0.684682\pi\)
\(258\) 0 0
\(259\) 5.11862e10 0.706812
\(260\) 0 0
\(261\) −5.43548e10 −0.725029
\(262\) 0 0
\(263\) −2.35219e10 −0.303160 −0.151580 0.988445i \(-0.548436\pi\)
−0.151580 + 0.988445i \(0.548436\pi\)
\(264\) 0 0
\(265\) −3.33399e10 −0.415296
\(266\) 0 0
\(267\) 3.50658e10 0.422263
\(268\) 0 0
\(269\) −9.12998e10 −1.06313 −0.531563 0.847019i \(-0.678395\pi\)
−0.531563 + 0.847019i \(0.678395\pi\)
\(270\) 0 0
\(271\) −2.92307e10 −0.329214 −0.164607 0.986359i \(-0.552636\pi\)
−0.164607 + 0.986359i \(0.552636\pi\)
\(272\) 0 0
\(273\) 2.99355e9 0.0326177
\(274\) 0 0
\(275\) 6.27265e10 0.661385
\(276\) 0 0
\(277\) 8.96158e10 0.914588 0.457294 0.889316i \(-0.348819\pi\)
0.457294 + 0.889316i \(0.348819\pi\)
\(278\) 0 0
\(279\) 1.30964e11 1.29400
\(280\) 0 0
\(281\) 5.24439e9 0.0501783 0.0250892 0.999685i \(-0.492013\pi\)
0.0250892 + 0.999685i \(0.492013\pi\)
\(282\) 0 0
\(283\) −7.37444e10 −0.683424 −0.341712 0.939805i \(-0.611007\pi\)
−0.341712 + 0.939805i \(0.611007\pi\)
\(284\) 0 0
\(285\) −4.65655e10 −0.418083
\(286\) 0 0
\(287\) −6.77550e10 −0.589485
\(288\) 0 0
\(289\) −1.18540e11 −0.999596
\(290\) 0 0
\(291\) 2.62331e10 0.214452
\(292\) 0 0
\(293\) −1.05352e11 −0.835097 −0.417548 0.908655i \(-0.637111\pi\)
−0.417548 + 0.908655i \(0.637111\pi\)
\(294\) 0 0
\(295\) 5.31524e10 0.408624
\(296\) 0 0
\(297\) −1.46239e11 −1.09059
\(298\) 0 0
\(299\) −6.26629e9 −0.0453409
\(300\) 0 0
\(301\) −9.42959e10 −0.662131
\(302\) 0 0
\(303\) −6.58161e10 −0.448580
\(304\) 0 0
\(305\) −6.90581e10 −0.456946
\(306\) 0 0
\(307\) −1.92855e11 −1.23911 −0.619553 0.784955i \(-0.712686\pi\)
−0.619553 + 0.784955i \(0.712686\pi\)
\(308\) 0 0
\(309\) 6.17264e10 0.385175
\(310\) 0 0
\(311\) −9.36526e10 −0.567673 −0.283836 0.958873i \(-0.591607\pi\)
−0.283836 + 0.958873i \(0.591607\pi\)
\(312\) 0 0
\(313\) −9.45470e10 −0.556799 −0.278399 0.960465i \(-0.589804\pi\)
−0.278399 + 0.960465i \(0.589804\pi\)
\(314\) 0 0
\(315\) 4.77508e10 0.273264
\(316\) 0 0
\(317\) 2.31003e11 1.28484 0.642422 0.766351i \(-0.277930\pi\)
0.642422 + 0.766351i \(0.277930\pi\)
\(318\) 0 0
\(319\) −2.73419e11 −1.47833
\(320\) 0 0
\(321\) 2.13067e10 0.112007
\(322\) 0 0
\(323\) −6.59984e9 −0.0337382
\(324\) 0 0
\(325\) 2.00342e10 0.0996084
\(326\) 0 0
\(327\) 6.88985e10 0.333231
\(328\) 0 0
\(329\) −1.49840e11 −0.705093
\(330\) 0 0
\(331\) 3.69233e11 1.69073 0.845364 0.534190i \(-0.179383\pi\)
0.845364 + 0.534190i \(0.179383\pi\)
\(332\) 0 0
\(333\) −3.79004e11 −1.68906
\(334\) 0 0
\(335\) −2.87675e11 −1.24796
\(336\) 0 0
\(337\) −4.51363e11 −1.90630 −0.953151 0.302495i \(-0.902181\pi\)
−0.953151 + 0.302495i \(0.902181\pi\)
\(338\) 0 0
\(339\) −8.46408e10 −0.348082
\(340\) 0 0
\(341\) 6.58783e11 2.63844
\(342\) 0 0
\(343\) −1.79930e11 −0.701906
\(344\) 0 0
\(345\) 1.07158e10 0.0407228
\(346\) 0 0
\(347\) −5.25600e10 −0.194613 −0.0973066 0.995254i \(-0.531023\pi\)
−0.0973066 + 0.995254i \(0.531023\pi\)
\(348\) 0 0
\(349\) −3.00136e11 −1.08294 −0.541469 0.840721i \(-0.682132\pi\)
−0.541469 + 0.840721i \(0.682132\pi\)
\(350\) 0 0
\(351\) −4.67072e10 −0.164249
\(352\) 0 0
\(353\) 3.39093e11 1.16234 0.581170 0.813782i \(-0.302595\pi\)
0.581170 + 0.813782i \(0.302595\pi\)
\(354\) 0 0
\(355\) −1.78179e11 −0.595427
\(356\) 0 0
\(357\) −7.25551e8 −0.00236407
\(358\) 0 0
\(359\) −1.12495e11 −0.357443 −0.178721 0.983900i \(-0.557196\pi\)
−0.178721 + 0.983900i \(0.557196\pi\)
\(360\) 0 0
\(361\) 5.86297e11 1.81692
\(362\) 0 0
\(363\) −2.46161e11 −0.744113
\(364\) 0 0
\(365\) 2.56689e11 0.756990
\(366\) 0 0
\(367\) 1.17132e11 0.337038 0.168519 0.985698i \(-0.446102\pi\)
0.168519 + 0.985698i \(0.446102\pi\)
\(368\) 0 0
\(369\) 5.01686e11 1.40868
\(370\) 0 0
\(371\) 7.15469e10 0.196069
\(372\) 0 0
\(373\) −5.87942e11 −1.57270 −0.786348 0.617784i \(-0.788031\pi\)
−0.786348 + 0.617784i \(0.788031\pi\)
\(374\) 0 0
\(375\) −1.29653e11 −0.338564
\(376\) 0 0
\(377\) −8.73269e10 −0.222644
\(378\) 0 0
\(379\) −6.33112e10 −0.157617 −0.0788087 0.996890i \(-0.525112\pi\)
−0.0788087 + 0.996890i \(0.525112\pi\)
\(380\) 0 0
\(381\) 2.39685e10 0.0582744
\(382\) 0 0
\(383\) 2.72035e11 0.645997 0.322999 0.946399i \(-0.395309\pi\)
0.322999 + 0.946399i \(0.395309\pi\)
\(384\) 0 0
\(385\) 2.40199e11 0.557183
\(386\) 0 0
\(387\) 6.98207e11 1.58229
\(388\) 0 0
\(389\) 2.31998e11 0.513702 0.256851 0.966451i \(-0.417315\pi\)
0.256851 + 0.966451i \(0.417315\pi\)
\(390\) 0 0
\(391\) 1.51877e9 0.00328622
\(392\) 0 0
\(393\) −2.04058e11 −0.431506
\(394\) 0 0
\(395\) −3.61773e11 −0.747738
\(396\) 0 0
\(397\) −5.68473e11 −1.14856 −0.574278 0.818660i \(-0.694717\pi\)
−0.574278 + 0.818660i \(0.694717\pi\)
\(398\) 0 0
\(399\) 9.99288e10 0.197384
\(400\) 0 0
\(401\) −1.97098e11 −0.380656 −0.190328 0.981721i \(-0.560955\pi\)
−0.190328 + 0.981721i \(0.560955\pi\)
\(402\) 0 0
\(403\) 2.10408e11 0.397365
\(404\) 0 0
\(405\) −3.11599e11 −0.575504
\(406\) 0 0
\(407\) −1.90649e12 −3.44397
\(408\) 0 0
\(409\) −5.80163e11 −1.02517 −0.512584 0.858637i \(-0.671312\pi\)
−0.512584 + 0.858637i \(0.671312\pi\)
\(410\) 0 0
\(411\) −5.74264e10 −0.0992712
\(412\) 0 0
\(413\) −1.14064e11 −0.192919
\(414\) 0 0
\(415\) 3.14388e11 0.520294
\(416\) 0 0
\(417\) 7.30605e9 0.0118323
\(418\) 0 0
\(419\) 7.39387e11 1.17195 0.585974 0.810330i \(-0.300712\pi\)
0.585974 + 0.810330i \(0.300712\pi\)
\(420\) 0 0
\(421\) −3.41920e11 −0.530462 −0.265231 0.964185i \(-0.585448\pi\)
−0.265231 + 0.964185i \(0.585448\pi\)
\(422\) 0 0
\(423\) 1.10948e12 1.68495
\(424\) 0 0
\(425\) −4.85571e9 −0.00721943
\(426\) 0 0
\(427\) 1.48197e11 0.215732
\(428\) 0 0
\(429\) −1.11498e11 −0.158931
\(430\) 0 0
\(431\) 4.31243e11 0.601970 0.300985 0.953629i \(-0.402685\pi\)
0.300985 + 0.953629i \(0.402685\pi\)
\(432\) 0 0
\(433\) −9.97252e10 −0.136336 −0.0681678 0.997674i \(-0.521715\pi\)
−0.0681678 + 0.997674i \(0.521715\pi\)
\(434\) 0 0
\(435\) 1.49335e11 0.199967
\(436\) 0 0
\(437\) −2.09178e11 −0.274378
\(438\) 0 0
\(439\) −5.36800e11 −0.689798 −0.344899 0.938640i \(-0.612087\pi\)
−0.344899 + 0.938640i \(0.612087\pi\)
\(440\) 0 0
\(441\) 6.14901e11 0.774162
\(442\) 0 0
\(443\) −2.73927e11 −0.337923 −0.168961 0.985623i \(-0.554041\pi\)
−0.168961 + 0.985623i \(0.554041\pi\)
\(444\) 0 0
\(445\) 8.98645e11 1.08635
\(446\) 0 0
\(447\) −2.97607e11 −0.352581
\(448\) 0 0
\(449\) −2.47519e11 −0.287409 −0.143704 0.989621i \(-0.545901\pi\)
−0.143704 + 0.989621i \(0.545901\pi\)
\(450\) 0 0
\(451\) 2.52361e12 2.87229
\(452\) 0 0
\(453\) −8.56117e10 −0.0955194
\(454\) 0 0
\(455\) 7.67169e10 0.0839150
\(456\) 0 0
\(457\) 6.48193e11 0.695155 0.347577 0.937651i \(-0.387004\pi\)
0.347577 + 0.937651i \(0.387004\pi\)
\(458\) 0 0
\(459\) 1.13205e10 0.0119044
\(460\) 0 0
\(461\) −3.43960e11 −0.354694 −0.177347 0.984148i \(-0.556751\pi\)
−0.177347 + 0.984148i \(0.556751\pi\)
\(462\) 0 0
\(463\) 2.31795e10 0.0234418 0.0117209 0.999931i \(-0.496269\pi\)
0.0117209 + 0.999931i \(0.496269\pi\)
\(464\) 0 0
\(465\) −3.59811e11 −0.356892
\(466\) 0 0
\(467\) 8.96996e11 0.872699 0.436350 0.899777i \(-0.356271\pi\)
0.436350 + 0.899777i \(0.356271\pi\)
\(468\) 0 0
\(469\) 6.17345e11 0.589183
\(470\) 0 0
\(471\) −2.47360e10 −0.0231599
\(472\) 0 0
\(473\) 3.51216e12 3.22626
\(474\) 0 0
\(475\) 6.68769e11 0.602774
\(476\) 0 0
\(477\) −5.29763e11 −0.468542
\(478\) 0 0
\(479\) 1.05580e12 0.916369 0.458185 0.888857i \(-0.348500\pi\)
0.458185 + 0.888857i \(0.348500\pi\)
\(480\) 0 0
\(481\) −6.08912e11 −0.518682
\(482\) 0 0
\(483\) −2.29958e10 −0.0192259
\(484\) 0 0
\(485\) 6.72286e11 0.551717
\(486\) 0 0
\(487\) −5.13456e11 −0.413640 −0.206820 0.978379i \(-0.566312\pi\)
−0.206820 + 0.978379i \(0.566312\pi\)
\(488\) 0 0
\(489\) −1.14994e11 −0.0909462
\(490\) 0 0
\(491\) −1.55403e12 −1.20668 −0.603342 0.797482i \(-0.706165\pi\)
−0.603342 + 0.797482i \(0.706165\pi\)
\(492\) 0 0
\(493\) 2.11656e10 0.0161368
\(494\) 0 0
\(495\) −1.77853e12 −1.33149
\(496\) 0 0
\(497\) 3.82369e11 0.281112
\(498\) 0 0
\(499\) −8.75125e11 −0.631855 −0.315927 0.948783i \(-0.602316\pi\)
−0.315927 + 0.948783i \(0.602316\pi\)
\(500\) 0 0
\(501\) −6.41700e10 −0.0455053
\(502\) 0 0
\(503\) −8.42711e11 −0.586979 −0.293490 0.955962i \(-0.594817\pi\)
−0.293490 + 0.955962i \(0.594817\pi\)
\(504\) 0 0
\(505\) −1.68670e12 −1.15405
\(506\) 0 0
\(507\) −3.56113e10 −0.0239360
\(508\) 0 0
\(509\) −4.14489e11 −0.273705 −0.136853 0.990591i \(-0.543699\pi\)
−0.136853 + 0.990591i \(0.543699\pi\)
\(510\) 0 0
\(511\) −5.50851e11 −0.357388
\(512\) 0 0
\(513\) −1.55915e12 −0.993941
\(514\) 0 0
\(515\) 1.58189e12 0.990931
\(516\) 0 0
\(517\) 5.58097e12 3.43560
\(518\) 0 0
\(519\) 1.58019e11 0.0955998
\(520\) 0 0
\(521\) 1.85381e12 1.10229 0.551146 0.834409i \(-0.314191\pi\)
0.551146 + 0.834409i \(0.314191\pi\)
\(522\) 0 0
\(523\) −2.31831e10 −0.0135492 −0.00677461 0.999977i \(-0.502156\pi\)
−0.00677461 + 0.999977i \(0.502156\pi\)
\(524\) 0 0
\(525\) 7.35208e10 0.0422370
\(526\) 0 0
\(527\) −5.09969e10 −0.0288003
\(528\) 0 0
\(529\) −1.75302e12 −0.973275
\(530\) 0 0
\(531\) 8.44579e11 0.461015
\(532\) 0 0
\(533\) 8.06014e11 0.432584
\(534\) 0 0
\(535\) 5.46036e11 0.288157
\(536\) 0 0
\(537\) −7.72665e10 −0.0400965
\(538\) 0 0
\(539\) 3.09311e12 1.57851
\(540\) 0 0
\(541\) 3.16247e12 1.58723 0.793613 0.608423i \(-0.208197\pi\)
0.793613 + 0.608423i \(0.208197\pi\)
\(542\) 0 0
\(543\) −1.67098e11 −0.0824842
\(544\) 0 0
\(545\) 1.76569e12 0.857295
\(546\) 0 0
\(547\) 6.34691e11 0.303123 0.151562 0.988448i \(-0.451570\pi\)
0.151562 + 0.988448i \(0.451570\pi\)
\(548\) 0 0
\(549\) −1.09732e12 −0.515533
\(550\) 0 0
\(551\) −2.91510e12 −1.34732
\(552\) 0 0
\(553\) 7.76360e11 0.353020
\(554\) 0 0
\(555\) 1.04128e12 0.465853
\(556\) 0 0
\(557\) −3.52826e12 −1.55315 −0.776573 0.630027i \(-0.783044\pi\)
−0.776573 + 0.630027i \(0.783044\pi\)
\(558\) 0 0
\(559\) 1.12175e12 0.485894
\(560\) 0 0
\(561\) 2.70240e10 0.0115190
\(562\) 0 0
\(563\) −3.38867e12 −1.42148 −0.710741 0.703454i \(-0.751640\pi\)
−0.710741 + 0.703454i \(0.751640\pi\)
\(564\) 0 0
\(565\) −2.16913e12 −0.895503
\(566\) 0 0
\(567\) 6.68686e11 0.271705
\(568\) 0 0
\(569\) 8.45275e10 0.0338059 0.0169030 0.999857i \(-0.494619\pi\)
0.0169030 + 0.999857i \(0.494619\pi\)
\(570\) 0 0
\(571\) 2.46141e12 0.968995 0.484497 0.874793i \(-0.339003\pi\)
0.484497 + 0.874793i \(0.339003\pi\)
\(572\) 0 0
\(573\) −2.82389e11 −0.109434
\(574\) 0 0
\(575\) −1.53899e11 −0.0587123
\(576\) 0 0
\(577\) 1.68775e11 0.0633895 0.0316948 0.999498i \(-0.489910\pi\)
0.0316948 + 0.999498i \(0.489910\pi\)
\(578\) 0 0
\(579\) 9.31013e11 0.344272
\(580\) 0 0
\(581\) −6.74671e11 −0.245640
\(582\) 0 0
\(583\) −2.66485e12 −0.955353
\(584\) 0 0
\(585\) −5.68044e11 −0.200531
\(586\) 0 0
\(587\) 3.89965e12 1.35567 0.677835 0.735214i \(-0.262919\pi\)
0.677835 + 0.735214i \(0.262919\pi\)
\(588\) 0 0
\(589\) 7.02372e12 2.40463
\(590\) 0 0
\(591\) −1.45919e12 −0.492004
\(592\) 0 0
\(593\) −2.26068e12 −0.750746 −0.375373 0.926874i \(-0.622485\pi\)
−0.375373 + 0.926874i \(0.622485\pi\)
\(594\) 0 0
\(595\) −1.85940e10 −0.00608200
\(596\) 0 0
\(597\) −1.19695e12 −0.385648
\(598\) 0 0
\(599\) 4.43544e12 1.40772 0.703859 0.710339i \(-0.251459\pi\)
0.703859 + 0.710339i \(0.251459\pi\)
\(600\) 0 0
\(601\) −1.84414e12 −0.576578 −0.288289 0.957543i \(-0.593086\pi\)
−0.288289 + 0.957543i \(0.593086\pi\)
\(602\) 0 0
\(603\) −4.57109e12 −1.40796
\(604\) 0 0
\(605\) −6.30846e12 −1.91436
\(606\) 0 0
\(607\) 4.38462e12 1.31094 0.655470 0.755221i \(-0.272470\pi\)
0.655470 + 0.755221i \(0.272470\pi\)
\(608\) 0 0
\(609\) −3.20470e11 −0.0944081
\(610\) 0 0
\(611\) 1.78250e12 0.517421
\(612\) 0 0
\(613\) −4.10734e12 −1.17487 −0.587433 0.809273i \(-0.699861\pi\)
−0.587433 + 0.809273i \(0.699861\pi\)
\(614\) 0 0
\(615\) −1.37834e12 −0.388524
\(616\) 0 0
\(617\) −4.11936e12 −1.14432 −0.572158 0.820143i \(-0.693894\pi\)
−0.572158 + 0.820143i \(0.693894\pi\)
\(618\) 0 0
\(619\) 2.10039e12 0.575032 0.287516 0.957776i \(-0.407170\pi\)
0.287516 + 0.957776i \(0.407170\pi\)
\(620\) 0 0
\(621\) 3.58796e11 0.0968134
\(622\) 0 0
\(623\) −1.92848e12 −0.512883
\(624\) 0 0
\(625\) −1.95264e12 −0.511873
\(626\) 0 0
\(627\) −3.72197e12 −0.961764
\(628\) 0 0
\(629\) 1.47583e11 0.0375931
\(630\) 0 0
\(631\) −8.64436e11 −0.217071 −0.108535 0.994093i \(-0.534616\pi\)
−0.108535 + 0.994093i \(0.534616\pi\)
\(632\) 0 0
\(633\) 1.60511e12 0.397364
\(634\) 0 0
\(635\) 6.14250e11 0.149921
\(636\) 0 0
\(637\) 9.87906e11 0.237732
\(638\) 0 0
\(639\) −2.83122e12 −0.671769
\(640\) 0 0
\(641\) 3.11744e12 0.729352 0.364676 0.931135i \(-0.381180\pi\)
0.364676 + 0.931135i \(0.381180\pi\)
\(642\) 0 0
\(643\) 5.32183e12 1.22776 0.613878 0.789401i \(-0.289609\pi\)
0.613878 + 0.789401i \(0.289609\pi\)
\(644\) 0 0
\(645\) −1.91826e12 −0.436404
\(646\) 0 0
\(647\) −5.28571e12 −1.18586 −0.592931 0.805253i \(-0.702029\pi\)
−0.592931 + 0.805253i \(0.702029\pi\)
\(648\) 0 0
\(649\) 4.24846e12 0.940005
\(650\) 0 0
\(651\) 7.72149e11 0.168495
\(652\) 0 0
\(653\) 6.83060e11 0.147011 0.0735055 0.997295i \(-0.476581\pi\)
0.0735055 + 0.997295i \(0.476581\pi\)
\(654\) 0 0
\(655\) −5.22947e12 −1.11012
\(656\) 0 0
\(657\) 4.07873e12 0.854046
\(658\) 0 0
\(659\) 1.49780e12 0.309364 0.154682 0.987964i \(-0.450565\pi\)
0.154682 + 0.987964i \(0.450565\pi\)
\(660\) 0 0
\(661\) −5.09414e12 −1.03792 −0.518960 0.854798i \(-0.673681\pi\)
−0.518960 + 0.854798i \(0.673681\pi\)
\(662\) 0 0
\(663\) 8.63116e9 0.00173484
\(664\) 0 0
\(665\) 2.56092e12 0.507806
\(666\) 0 0
\(667\) 6.70829e11 0.131234
\(668\) 0 0
\(669\) 1.65579e11 0.0319586
\(670\) 0 0
\(671\) −5.51979e12 −1.05117
\(672\) 0 0
\(673\) −1.29497e12 −0.243327 −0.121664 0.992571i \(-0.538823\pi\)
−0.121664 + 0.992571i \(0.538823\pi\)
\(674\) 0 0
\(675\) −1.14712e12 −0.212687
\(676\) 0 0
\(677\) 5.89837e12 1.07915 0.539577 0.841936i \(-0.318584\pi\)
0.539577 + 0.841936i \(0.318584\pi\)
\(678\) 0 0
\(679\) −1.44272e12 −0.260475
\(680\) 0 0
\(681\) 2.69311e12 0.479835
\(682\) 0 0
\(683\) 6.57112e12 1.15544 0.577718 0.816236i \(-0.303943\pi\)
0.577718 + 0.816236i \(0.303943\pi\)
\(684\) 0 0
\(685\) −1.47169e12 −0.255393
\(686\) 0 0
\(687\) 5.00113e11 0.0856570
\(688\) 0 0
\(689\) −8.51123e11 −0.143882
\(690\) 0 0
\(691\) −4.95643e12 −0.827023 −0.413512 0.910499i \(-0.635698\pi\)
−0.413512 + 0.910499i \(0.635698\pi\)
\(692\) 0 0
\(693\) 3.81670e12 0.628621
\(694\) 0 0
\(695\) 1.87235e11 0.0304408
\(696\) 0 0
\(697\) −1.95355e11 −0.0313529
\(698\) 0 0
\(699\) −2.53272e12 −0.401274
\(700\) 0 0
\(701\) −1.24680e13 −1.95014 −0.975068 0.221907i \(-0.928772\pi\)
−0.975068 + 0.221907i \(0.928772\pi\)
\(702\) 0 0
\(703\) −2.03263e13 −3.13877
\(704\) 0 0
\(705\) −3.04819e12 −0.464720
\(706\) 0 0
\(707\) 3.61962e12 0.544848
\(708\) 0 0
\(709\) −3.24995e12 −0.483024 −0.241512 0.970398i \(-0.577643\pi\)
−0.241512 + 0.970398i \(0.577643\pi\)
\(710\) 0 0
\(711\) −5.74849e12 −0.843608
\(712\) 0 0
\(713\) −1.61631e12 −0.234219
\(714\) 0 0
\(715\) −2.85741e12 −0.408879
\(716\) 0 0
\(717\) 3.02480e12 0.427426
\(718\) 0 0
\(719\) 5.14539e12 0.718022 0.359011 0.933333i \(-0.383114\pi\)
0.359011 + 0.933333i \(0.383114\pi\)
\(720\) 0 0
\(721\) −3.39471e12 −0.467836
\(722\) 0 0
\(723\) −8.80508e11 −0.119843
\(724\) 0 0
\(725\) −2.14473e12 −0.288304
\(726\) 0 0
\(727\) −1.03289e13 −1.37135 −0.685673 0.727909i \(-0.740492\pi\)
−0.685673 + 0.727909i \(0.740492\pi\)
\(728\) 0 0
\(729\) −3.54602e12 −0.465015
\(730\) 0 0
\(731\) −2.71879e11 −0.0352167
\(732\) 0 0
\(733\) 1.21857e13 1.55913 0.779564 0.626323i \(-0.215441\pi\)
0.779564 + 0.626323i \(0.215441\pi\)
\(734\) 0 0
\(735\) −1.68938e12 −0.213518
\(736\) 0 0
\(737\) −2.29938e13 −2.87082
\(738\) 0 0
\(739\) 2.06724e12 0.254971 0.127485 0.991840i \(-0.459309\pi\)
0.127485 + 0.991840i \(0.459309\pi\)
\(740\) 0 0
\(741\) −1.18875e12 −0.144847
\(742\) 0 0
\(743\) −3.20368e12 −0.385655 −0.192827 0.981233i \(-0.561766\pi\)
−0.192827 + 0.981233i \(0.561766\pi\)
\(744\) 0 0
\(745\) −7.62689e12 −0.907078
\(746\) 0 0
\(747\) 4.99554e12 0.587003
\(748\) 0 0
\(749\) −1.17178e12 −0.136044
\(750\) 0 0
\(751\) −8.23634e12 −0.944832 −0.472416 0.881376i \(-0.656618\pi\)
−0.472416 + 0.881376i \(0.656618\pi\)
\(752\) 0 0
\(753\) 3.23245e12 0.366399
\(754\) 0 0
\(755\) −2.19401e12 −0.245741
\(756\) 0 0
\(757\) 1.29938e13 1.43815 0.719076 0.694931i \(-0.244565\pi\)
0.719076 + 0.694931i \(0.244565\pi\)
\(758\) 0 0
\(759\) 8.56507e11 0.0936792
\(760\) 0 0
\(761\) 7.50191e12 0.810851 0.405426 0.914128i \(-0.367123\pi\)
0.405426 + 0.914128i \(0.367123\pi\)
\(762\) 0 0
\(763\) −3.78914e12 −0.404744
\(764\) 0 0
\(765\) 1.37678e11 0.0145341
\(766\) 0 0
\(767\) 1.35691e12 0.141570
\(768\) 0 0
\(769\) −1.28652e13 −1.32663 −0.663313 0.748342i \(-0.730850\pi\)
−0.663313 + 0.748342i \(0.730850\pi\)
\(770\) 0 0
\(771\) 3.34733e12 0.341157
\(772\) 0 0
\(773\) 1.51851e13 1.52971 0.764857 0.644200i \(-0.222810\pi\)
0.764857 + 0.644200i \(0.222810\pi\)
\(774\) 0 0
\(775\) 5.16757e12 0.514551
\(776\) 0 0
\(777\) −2.23457e12 −0.219937
\(778\) 0 0
\(779\) 2.69059e13 2.61776
\(780\) 0 0
\(781\) −1.42418e13 −1.36973
\(782\) 0 0
\(783\) 5.00017e12 0.475398
\(784\) 0 0
\(785\) −6.33921e11 −0.0595829
\(786\) 0 0
\(787\) 1.30742e13 1.21486 0.607432 0.794372i \(-0.292200\pi\)
0.607432 + 0.794372i \(0.292200\pi\)
\(788\) 0 0
\(789\) 1.02687e12 0.0943338
\(790\) 0 0
\(791\) 4.65491e12 0.422782
\(792\) 0 0
\(793\) −1.76296e12 −0.158312
\(794\) 0 0
\(795\) 1.45548e12 0.129227
\(796\) 0 0
\(797\) −1.24204e11 −0.0109037 −0.00545183 0.999985i \(-0.501735\pi\)
−0.00545183 + 0.999985i \(0.501735\pi\)
\(798\) 0 0
\(799\) −4.32028e11 −0.0375017
\(800\) 0 0
\(801\) 1.42793e13 1.22563
\(802\) 0 0
\(803\) 2.05171e13 1.74139
\(804\) 0 0
\(805\) −5.89324e11 −0.0494621
\(806\) 0 0
\(807\) 3.98576e12 0.330811
\(808\) 0 0
\(809\) −1.52070e13 −1.24817 −0.624087 0.781355i \(-0.714529\pi\)
−0.624087 + 0.781355i \(0.714529\pi\)
\(810\) 0 0
\(811\) 9.69769e12 0.787181 0.393590 0.919286i \(-0.371233\pi\)
0.393590 + 0.919286i \(0.371233\pi\)
\(812\) 0 0
\(813\) 1.27609e12 0.102441
\(814\) 0 0
\(815\) −2.94699e12 −0.233975
\(816\) 0 0
\(817\) 3.74455e13 2.94036
\(818\) 0 0
\(819\) 1.21901e12 0.0946740
\(820\) 0 0
\(821\) 1.25402e13 0.963296 0.481648 0.876365i \(-0.340038\pi\)
0.481648 + 0.876365i \(0.340038\pi\)
\(822\) 0 0
\(823\) −1.72639e13 −1.31171 −0.655856 0.754886i \(-0.727692\pi\)
−0.655856 + 0.754886i \(0.727692\pi\)
\(824\) 0 0
\(825\) −2.73837e12 −0.205802
\(826\) 0 0
\(827\) −1.37562e13 −1.02264 −0.511322 0.859389i \(-0.670844\pi\)
−0.511322 + 0.859389i \(0.670844\pi\)
\(828\) 0 0
\(829\) −2.31796e13 −1.70455 −0.852277 0.523091i \(-0.824779\pi\)
−0.852277 + 0.523091i \(0.824779\pi\)
\(830\) 0 0
\(831\) −3.91224e12 −0.284591
\(832\) 0 0
\(833\) −2.39441e11 −0.0172304
\(834\) 0 0
\(835\) −1.64451e12 −0.117071
\(836\) 0 0
\(837\) −1.20476e13 −0.848467
\(838\) 0 0
\(839\) 1.26182e12 0.0879160 0.0439580 0.999033i \(-0.486003\pi\)
0.0439580 + 0.999033i \(0.486003\pi\)
\(840\) 0 0
\(841\) −5.15849e12 −0.355583
\(842\) 0 0
\(843\) −2.28947e11 −0.0156139
\(844\) 0 0
\(845\) −9.12625e11 −0.0615796
\(846\) 0 0
\(847\) 1.35378e13 0.903804
\(848\) 0 0
\(849\) 3.21936e12 0.212660
\(850\) 0 0
\(851\) 4.67754e12 0.305728
\(852\) 0 0
\(853\) −9.96982e12 −0.644788 −0.322394 0.946606i \(-0.604488\pi\)
−0.322394 + 0.946606i \(0.604488\pi\)
\(854\) 0 0
\(855\) −1.89621e13 −1.21350
\(856\) 0 0
\(857\) 2.26970e13 1.43733 0.718664 0.695358i \(-0.244754\pi\)
0.718664 + 0.695358i \(0.244754\pi\)
\(858\) 0 0
\(859\) 2.47133e12 0.154868 0.0774339 0.996997i \(-0.475327\pi\)
0.0774339 + 0.996997i \(0.475327\pi\)
\(860\) 0 0
\(861\) 2.95789e12 0.183429
\(862\) 0 0
\(863\) 1.59942e13 0.981553 0.490777 0.871285i \(-0.336713\pi\)
0.490777 + 0.871285i \(0.336713\pi\)
\(864\) 0 0
\(865\) 4.04963e12 0.245948
\(866\) 0 0
\(867\) 5.17494e12 0.311042
\(868\) 0 0
\(869\) −2.89164e13 −1.72011
\(870\) 0 0
\(871\) −7.34395e12 −0.432363
\(872\) 0 0
\(873\) 1.06825e13 0.622454
\(874\) 0 0
\(875\) 7.13038e12 0.411222
\(876\) 0 0
\(877\) 1.72939e13 0.987175 0.493587 0.869696i \(-0.335685\pi\)
0.493587 + 0.869696i \(0.335685\pi\)
\(878\) 0 0
\(879\) 4.59920e12 0.259856
\(880\) 0 0
\(881\) 1.28736e13 0.719958 0.359979 0.932960i \(-0.382784\pi\)
0.359979 + 0.932960i \(0.382784\pi\)
\(882\) 0 0
\(883\) −2.30937e13 −1.27841 −0.639206 0.769036i \(-0.720737\pi\)
−0.639206 + 0.769036i \(0.720737\pi\)
\(884\) 0 0
\(885\) −2.32040e12 −0.127151
\(886\) 0 0
\(887\) 9.90454e12 0.537252 0.268626 0.963245i \(-0.413430\pi\)
0.268626 + 0.963245i \(0.413430\pi\)
\(888\) 0 0
\(889\) −1.31817e12 −0.0707805
\(890\) 0 0
\(891\) −2.49060e13 −1.32390
\(892\) 0 0
\(893\) 5.95024e13 3.13114
\(894\) 0 0
\(895\) −1.98014e12 −0.103155
\(896\) 0 0
\(897\) 2.73559e11 0.0141086
\(898\) 0 0
\(899\) −2.25249e13 −1.15012
\(900\) 0 0
\(901\) 2.06288e11 0.0104283
\(902\) 0 0
\(903\) 4.11655e12 0.206034
\(904\) 0 0
\(905\) −4.28228e12 −0.212205
\(906\) 0 0
\(907\) 5.97105e10 0.00292966 0.00146483 0.999999i \(-0.499534\pi\)
0.00146483 + 0.999999i \(0.499534\pi\)
\(908\) 0 0
\(909\) −2.68012e13 −1.30202
\(910\) 0 0
\(911\) 1.79389e13 0.862903 0.431452 0.902136i \(-0.358002\pi\)
0.431452 + 0.902136i \(0.358002\pi\)
\(912\) 0 0
\(913\) 2.51289e13 1.19689
\(914\) 0 0
\(915\) 3.01478e12 0.142187
\(916\) 0 0
\(917\) 1.12224e13 0.524109
\(918\) 0 0
\(919\) −2.25524e13 −1.04297 −0.521486 0.853260i \(-0.674622\pi\)
−0.521486 + 0.853260i \(0.674622\pi\)
\(920\) 0 0
\(921\) 8.41922e12 0.385570
\(922\) 0 0
\(923\) −4.54867e12 −0.206289
\(924\) 0 0
\(925\) −1.49547e13 −0.671646
\(926\) 0 0
\(927\) 2.51358e13 1.11798
\(928\) 0 0
\(929\) 8.49147e12 0.374035 0.187018 0.982357i \(-0.440118\pi\)
0.187018 + 0.982357i \(0.440118\pi\)
\(930\) 0 0
\(931\) 3.29777e13 1.43862
\(932\) 0 0
\(933\) 4.08847e12 0.176642
\(934\) 0 0
\(935\) 6.92555e11 0.0296348
\(936\) 0 0
\(937\) 2.45074e12 0.103865 0.0519324 0.998651i \(-0.483462\pi\)
0.0519324 + 0.998651i \(0.483462\pi\)
\(938\) 0 0
\(939\) 4.12751e12 0.173258
\(940\) 0 0
\(941\) −3.84726e11 −0.0159955 −0.00799775 0.999968i \(-0.502546\pi\)
−0.00799775 + 0.999968i \(0.502546\pi\)
\(942\) 0 0
\(943\) −6.19165e12 −0.254979
\(944\) 0 0
\(945\) −4.39266e12 −0.179178
\(946\) 0 0
\(947\) −2.89622e13 −1.17019 −0.585096 0.810964i \(-0.698943\pi\)
−0.585096 + 0.810964i \(0.698943\pi\)
\(948\) 0 0
\(949\) 6.55293e12 0.262263
\(950\) 0 0
\(951\) −1.00846e13 −0.399802
\(952\) 0 0
\(953\) −2.95719e13 −1.16134 −0.580672 0.814137i \(-0.697210\pi\)
−0.580672 + 0.814137i \(0.697210\pi\)
\(954\) 0 0
\(955\) −7.23689e12 −0.281538
\(956\) 0 0
\(957\) 1.19363e13 0.460008
\(958\) 0 0
\(959\) 3.15822e12 0.120575
\(960\) 0 0
\(961\) 2.78326e13 1.05269
\(962\) 0 0
\(963\) 8.67638e12 0.325103
\(964\) 0 0
\(965\) 2.38595e13 0.885702
\(966\) 0 0
\(967\) 2.82548e13 1.03914 0.519568 0.854429i \(-0.326093\pi\)
0.519568 + 0.854429i \(0.326093\pi\)
\(968\) 0 0
\(969\) 2.88121e11 0.0104983
\(970\) 0 0
\(971\) −7.35883e12 −0.265657 −0.132829 0.991139i \(-0.542406\pi\)
−0.132829 + 0.991139i \(0.542406\pi\)
\(972\) 0 0
\(973\) −4.01804e11 −0.0143716
\(974\) 0 0
\(975\) −8.74605e11 −0.0309950
\(976\) 0 0
\(977\) −4.47263e13 −1.57050 −0.785248 0.619181i \(-0.787465\pi\)
−0.785248 + 0.619181i \(0.787465\pi\)
\(978\) 0 0
\(979\) 7.18284e13 2.49905
\(980\) 0 0
\(981\) 2.80564e13 0.967212
\(982\) 0 0
\(983\) 2.50576e13 0.855951 0.427975 0.903790i \(-0.359227\pi\)
0.427975 + 0.903790i \(0.359227\pi\)
\(984\) 0 0
\(985\) −3.73953e13 −1.26577
\(986\) 0 0
\(987\) 6.54137e12 0.219402
\(988\) 0 0
\(989\) −8.61704e12 −0.286401
\(990\) 0 0
\(991\) 2.32454e13 0.765607 0.382803 0.923830i \(-0.374959\pi\)
0.382803 + 0.923830i \(0.374959\pi\)
\(992\) 0 0
\(993\) −1.61191e13 −0.526101
\(994\) 0 0
\(995\) −3.06747e13 −0.992149
\(996\) 0 0
\(997\) −4.59157e12 −0.147175 −0.0735873 0.997289i \(-0.523445\pi\)
−0.0735873 + 0.997289i \(0.523445\pi\)
\(998\) 0 0
\(999\) 3.48651e13 1.10751
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.i.1.2 5
4.3 odd 2 52.10.a.b.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.10.a.b.1.4 5 4.3 odd 2
208.10.a.i.1.2 5 1.1 even 1 trivial