Properties

Label 208.10.a.c
Level $208$
Weight $10$
Character orbit 208.a
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,273] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 273 q^{3} + 1015 q^{5} - 3955 q^{7} + 54846 q^{9} + 50998 q^{11} - 28561 q^{13} + 277095 q^{15} + 509757 q^{17} + 626574 q^{19} - 1079715 q^{21} - 653524 q^{23} - 922900 q^{25} + 9599499 q^{27} - 4943006 q^{29}+ \cdots + 2797036308 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 273.000 0 1015.00 0 −3955.00 0 54846.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.10.a.c 1
4.b odd 2 1 26.10.a.a 1
12.b even 2 1 234.10.a.b 1
52.b odd 2 1 338.10.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.10.a.a 1 4.b odd 2 1
208.10.a.c 1 1.a even 1 1 trivial
234.10.a.b 1 12.b even 2 1
338.10.a.c 1 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 273 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 273 \) Copy content Toggle raw display
$5$ \( T - 1015 \) Copy content Toggle raw display
$7$ \( T + 3955 \) Copy content Toggle raw display
$11$ \( T - 50998 \) Copy content Toggle raw display
$13$ \( T + 28561 \) Copy content Toggle raw display
$17$ \( T - 509757 \) Copy content Toggle raw display
$19$ \( T - 626574 \) Copy content Toggle raw display
$23$ \( T + 653524 \) Copy content Toggle raw display
$29$ \( T + 4943006 \) Copy content Toggle raw display
$31$ \( T + 4071700 \) Copy content Toggle raw display
$37$ \( T - 2348883 \) Copy content Toggle raw display
$41$ \( T + 13350960 \) Copy content Toggle raw display
$43$ \( T - 7834847 \) Copy content Toggle raw display
$47$ \( T - 39637681 \) Copy content Toggle raw display
$53$ \( T - 73200924 \) Copy content Toggle raw display
$59$ \( T - 141141614 \) Copy content Toggle raw display
$61$ \( T + 132061256 \) Copy content Toggle raw display
$67$ \( T - 185673110 \) Copy content Toggle raw display
$71$ \( T + 224452625 \) Copy content Toggle raw display
$73$ \( T + 172523674 \) Copy content Toggle raw display
$79$ \( T - 643288156 \) Copy content Toggle raw display
$83$ \( T + 720077280 \) Copy content Toggle raw display
$89$ \( T + 73028106 \) Copy content Toggle raw display
$97$ \( T + 15879778 \) Copy content Toggle raw display
show more
show less