Properties

Label 207.2.i.d.64.1
Level $207$
Weight $2$
Character 207.64
Analytic conductor $1.653$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [207,2,Mod(55,207)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("207.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(207, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 207.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.65290332184\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 7 x^{19} + 24 x^{18} - 70 x^{17} + 209 x^{16} - 527 x^{15} + 1115 x^{14} - 2187 x^{13} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 64.1
Root \(-1.30051 - 1.50087i\) of defining polynomial
Character \(\chi\) \(=\) 207.64
Dual form 207.2.i.d.55.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.54781 - 0.454477i) q^{2} +(0.506650 + 0.325604i) q^{4} +(-0.0749695 + 0.521424i) q^{5} +(0.200934 + 0.439985i) q^{7} +(1.47656 + 1.70404i) q^{8} +(0.353014 - 0.772992i) q^{10} +(3.21327 - 0.943501i) q^{11} +(0.853105 - 1.86804i) q^{13} +(-0.111045 - 0.772332i) q^{14} +(-2.01136 - 4.40426i) q^{16} +(0.919522 - 0.590941i) q^{17} +(6.19469 + 3.98109i) q^{19} +(-0.207761 + 0.239769i) q^{20} -5.40232 q^{22} +(1.81662 - 4.43846i) q^{23} +(4.53120 + 1.33048i) q^{25} +(-2.16942 + 2.50365i) q^{26} +(-0.0414575 + 0.288343i) q^{28} +(3.03219 - 1.94867i) q^{29} +(-3.65525 - 4.21838i) q^{31} +(0.469783 + 3.26741i) q^{32} +(-1.69181 + 0.496761i) q^{34} +(-0.244483 + 0.0717866i) q^{35} +(0.491920 + 3.42138i) q^{37} +(-7.77887 - 8.97730i) q^{38} +(-0.999226 + 0.642164i) q^{40} +(-1.47926 + 10.2885i) q^{41} +(-5.05496 + 5.83373i) q^{43} +(1.93521 + 0.568229i) q^{44} +(-4.82895 + 6.04426i) q^{46} -10.7974 q^{47} +(4.43081 - 5.11343i) q^{49} +(-6.40875 - 4.11866i) q^{50} +(1.04047 - 0.668668i) q^{52} +(3.06811 + 6.71822i) q^{53} +(0.251067 + 1.74621i) q^{55} +(-0.453061 + 0.992066i) q^{56} +(-5.57887 + 1.63811i) q^{58} +(0.390317 - 0.854675i) q^{59} +(-3.75616 - 4.33483i) q^{61} +(3.74046 + 8.19046i) q^{62} +(-0.620289 + 4.31421i) q^{64} +(0.910084 + 0.584876i) q^{65} +(-12.3567 - 3.62825i) q^{67} +0.658289 q^{68} +0.411037 q^{70} +(5.99541 + 1.76041i) q^{71} +(-0.00713288 - 0.00458402i) q^{73} +(0.793542 - 5.51920i) q^{74} +(1.84228 + 4.03404i) q^{76} +(1.06078 + 1.22421i) q^{77} +(4.29440 - 9.40343i) q^{79} +(2.44728 - 0.718585i) q^{80} +(6.96548 - 15.2523i) q^{82} +(-0.861534 - 5.99210i) q^{83} +(0.239195 + 0.523763i) q^{85} +(10.4754 - 6.73213i) q^{86} +(6.35236 + 4.08241i) q^{88} +(1.84618 - 2.13061i) q^{89} +0.993327 q^{91} +(2.36557 - 1.65724i) q^{92} +(16.7123 + 4.90718i) q^{94} +(-2.54025 + 2.93160i) q^{95} +(-2.61142 + 18.1628i) q^{97} +(-9.18198 + 5.90090i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 6 q^{4} + 6 q^{5} - 6 q^{7} - 10 q^{8} - 18 q^{10} + 16 q^{11} + 14 q^{13} + 22 q^{14} - 8 q^{16} - 11 q^{17} - 11 q^{19} - 57 q^{20} + 26 q^{22} - 4 q^{25} + 14 q^{26} - 14 q^{28} - 12 q^{29}+ \cdots - 85 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/207\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(47\)
\(\chi(n)\) \(e\left(\frac{6}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.54781 0.454477i −1.09446 0.321364i −0.315814 0.948821i \(-0.602278\pi\)
−0.778651 + 0.627457i \(0.784096\pi\)
\(3\) 0 0
\(4\) 0.506650 + 0.325604i 0.253325 + 0.162802i
\(5\) −0.0749695 + 0.521424i −0.0335274 + 0.233188i −0.999694 0.0247301i \(-0.992127\pi\)
0.966167 + 0.257918i \(0.0830364\pi\)
\(6\) 0 0
\(7\) 0.200934 + 0.439985i 0.0759460 + 0.166299i 0.943797 0.330526i \(-0.107226\pi\)
−0.867851 + 0.496825i \(0.834499\pi\)
\(8\) 1.47656 + 1.70404i 0.522043 + 0.602470i
\(9\) 0 0
\(10\) 0.353014 0.772992i 0.111633 0.244441i
\(11\) 3.21327 0.943501i 0.968837 0.284476i 0.241228 0.970468i \(-0.422450\pi\)
0.727609 + 0.685992i \(0.240632\pi\)
\(12\) 0 0
\(13\) 0.853105 1.86804i 0.236609 0.518101i −0.753661 0.657264i \(-0.771714\pi\)
0.990270 + 0.139163i \(0.0444411\pi\)
\(14\) −0.111045 0.772332i −0.0296779 0.206414i
\(15\) 0 0
\(16\) −2.01136 4.40426i −0.502839 1.10106i
\(17\) 0.919522 0.590941i 0.223017 0.143324i −0.424362 0.905493i \(-0.639502\pi\)
0.647379 + 0.762168i \(0.275865\pi\)
\(18\) 0 0
\(19\) 6.19469 + 3.98109i 1.42116 + 0.913324i 0.999980 + 0.00634685i \(0.00202028\pi\)
0.421180 + 0.906977i \(0.361616\pi\)
\(20\) −0.207761 + 0.239769i −0.0464568 + 0.0536140i
\(21\) 0 0
\(22\) −5.40232 −1.15178
\(23\) 1.81662 4.43846i 0.378791 0.925482i
\(24\) 0 0
\(25\) 4.53120 + 1.33048i 0.906240 + 0.266096i
\(26\) −2.16942 + 2.50365i −0.425459 + 0.491006i
\(27\) 0 0
\(28\) −0.0414575 + 0.288343i −0.00783474 + 0.0544918i
\(29\) 3.03219 1.94867i 0.563064 0.361859i −0.227935 0.973676i \(-0.573198\pi\)
0.790999 + 0.611817i \(0.209561\pi\)
\(30\) 0 0
\(31\) −3.65525 4.21838i −0.656502 0.757643i 0.325700 0.945473i \(-0.394400\pi\)
−0.982202 + 0.187830i \(0.939855\pi\)
\(32\) 0.469783 + 3.26741i 0.0830466 + 0.577602i
\(33\) 0 0
\(34\) −1.69181 + 0.496761i −0.290143 + 0.0851938i
\(35\) −0.244483 + 0.0717866i −0.0413251 + 0.0121341i
\(36\) 0 0
\(37\) 0.491920 + 3.42138i 0.0808712 + 0.562471i 0.989463 + 0.144786i \(0.0462494\pi\)
−0.908592 + 0.417685i \(0.862841\pi\)
\(38\) −7.77887 8.97730i −1.26190 1.45631i
\(39\) 0 0
\(40\) −0.999226 + 0.642164i −0.157991 + 0.101535i
\(41\) −1.47926 + 10.2885i −0.231021 + 1.60679i 0.462680 + 0.886525i \(0.346888\pi\)
−0.693701 + 0.720263i \(0.744021\pi\)
\(42\) 0 0
\(43\) −5.05496 + 5.83373i −0.770874 + 0.889636i −0.996415 0.0845976i \(-0.973040\pi\)
0.225541 + 0.974234i \(0.427585\pi\)
\(44\) 1.93521 + 0.568229i 0.291744 + 0.0856638i
\(45\) 0 0
\(46\) −4.82895 + 6.04426i −0.711990 + 0.891178i
\(47\) −10.7974 −1.57497 −0.787483 0.616336i \(-0.788616\pi\)
−0.787483 + 0.616336i \(0.788616\pi\)
\(48\) 0 0
\(49\) 4.43081 5.11343i 0.632973 0.730490i
\(50\) −6.40875 4.11866i −0.906335 0.582466i
\(51\) 0 0
\(52\) 1.04047 0.668668i 0.144287 0.0927276i
\(53\) 3.06811 + 6.71822i 0.421437 + 0.922819i 0.994639 + 0.103405i \(0.0329737\pi\)
−0.573202 + 0.819414i \(0.694299\pi\)
\(54\) 0 0
\(55\) 0.251067 + 1.74621i 0.0338539 + 0.235459i
\(56\) −0.453061 + 0.992066i −0.0605428 + 0.132570i
\(57\) 0 0
\(58\) −5.57887 + 1.63811i −0.732542 + 0.215094i
\(59\) 0.390317 0.854675i 0.0508149 0.111269i −0.882522 0.470272i \(-0.844156\pi\)
0.933337 + 0.359003i \(0.116883\pi\)
\(60\) 0 0
\(61\) −3.75616 4.33483i −0.480926 0.555019i 0.462492 0.886623i \(-0.346955\pi\)
−0.943418 + 0.331605i \(0.892410\pi\)
\(62\) 3.74046 + 8.19046i 0.475039 + 1.04019i
\(63\) 0 0
\(64\) −0.620289 + 4.31421i −0.0775362 + 0.539276i
\(65\) 0.910084 + 0.584876i 0.112882 + 0.0725449i
\(66\) 0 0
\(67\) −12.3567 3.62825i −1.50961 0.443262i −0.580872 0.813995i \(-0.697288\pi\)
−0.928739 + 0.370733i \(0.879106\pi\)
\(68\) 0.658289 0.0798292
\(69\) 0 0
\(70\) 0.411037 0.0491284
\(71\) 5.99541 + 1.76041i 0.711525 + 0.208923i 0.617413 0.786639i \(-0.288181\pi\)
0.0941117 + 0.995562i \(0.469999\pi\)
\(72\) 0 0
\(73\) −0.00713288 0.00458402i −0.000834840 0.000536519i 0.540223 0.841522i \(-0.318340\pi\)
−0.541058 + 0.840985i \(0.681976\pi\)
\(74\) 0.793542 5.51920i 0.0922473 0.641594i
\(75\) 0 0
\(76\) 1.84228 + 4.03404i 0.211324 + 0.462736i
\(77\) 1.06078 + 1.22421i 0.120887 + 0.139512i
\(78\) 0 0
\(79\) 4.29440 9.40343i 0.483158 1.05797i −0.498425 0.866933i \(-0.666088\pi\)
0.981583 0.191036i \(-0.0611846\pi\)
\(80\) 2.44728 0.718585i 0.273614 0.0803402i
\(81\) 0 0
\(82\) 6.96548 15.2523i 0.769208 1.68433i
\(83\) −0.861534 5.99210i −0.0945656 0.657719i −0.980877 0.194629i \(-0.937650\pi\)
0.886311 0.463090i \(-0.153259\pi\)
\(84\) 0 0
\(85\) 0.239195 + 0.523763i 0.0259443 + 0.0568101i
\(86\) 10.4754 6.73213i 1.12959 0.725944i
\(87\) 0 0
\(88\) 6.35236 + 4.08241i 0.677164 + 0.435187i
\(89\) 1.84618 2.13061i 0.195695 0.225844i −0.649418 0.760431i \(-0.724988\pi\)
0.845113 + 0.534588i \(0.179533\pi\)
\(90\) 0 0
\(91\) 0.993327 0.104129
\(92\) 2.36557 1.65724i 0.246628 0.172780i
\(93\) 0 0
\(94\) 16.7123 + 4.90718i 1.72375 + 0.506137i
\(95\) −2.54025 + 2.93160i −0.260624 + 0.300776i
\(96\) 0 0
\(97\) −2.61142 + 18.1628i −0.265150 + 1.84416i 0.227311 + 0.973822i \(0.427007\pi\)
−0.492461 + 0.870335i \(0.663903\pi\)
\(98\) −9.18198 + 5.90090i −0.927520 + 0.596081i
\(99\) 0 0
\(100\) 1.86252 + 2.14947i 0.186252 + 0.214947i
\(101\) −0.923803 6.42519i −0.0919219 0.639331i −0.982743 0.184976i \(-0.940779\pi\)
0.890821 0.454354i \(-0.150130\pi\)
\(102\) 0 0
\(103\) 13.1354 3.85690i 1.29427 0.380032i 0.439127 0.898425i \(-0.355288\pi\)
0.855142 + 0.518394i \(0.173470\pi\)
\(104\) 4.44288 1.30455i 0.435660 0.127921i
\(105\) 0 0
\(106\) −1.69556 11.7929i −0.164688 1.14543i
\(107\) −7.86436 9.07596i −0.760277 0.877406i 0.235245 0.971936i \(-0.424411\pi\)
−0.995522 + 0.0945299i \(0.969865\pi\)
\(108\) 0 0
\(109\) 10.5081 6.75317i 1.00650 0.646837i 0.0700133 0.997546i \(-0.477696\pi\)
0.936484 + 0.350709i \(0.114059\pi\)
\(110\) 0.405009 2.81690i 0.0386161 0.268581i
\(111\) 0 0
\(112\) 1.53366 1.76993i 0.144917 0.167243i
\(113\) 2.99845 + 0.880423i 0.282070 + 0.0828233i 0.419707 0.907659i \(-0.362133\pi\)
−0.137637 + 0.990483i \(0.543951\pi\)
\(114\) 0 0
\(115\) 2.17813 + 1.27998i 0.203111 + 0.119359i
\(116\) 2.17076 0.201550
\(117\) 0 0
\(118\) −0.992565 + 1.14548i −0.0913731 + 0.105450i
\(119\) 0.444769 + 0.285835i 0.0407719 + 0.0262025i
\(120\) 0 0
\(121\) 0.181123 0.116401i 0.0164657 0.0105819i
\(122\) 3.84372 + 8.41657i 0.347994 + 0.762001i
\(123\) 0 0
\(124\) −0.478409 3.32741i −0.0429624 0.298810i
\(125\) −2.12762 + 4.65884i −0.190300 + 0.416699i
\(126\) 0 0
\(127\) −10.4847 + 3.07860i −0.930370 + 0.273181i −0.711592 0.702593i \(-0.752025\pi\)
−0.218779 + 0.975775i \(0.570207\pi\)
\(128\) 5.66338 12.4011i 0.500576 1.09611i
\(129\) 0 0
\(130\) −1.14282 1.31889i −0.100232 0.115674i
\(131\) 0.244434 + 0.535236i 0.0213563 + 0.0467638i 0.920010 0.391896i \(-0.128181\pi\)
−0.898653 + 0.438660i \(0.855453\pi\)
\(132\) 0 0
\(133\) −0.506892 + 3.52551i −0.0439531 + 0.305700i
\(134\) 17.4768 + 11.2317i 1.50977 + 0.970269i
\(135\) 0 0
\(136\) 2.36472 + 0.694344i 0.202773 + 0.0595395i
\(137\) −17.9223 −1.53121 −0.765603 0.643314i \(-0.777559\pi\)
−0.765603 + 0.643314i \(0.777559\pi\)
\(138\) 0 0
\(139\) −13.3492 −1.13227 −0.566133 0.824314i \(-0.691561\pi\)
−0.566133 + 0.824314i \(0.691561\pi\)
\(140\) −0.147241 0.0432339i −0.0124441 0.00365393i
\(141\) 0 0
\(142\) −8.47968 5.44956i −0.711599 0.457317i
\(143\) 0.978760 6.80742i 0.0818480 0.569265i
\(144\) 0 0
\(145\) 0.788762 + 1.72715i 0.0655031 + 0.143432i
\(146\) 0.00895698 + 0.0103369i 0.000741285 + 0.000855489i
\(147\) 0 0
\(148\) −0.864785 + 1.89361i −0.0710849 + 0.155654i
\(149\) 7.76039 2.27866i 0.635756 0.186675i 0.0520557 0.998644i \(-0.483423\pi\)
0.583700 + 0.811969i \(0.301604\pi\)
\(150\) 0 0
\(151\) 1.87350 4.10240i 0.152464 0.333849i −0.817953 0.575285i \(-0.804891\pi\)
0.970417 + 0.241436i \(0.0776185\pi\)
\(152\) 2.36290 + 16.4343i 0.191657 + 1.33300i
\(153\) 0 0
\(154\) −1.08551 2.37694i −0.0874731 0.191539i
\(155\) 2.47360 1.58968i 0.198684 0.127686i
\(156\) 0 0
\(157\) 1.74744 + 1.12301i 0.139461 + 0.0896263i 0.608511 0.793545i \(-0.291767\pi\)
−0.469050 + 0.883172i \(0.655404\pi\)
\(158\) −10.9205 + 12.6030i −0.868792 + 1.00264i
\(159\) 0 0
\(160\) −1.73893 −0.137474
\(161\) 2.31787 0.0925529i 0.182674 0.00729419i
\(162\) 0 0
\(163\) −16.6050 4.87566i −1.30060 0.381891i −0.443147 0.896449i \(-0.646138\pi\)
−0.857456 + 0.514558i \(0.827956\pi\)
\(164\) −4.09943 + 4.73100i −0.320112 + 0.369429i
\(165\) 0 0
\(166\) −1.38978 + 9.66616i −0.107868 + 0.750240i
\(167\) −14.4834 + 9.30794i −1.12076 + 0.720270i −0.963612 0.267305i \(-0.913867\pi\)
−0.157150 + 0.987575i \(0.550231\pi\)
\(168\) 0 0
\(169\) 5.75140 + 6.63747i 0.442416 + 0.510575i
\(170\) −0.132189 0.919393i −0.0101384 0.0705142i
\(171\) 0 0
\(172\) −4.46058 + 1.30975i −0.340116 + 0.0998672i
\(173\) −11.8788 + 3.48793i −0.903129 + 0.265183i −0.700146 0.714000i \(-0.746882\pi\)
−0.202983 + 0.979182i \(0.565064\pi\)
\(174\) 0 0
\(175\) 0.325083 + 2.26100i 0.0245739 + 0.170916i
\(176\) −10.6185 12.2543i −0.800396 0.923706i
\(177\) 0 0
\(178\) −3.82584 + 2.45872i −0.286759 + 0.184289i
\(179\) −0.511848 + 3.55998i −0.0382573 + 0.266085i −0.999968 0.00798071i \(-0.997460\pi\)
0.961711 + 0.274066i \(0.0883687\pi\)
\(180\) 0 0
\(181\) −6.81072 + 7.85999i −0.506237 + 0.584229i −0.950131 0.311851i \(-0.899051\pi\)
0.443894 + 0.896079i \(0.353597\pi\)
\(182\) −1.53748 0.451445i −0.113966 0.0334633i
\(183\) 0 0
\(184\) 10.2457 3.45805i 0.755321 0.254931i
\(185\) −1.82087 −0.133873
\(186\) 0 0
\(187\) 2.39712 2.76642i 0.175295 0.202301i
\(188\) −5.47052 3.51569i −0.398979 0.256408i
\(189\) 0 0
\(190\) 5.26416 3.38307i 0.381902 0.245434i
\(191\) 2.78682 + 6.10229i 0.201647 + 0.441546i 0.983258 0.182221i \(-0.0583286\pi\)
−0.781610 + 0.623767i \(0.785601\pi\)
\(192\) 0 0
\(193\) 1.89436 + 13.1756i 0.136359 + 0.948398i 0.937019 + 0.349279i \(0.113573\pi\)
−0.800660 + 0.599119i \(0.795517\pi\)
\(194\) 12.2966 26.9257i 0.882842 1.93316i
\(195\) 0 0
\(196\) 3.90983 1.14803i 0.279273 0.0820021i
\(197\) 7.95982 17.4296i 0.567114 1.24181i −0.381206 0.924490i \(-0.624491\pi\)
0.948320 0.317316i \(-0.102781\pi\)
\(198\) 0 0
\(199\) −15.2770 17.6306i −1.08296 1.24980i −0.966518 0.256600i \(-0.917398\pi\)
−0.116438 0.993198i \(-0.537148\pi\)
\(200\) 4.42340 + 9.68590i 0.312782 + 0.684897i
\(201\) 0 0
\(202\) −1.49023 + 10.3648i −0.104853 + 0.729265i
\(203\) 1.46666 + 0.942563i 0.102939 + 0.0661550i
\(204\) 0 0
\(205\) −5.25375 1.54264i −0.366938 0.107743i
\(206\) −22.0839 −1.53866
\(207\) 0 0
\(208\) −9.94323 −0.689439
\(209\) 23.6614 + 6.94761i 1.63669 + 0.480576i
\(210\) 0 0
\(211\) −1.72239 1.10691i −0.118574 0.0762030i 0.480009 0.877263i \(-0.340633\pi\)
−0.598584 + 0.801060i \(0.704270\pi\)
\(212\) −0.633024 + 4.40278i −0.0434763 + 0.302384i
\(213\) 0 0
\(214\) 8.04770 + 17.6220i 0.550130 + 1.20462i
\(215\) −2.66288 3.07313i −0.181607 0.209586i
\(216\) 0 0
\(217\) 1.12156 2.45587i 0.0761363 0.166715i
\(218\) −19.3337 + 5.67690i −1.30945 + 0.384488i
\(219\) 0 0
\(220\) −0.441370 + 0.966466i −0.0297572 + 0.0651591i
\(221\) −0.319452 2.22184i −0.0214887 0.149457i
\(222\) 0 0
\(223\) 0.267566 + 0.585889i 0.0179176 + 0.0392340i 0.918379 0.395701i \(-0.129498\pi\)
−0.900462 + 0.434935i \(0.856771\pi\)
\(224\) −1.34322 + 0.863232i −0.0897474 + 0.0576771i
\(225\) 0 0
\(226\) −4.24088 2.72545i −0.282099 0.181294i
\(227\) 16.3006 18.8119i 1.08191 1.24859i 0.115030 0.993362i \(-0.463303\pi\)
0.966880 0.255230i \(-0.0821511\pi\)
\(228\) 0 0
\(229\) 2.91045 0.192328 0.0961640 0.995366i \(-0.469343\pi\)
0.0961640 + 0.995366i \(0.469343\pi\)
\(230\) −2.78960 2.97107i −0.183941 0.195906i
\(231\) 0 0
\(232\) 7.79784 + 2.28965i 0.511953 + 0.150323i
\(233\) 3.99921 4.61533i 0.261997 0.302360i −0.609476 0.792805i \(-0.708620\pi\)
0.871472 + 0.490444i \(0.163166\pi\)
\(234\) 0 0
\(235\) 0.809477 5.63004i 0.0528045 0.367263i
\(236\) 0.476040 0.305932i 0.0309876 0.0199145i
\(237\) 0 0
\(238\) −0.558510 0.644555i −0.0362028 0.0417803i
\(239\) 4.26924 + 29.6932i 0.276154 + 1.92069i 0.377828 + 0.925876i \(0.376671\pi\)
−0.101674 + 0.994818i \(0.532420\pi\)
\(240\) 0 0
\(241\) −2.92074 + 0.857606i −0.188141 + 0.0552433i −0.374446 0.927249i \(-0.622167\pi\)
0.186305 + 0.982492i \(0.440349\pi\)
\(242\) −0.333245 + 0.0978496i −0.0214218 + 0.00629001i
\(243\) 0 0
\(244\) −0.491616 3.41926i −0.0314725 0.218896i
\(245\) 2.33409 + 2.69368i 0.149120 + 0.172093i
\(246\) 0 0
\(247\) 12.7216 8.17565i 0.809453 0.520204i
\(248\) 1.79110 12.4574i 0.113735 0.791045i
\(249\) 0 0
\(250\) 5.41048 6.24403i 0.342189 0.394907i
\(251\) −3.39713 0.997487i −0.214425 0.0629608i 0.172756 0.984965i \(-0.444733\pi\)
−0.387181 + 0.922004i \(0.626551\pi\)
\(252\) 0 0
\(253\) 1.64960 15.9759i 0.103710 1.00440i
\(254\) 17.6275 1.10605
\(255\) 0 0
\(256\) −8.69330 + 10.0326i −0.543331 + 0.627038i
\(257\) −7.38840 4.74824i −0.460876 0.296187i 0.289524 0.957171i \(-0.406503\pi\)
−0.750400 + 0.660984i \(0.770139\pi\)
\(258\) 0 0
\(259\) −1.40651 + 0.903910i −0.0873964 + 0.0561663i
\(260\) 0.270656 + 0.592655i 0.0167854 + 0.0367549i
\(261\) 0 0
\(262\) −0.135084 0.939532i −0.00834553 0.0580445i
\(263\) −3.85133 + 8.43323i −0.237483 + 0.520015i −0.990422 0.138076i \(-0.955908\pi\)
0.752939 + 0.658091i \(0.228636\pi\)
\(264\) 0 0
\(265\) −3.73306 + 1.09612i −0.229320 + 0.0673344i
\(266\) 2.38683 5.22644i 0.146346 0.320453i
\(267\) 0 0
\(268\) −5.07915 5.86165i −0.310258 0.358057i
\(269\) −5.27658 11.5541i −0.321719 0.704466i 0.677807 0.735239i \(-0.262930\pi\)
−0.999526 + 0.0307732i \(0.990203\pi\)
\(270\) 0 0
\(271\) 0.696557 4.84466i 0.0423129 0.294292i −0.957667 0.287880i \(-0.907050\pi\)
0.999979 0.00641267i \(-0.00204123\pi\)
\(272\) −4.45214 2.86122i −0.269951 0.173487i
\(273\) 0 0
\(274\) 27.7403 + 8.14528i 1.67585 + 0.492074i
\(275\) 15.8153 0.953698
\(276\) 0 0
\(277\) 3.82724 0.229957 0.114978 0.993368i \(-0.463320\pi\)
0.114978 + 0.993368i \(0.463320\pi\)
\(278\) 20.6620 + 6.06691i 1.23922 + 0.363869i
\(279\) 0 0
\(280\) −0.483321 0.310612i −0.0288840 0.0185626i
\(281\) −2.81648 + 19.5891i −0.168017 + 1.16859i 0.714958 + 0.699167i \(0.246446\pi\)
−0.882976 + 0.469419i \(0.844463\pi\)
\(282\) 0 0
\(283\) −4.06513 8.90139i −0.241647 0.529133i 0.749484 0.662023i \(-0.230302\pi\)
−0.991131 + 0.132890i \(0.957574\pi\)
\(284\) 2.46438 + 2.84405i 0.146234 + 0.168763i
\(285\) 0 0
\(286\) −4.60875 + 10.0918i −0.272521 + 0.596738i
\(287\) −4.82400 + 1.41645i −0.284752 + 0.0836107i
\(288\) 0 0
\(289\) −6.56575 + 14.3770i −0.386220 + 0.845705i
\(290\) −0.435902 3.03177i −0.0255971 0.178031i
\(291\) 0 0
\(292\) −0.00212130 0.00464499i −0.000124139 0.000271827i
\(293\) 7.48457 4.81004i 0.437253 0.281006i −0.303438 0.952851i \(-0.598134\pi\)
0.740691 + 0.671846i \(0.234498\pi\)
\(294\) 0 0
\(295\) 0.416386 + 0.267595i 0.0242429 + 0.0155800i
\(296\) −5.10383 + 5.89013i −0.296654 + 0.342357i
\(297\) 0 0
\(298\) −13.0472 −0.755803
\(299\) −6.74144 7.17999i −0.389868 0.415230i
\(300\) 0 0
\(301\) −3.58247 1.05191i −0.206490 0.0606310i
\(302\) −4.76427 + 5.49826i −0.274153 + 0.316389i
\(303\) 0 0
\(304\) 5.07399 35.2904i 0.291013 2.02404i
\(305\) 2.54188 1.63357i 0.145548 0.0935379i
\(306\) 0 0
\(307\) 8.53152 + 9.84590i 0.486920 + 0.561935i 0.945040 0.326955i \(-0.106023\pi\)
−0.458120 + 0.888890i \(0.651477\pi\)
\(308\) 0.138838 + 0.965641i 0.00791104 + 0.0550225i
\(309\) 0 0
\(310\) −4.55112 + 1.33633i −0.258486 + 0.0758985i
\(311\) −26.8983 + 7.89805i −1.52526 + 0.447857i −0.933597 0.358326i \(-0.883348\pi\)
−0.591666 + 0.806183i \(0.701529\pi\)
\(312\) 0 0
\(313\) 2.09112 + 14.5440i 0.118197 + 0.822077i 0.959539 + 0.281575i \(0.0908568\pi\)
−0.841342 + 0.540502i \(0.818234\pi\)
\(314\) −2.19432 2.53238i −0.123833 0.142911i
\(315\) 0 0
\(316\) 5.23756 3.36597i 0.294636 0.189351i
\(317\) −1.75470 + 12.2042i −0.0985540 + 0.685458i 0.879315 + 0.476241i \(0.158001\pi\)
−0.977869 + 0.209218i \(0.932908\pi\)
\(318\) 0 0
\(319\) 7.90468 9.12248i 0.442577 0.510761i
\(320\) −2.20303 0.646868i −0.123153 0.0361610i
\(321\) 0 0
\(322\) −3.62969 0.910167i −0.202275 0.0507216i
\(323\) 8.04874 0.447844
\(324\) 0 0
\(325\) 6.35098 7.32943i 0.352289 0.406563i
\(326\) 23.4854 + 15.0932i 1.30074 + 0.835933i
\(327\) 0 0
\(328\) −19.7162 + 12.6708i −1.08864 + 0.699630i
\(329\) −2.16957 4.75071i −0.119613 0.261915i
\(330\) 0 0
\(331\) 0.479124 + 3.33238i 0.0263350 + 0.183164i 0.998743 0.0501223i \(-0.0159611\pi\)
−0.972408 + 0.233286i \(0.925052\pi\)
\(332\) 1.51456 3.31642i 0.0831221 0.182012i
\(333\) 0 0
\(334\) 26.6478 7.82450i 1.45810 0.428138i
\(335\) 2.81823 6.17107i 0.153977 0.337162i
\(336\) 0 0
\(337\) 1.48464 + 1.71336i 0.0808732 + 0.0933327i 0.794744 0.606945i \(-0.207605\pi\)
−0.713871 + 0.700277i \(0.753060\pi\)
\(338\) −5.88548 12.8874i −0.320128 0.700983i
\(339\) 0 0
\(340\) −0.0493515 + 0.343248i −0.00267646 + 0.0186152i
\(341\) −15.7253 10.1061i −0.851575 0.547274i
\(342\) 0 0
\(343\) 6.38885 + 1.87594i 0.344966 + 0.101291i
\(344\) −17.4049 −0.938409
\(345\) 0 0
\(346\) 19.9713 1.07366
\(347\) −12.9692 3.80810i −0.696224 0.204430i −0.0855754 0.996332i \(-0.527273\pi\)
−0.610648 + 0.791902i \(0.709091\pi\)
\(348\) 0 0
\(349\) 17.9744 + 11.5514i 0.962145 + 0.618333i 0.924591 0.380961i \(-0.124407\pi\)
0.0375543 + 0.999295i \(0.488043\pi\)
\(350\) 0.524407 3.64733i 0.0280308 0.194958i
\(351\) 0 0
\(352\) 4.59235 + 10.0558i 0.244773 + 0.535978i
\(353\) 19.1742 + 22.1282i 1.02054 + 1.17777i 0.983952 + 0.178436i \(0.0571036\pi\)
0.0365884 + 0.999330i \(0.488351\pi\)
\(354\) 0 0
\(355\) −1.36739 + 2.99418i −0.0725738 + 0.158914i
\(356\) 1.62910 0.478347i 0.0863422 0.0253524i
\(357\) 0 0
\(358\) 2.41017 5.27754i 0.127382 0.278927i
\(359\) −4.14017 28.7955i −0.218510 1.51977i −0.743544 0.668687i \(-0.766857\pi\)
0.525035 0.851081i \(-0.324052\pi\)
\(360\) 0 0
\(361\) 14.6323 + 32.0402i 0.770120 + 1.68633i
\(362\) 14.1139 9.07043i 0.741808 0.476731i
\(363\) 0 0
\(364\) 0.503270 + 0.323432i 0.0263785 + 0.0169524i
\(365\) 0.00292497 0.00337559i 0.000153100 0.000176687i
\(366\) 0 0
\(367\) −14.9673 −0.781284 −0.390642 0.920543i \(-0.627747\pi\)
−0.390642 + 0.920543i \(0.627747\pi\)
\(368\) −23.2020 + 0.926456i −1.20949 + 0.0482949i
\(369\) 0 0
\(370\) 2.81835 + 0.827543i 0.146519 + 0.0430219i
\(371\) −2.33943 + 2.69984i −0.121457 + 0.140169i
\(372\) 0 0
\(373\) 4.71393 32.7861i 0.244078 1.69760i −0.387160 0.922012i \(-0.626544\pi\)
0.631238 0.775589i \(-0.282547\pi\)
\(374\) −4.96755 + 3.19245i −0.256866 + 0.165078i
\(375\) 0 0
\(376\) −15.9431 18.3993i −0.822201 0.948871i
\(377\) −1.05342 7.32668i −0.0542537 0.377343i
\(378\) 0 0
\(379\) 18.0864 5.31066i 0.929038 0.272790i 0.218004 0.975948i \(-0.430045\pi\)
0.711034 + 0.703158i \(0.248227\pi\)
\(380\) −2.24156 + 0.658181i −0.114990 + 0.0337640i
\(381\) 0 0
\(382\) −1.54011 10.7117i −0.0787990 0.548059i
\(383\) 12.0320 + 13.8856i 0.614805 + 0.709523i 0.974712 0.223466i \(-0.0717370\pi\)
−0.359907 + 0.932988i \(0.617192\pi\)
\(384\) 0 0
\(385\) −0.717858 + 0.461339i −0.0365854 + 0.0235120i
\(386\) 3.05589 21.2542i 0.155541 1.08181i
\(387\) 0 0
\(388\) −7.23697 + 8.35191i −0.367402 + 0.424004i
\(389\) −4.28212 1.25735i −0.217112 0.0637499i 0.171367 0.985207i \(-0.445181\pi\)
−0.388480 + 0.921457i \(0.627000\pi\)
\(390\) 0 0
\(391\) −0.952443 5.15477i −0.0481671 0.260688i
\(392\) 15.2559 0.770538
\(393\) 0 0
\(394\) −20.2416 + 23.3601i −1.01976 + 1.17686i
\(395\) 4.58122 + 2.94417i 0.230506 + 0.148137i
\(396\) 0 0
\(397\) −11.9955 + 7.70906i −0.602039 + 0.386907i −0.805864 0.592100i \(-0.798299\pi\)
0.203825 + 0.979007i \(0.434663\pi\)
\(398\) 15.6331 + 34.2317i 0.783617 + 1.71588i
\(399\) 0 0
\(400\) −3.25408 22.6326i −0.162704 1.13163i
\(401\) 14.9051 32.6376i 0.744324 1.62984i −0.0319840 0.999488i \(-0.510183\pi\)
0.776308 0.630354i \(-0.217090\pi\)
\(402\) 0 0
\(403\) −10.9984 + 3.22942i −0.547870 + 0.160869i
\(404\) 1.62403 3.55612i 0.0807983 0.176924i
\(405\) 0 0
\(406\) −1.84173 2.12547i −0.0914035 0.105485i
\(407\) 4.80875 + 10.5297i 0.238361 + 0.521937i
\(408\) 0 0
\(409\) −1.67097 + 11.6218i −0.0826241 + 0.574663i 0.905887 + 0.423518i \(0.139205\pi\)
−0.988512 + 0.151145i \(0.951704\pi\)
\(410\) 7.43070 + 4.77542i 0.366976 + 0.235841i
\(411\) 0 0
\(412\) 7.91087 + 2.32284i 0.389741 + 0.114438i
\(413\) 0.454472 0.0223631
\(414\) 0 0
\(415\) 3.18901 0.156543
\(416\) 6.50443 + 1.90987i 0.318906 + 0.0936392i
\(417\) 0 0
\(418\) −33.4657 21.5071i −1.63686 1.05195i
\(419\) −4.58075 + 31.8598i −0.223784 + 1.55645i 0.499752 + 0.866169i \(0.333424\pi\)
−0.723536 + 0.690286i \(0.757485\pi\)
\(420\) 0 0
\(421\) −10.6956 23.4201i −0.521271 1.14142i −0.968956 0.247233i \(-0.920479\pi\)
0.447685 0.894191i \(-0.352249\pi\)
\(422\) 2.16286 + 2.49607i 0.105286 + 0.121507i
\(423\) 0 0
\(424\) −6.91789 + 15.1481i −0.335962 + 0.735655i
\(425\) 4.95277 1.45427i 0.240245 0.0705423i
\(426\) 0 0
\(427\) 1.15252 2.52367i 0.0557744 0.122129i
\(428\) −1.02931 7.15901i −0.0497536 0.346044i
\(429\) 0 0
\(430\) 2.72496 + 5.96683i 0.131409 + 0.287746i
\(431\) 5.05580 3.24916i 0.243529 0.156507i −0.413183 0.910648i \(-0.635583\pi\)
0.656712 + 0.754141i \(0.271947\pi\)
\(432\) 0 0
\(433\) −24.9572 16.0390i −1.19937 0.770787i −0.220521 0.975382i \(-0.570776\pi\)
−0.978847 + 0.204595i \(0.934412\pi\)
\(434\) −2.85209 + 3.29149i −0.136905 + 0.157997i
\(435\) 0 0
\(436\) 7.52281 0.360277
\(437\) 28.9233 20.2627i 1.38359 0.969299i
\(438\) 0 0
\(439\) −3.60675 1.05904i −0.172141 0.0505451i 0.194526 0.980897i \(-0.437683\pi\)
−0.366667 + 0.930352i \(0.619501\pi\)
\(440\) −2.60490 + 3.00622i −0.124184 + 0.143316i
\(441\) 0 0
\(442\) −0.515325 + 3.58416i −0.0245115 + 0.170481i
\(443\) 9.98016 6.41386i 0.474172 0.304732i −0.281641 0.959520i \(-0.590879\pi\)
0.755812 + 0.654788i \(0.227242\pi\)
\(444\) 0 0
\(445\) 0.972542 + 1.12237i 0.0461029 + 0.0532056i
\(446\) −0.147868 1.02845i −0.00700176 0.0486983i
\(447\) 0 0
\(448\) −2.02282 + 0.593955i −0.0955694 + 0.0280617i
\(449\) −28.3526 + 8.32507i −1.33804 + 0.392885i −0.870971 0.491335i \(-0.836509\pi\)
−0.467071 + 0.884220i \(0.654691\pi\)
\(450\) 0 0
\(451\) 4.95392 + 34.4553i 0.233271 + 1.62244i
\(452\) 1.23249 + 1.42237i 0.0579716 + 0.0669028i
\(453\) 0 0
\(454\) −33.7798 + 21.7090i −1.58537 + 1.01885i
\(455\) −0.0744692 + 0.517945i −0.00349117 + 0.0242816i
\(456\) 0 0
\(457\) 17.3259 19.9951i 0.810470 0.935332i −0.188436 0.982085i \(-0.560342\pi\)
0.998906 + 0.0467529i \(0.0148874\pi\)
\(458\) −4.50482 1.32273i −0.210496 0.0618073i
\(459\) 0 0
\(460\) 0.686782 + 1.35771i 0.0320214 + 0.0633035i
\(461\) −39.8046 −1.85388 −0.926942 0.375205i \(-0.877572\pi\)
−0.926942 + 0.375205i \(0.877572\pi\)
\(462\) 0 0
\(463\) −19.4034 + 22.3927i −0.901752 + 1.04068i 0.0972160 + 0.995263i \(0.469006\pi\)
−0.998968 + 0.0454143i \(0.985539\pi\)
\(464\) −14.6813 9.43508i −0.681561 0.438012i
\(465\) 0 0
\(466\) −8.28756 + 5.32609i −0.383914 + 0.246726i
\(467\) −1.73407 3.79709i −0.0802432 0.175708i 0.865258 0.501327i \(-0.167155\pi\)
−0.945501 + 0.325619i \(0.894427\pi\)
\(468\) 0 0
\(469\) −0.886508 6.16580i −0.0409352 0.284710i
\(470\) −3.81164 + 8.34633i −0.175818 + 0.384987i
\(471\) 0 0
\(472\) 2.03273 0.596863i 0.0935640 0.0274729i
\(473\) −10.7388 + 23.5147i −0.493771 + 1.08121i
\(474\) 0 0
\(475\) 22.7726 + 26.2810i 1.04488 + 1.20586i
\(476\) 0.132273 + 0.289637i 0.00606271 + 0.0132755i
\(477\) 0 0
\(478\) 6.88693 47.8996i 0.315001 2.19088i
\(479\) −13.8273 8.88625i −0.631784 0.406023i 0.185186 0.982704i \(-0.440711\pi\)
−0.816970 + 0.576681i \(0.804348\pi\)
\(480\) 0 0
\(481\) 6.81093 + 1.99987i 0.310552 + 0.0911863i
\(482\) 4.91050 0.223667
\(483\) 0 0
\(484\) 0.129667 0.00589394
\(485\) −9.27476 2.72332i −0.421145 0.123659i
\(486\) 0 0
\(487\) 18.8374 + 12.1061i 0.853603 + 0.548578i 0.892697 0.450658i \(-0.148811\pi\)
−0.0390933 + 0.999236i \(0.512447\pi\)
\(488\) 1.84055 12.8013i 0.0833177 0.579488i
\(489\) 0 0
\(490\) −2.38850 5.23009i −0.107902 0.236272i
\(491\) −7.83692 9.04429i −0.353675 0.408163i 0.550835 0.834614i \(-0.314309\pi\)
−0.904511 + 0.426451i \(0.859764\pi\)
\(492\) 0 0
\(493\) 1.63662 3.58369i 0.0737095 0.161401i
\(494\) −23.4062 + 6.87267i −1.05309 + 0.309216i
\(495\) 0 0
\(496\) −11.2268 + 24.5833i −0.504099 + 1.10382i
\(497\) 0.430130 + 2.99162i 0.0192940 + 0.134192i
\(498\) 0 0
\(499\) 4.66181 + 10.2079i 0.208691 + 0.456970i 0.984814 0.173611i \(-0.0555436\pi\)
−0.776123 + 0.630582i \(0.782816\pi\)
\(500\) −2.59490 + 1.66764i −0.116047 + 0.0745791i
\(501\) 0 0
\(502\) 4.80477 + 3.08784i 0.214447 + 0.137817i
\(503\) 9.14150 10.5499i 0.407599 0.470395i −0.514420 0.857538i \(-0.671993\pi\)
0.922019 + 0.387144i \(0.126538\pi\)
\(504\) 0 0
\(505\) 3.41951 0.152166
\(506\) −9.81397 + 23.9780i −0.436284 + 1.06595i
\(507\) 0 0
\(508\) −6.31450 1.85410i −0.280161 0.0822626i
\(509\) −16.8921 + 19.4945i −0.748730 + 0.864080i −0.994445 0.105262i \(-0.966432\pi\)
0.245715 + 0.969342i \(0.420977\pi\)
\(510\) 0 0
\(511\) 0.000583660 0.00405944i 2.58196e−5 0.000179579i
\(512\) −4.92257 + 3.16355i −0.217549 + 0.139810i
\(513\) 0 0
\(514\) 9.27785 + 10.7072i 0.409229 + 0.472275i
\(515\) 1.02633 + 7.13826i 0.0452254 + 0.314549i
\(516\) 0 0
\(517\) −34.6951 + 10.1874i −1.52589 + 0.448041i
\(518\) 2.58782 0.759851i 0.113702 0.0333859i
\(519\) 0 0
\(520\) 0.347142 + 2.41443i 0.0152232 + 0.105880i
\(521\) 15.2342 + 17.5812i 0.667421 + 0.770245i 0.983971 0.178331i \(-0.0570697\pi\)
−0.316549 + 0.948576i \(0.602524\pi\)
\(522\) 0 0
\(523\) 9.64326 6.19735i 0.421670 0.270991i −0.312551 0.949901i \(-0.601184\pi\)
0.734222 + 0.678910i \(0.237547\pi\)
\(524\) −0.0504326 + 0.350766i −0.00220316 + 0.0153233i
\(525\) 0 0
\(526\) 9.79382 11.3027i 0.427031 0.492820i
\(527\) −5.85389 1.71886i −0.255000 0.0748746i
\(528\) 0 0
\(529\) −16.3998 16.1260i −0.713034 0.701129i
\(530\) 6.27622 0.272621
\(531\) 0 0
\(532\) −1.40474 + 1.62115i −0.0609031 + 0.0702859i
\(533\) 17.9573 + 11.5405i 0.777817 + 0.499873i
\(534\) 0 0
\(535\) 5.32201 3.42025i 0.230091 0.147870i
\(536\) −12.0627 26.4137i −0.521030 1.14090i
\(537\) 0 0
\(538\) 2.91606 + 20.2816i 0.125720 + 0.874402i
\(539\) 9.41287 20.6113i 0.405441 0.887792i
\(540\) 0 0
\(541\) 22.5066 6.60855i 0.967636 0.284124i 0.240525 0.970643i \(-0.422680\pi\)
0.727112 + 0.686519i \(0.240862\pi\)
\(542\) −3.27993 + 7.18203i −0.140885 + 0.308495i
\(543\) 0 0
\(544\) 2.36282 + 2.72684i 0.101305 + 0.116912i
\(545\) 2.73348 + 5.98548i 0.117089 + 0.256390i
\(546\) 0 0
\(547\) 2.11351 14.6998i 0.0903670 0.628516i −0.893426 0.449210i \(-0.851706\pi\)
0.983793 0.179306i \(-0.0573853\pi\)
\(548\) −9.08033 5.83558i −0.387893 0.249283i
\(549\) 0 0
\(550\) −24.4790 7.18769i −1.04379 0.306484i
\(551\) 26.5413 1.13070
\(552\) 0 0
\(553\) 5.00026 0.212633
\(554\) −5.92383 1.73939i −0.251680 0.0738998i
\(555\) 0 0
\(556\) −6.76338 4.34656i −0.286831 0.184335i
\(557\) 3.28296 22.8335i 0.139103 0.967485i −0.794011 0.607904i \(-0.792011\pi\)
0.933114 0.359581i \(-0.117080\pi\)
\(558\) 0 0
\(559\) 6.58524 + 14.4197i 0.278526 + 0.609886i
\(560\) 0.807908 + 0.932376i 0.0341404 + 0.0394001i
\(561\) 0 0
\(562\) 13.2622 29.0401i 0.559430 1.22498i
\(563\) −26.0066 + 7.63624i −1.09605 + 0.321829i −0.779281 0.626674i \(-0.784416\pi\)
−0.316768 + 0.948503i \(0.602598\pi\)
\(564\) 0 0
\(565\) −0.683866 + 1.49746i −0.0287704 + 0.0629985i
\(566\) 2.24656 + 15.6251i 0.0944298 + 0.656774i
\(567\) 0 0
\(568\) 5.85278 + 12.8158i 0.245577 + 0.537739i
\(569\) −14.0899 + 9.05501i −0.590678 + 0.379606i −0.801568 0.597904i \(-0.796000\pi\)
0.210890 + 0.977510i \(0.432364\pi\)
\(570\) 0 0
\(571\) −6.90227 4.43582i −0.288851 0.185633i 0.388188 0.921580i \(-0.373101\pi\)
−0.677039 + 0.735947i \(0.736737\pi\)
\(572\) 2.71241 3.13029i 0.113412 0.130884i
\(573\) 0 0
\(574\) 8.11037 0.338520
\(575\) 14.1368 17.6946i 0.589543 0.737914i
\(576\) 0 0
\(577\) −0.910674 0.267398i −0.0379119 0.0111319i 0.262722 0.964872i \(-0.415380\pi\)
−0.300633 + 0.953740i \(0.597198\pi\)
\(578\) 16.6965 19.2688i 0.694484 0.801477i
\(579\) 0 0
\(580\) −0.162740 + 1.13188i −0.00675743 + 0.0469989i
\(581\) 2.46332 1.58308i 0.102196 0.0656773i
\(582\) 0 0
\(583\) 16.1973 + 18.6927i 0.670824 + 0.774173i
\(584\) −0.00272076 0.0189233i −0.000112586 0.000783052i
\(585\) 0 0
\(586\) −13.7707 + 4.04345i −0.568864 + 0.167033i
\(587\) 27.0571 7.94468i 1.11677 0.327912i 0.329272 0.944235i \(-0.393197\pi\)
0.787494 + 0.616323i \(0.211378\pi\)
\(588\) 0 0
\(589\) −5.84939 40.6834i −0.241020 1.67633i
\(590\) −0.522870 0.603424i −0.0215262 0.0248426i
\(591\) 0 0
\(592\) 14.0792 9.04816i 0.578652 0.371877i
\(593\) 0.686106 4.77197i 0.0281750 0.195961i −0.970873 0.239597i \(-0.922985\pi\)
0.999048 + 0.0436352i \(0.0138939\pi\)
\(594\) 0 0
\(595\) −0.182385 + 0.210484i −0.00747708 + 0.00862901i
\(596\) 4.67374 + 1.37233i 0.191444 + 0.0562130i
\(597\) 0 0
\(598\) 7.17131 + 14.1771i 0.293257 + 0.579744i
\(599\) 48.1882 1.96892 0.984458 0.175619i \(-0.0561926\pi\)
0.984458 + 0.175619i \(0.0561926\pi\)
\(600\) 0 0
\(601\) 20.4011 23.5441i 0.832177 0.960383i −0.167498 0.985872i \(-0.553569\pi\)
0.999675 + 0.0254891i \(0.00811432\pi\)
\(602\) 5.06690 + 3.25630i 0.206512 + 0.132717i
\(603\) 0 0
\(604\) 2.28497 1.46846i 0.0929741 0.0597508i
\(605\) 0.0471155 + 0.103168i 0.00191552 + 0.00419440i
\(606\) 0 0
\(607\) 1.14997 + 7.99823i 0.0466759 + 0.324638i 0.999759 + 0.0219309i \(0.00698137\pi\)
−0.953084 + 0.302707i \(0.902110\pi\)
\(608\) −10.0977 + 22.1109i −0.409515 + 0.896713i
\(609\) 0 0
\(610\) −4.67677 + 1.37322i −0.189357 + 0.0556001i
\(611\) −9.21134 + 20.1700i −0.372651 + 0.815992i
\(612\) 0 0
\(613\) −8.27956 9.55512i −0.334408 0.385928i 0.563496 0.826119i \(-0.309456\pi\)
−0.897904 + 0.440191i \(0.854911\pi\)
\(614\) −8.73041 19.1169i −0.352331 0.771497i
\(615\) 0 0
\(616\) −0.519793 + 3.61524i −0.0209430 + 0.145662i
\(617\) 21.9713 + 14.1201i 0.884531 + 0.568454i 0.902165 0.431391i \(-0.141977\pi\)
−0.0176341 + 0.999845i \(0.505613\pi\)
\(618\) 0 0
\(619\) −16.2418 4.76902i −0.652812 0.191683i −0.0614767 0.998109i \(-0.519581\pi\)
−0.591336 + 0.806426i \(0.701399\pi\)
\(620\) 1.77086 0.0711193
\(621\) 0 0
\(622\) 45.2228 1.81327
\(623\) 1.30840 + 0.384180i 0.0524198 + 0.0153918i
\(624\) 0 0
\(625\) 17.5944 + 11.3072i 0.703774 + 0.452288i
\(626\) 3.37329 23.4617i 0.134824 0.937719i
\(627\) 0 0
\(628\) 0.519685 + 1.13795i 0.0207377 + 0.0454092i
\(629\) 2.47416 + 2.85534i 0.0986514 + 0.113850i
\(630\) 0 0
\(631\) 3.87646 8.48826i 0.154319 0.337912i −0.816643 0.577142i \(-0.804168\pi\)
0.970963 + 0.239230i \(0.0768950\pi\)
\(632\) 22.3648 6.56690i 0.889624 0.261217i
\(633\) 0 0
\(634\) 8.26249 18.0923i 0.328145 0.718538i
\(635\) −0.819220 5.69780i −0.0325097 0.226110i
\(636\) 0 0
\(637\) −5.77214 12.6392i −0.228701 0.500785i
\(638\) −16.3809 + 10.5273i −0.648525 + 0.416782i
\(639\) 0 0
\(640\) 6.04163 + 3.88272i 0.238816 + 0.153478i
\(641\) 16.4777 19.0163i 0.650830 0.751097i −0.330421 0.943834i \(-0.607191\pi\)
0.981251 + 0.192736i \(0.0617362\pi\)
\(642\) 0 0
\(643\) 15.1602 0.597859 0.298930 0.954275i \(-0.403370\pi\)
0.298930 + 0.954275i \(0.403370\pi\)
\(644\) 1.20449 + 0.707818i 0.0474634 + 0.0278919i
\(645\) 0 0
\(646\) −12.4579 3.65797i −0.490149 0.143921i
\(647\) 2.75310 3.17725i 0.108236 0.124910i −0.699047 0.715076i \(-0.746392\pi\)
0.807282 + 0.590166i \(0.200938\pi\)
\(648\) 0 0
\(649\) 0.447807 3.11457i 0.0175780 0.122257i
\(650\) −13.1612 + 8.45816i −0.516223 + 0.331756i
\(651\) 0 0
\(652\) −6.82538 7.87691i −0.267302 0.308483i
\(653\) 1.36644 + 9.50381i 0.0534730 + 0.371913i 0.998933 + 0.0461756i \(0.0147034\pi\)
−0.945460 + 0.325737i \(0.894388\pi\)
\(654\) 0 0
\(655\) −0.297410 + 0.0873274i −0.0116208 + 0.00341217i
\(656\) 48.2883 14.1787i 1.88534 0.553587i
\(657\) 0 0
\(658\) 1.19900 + 8.33920i 0.0467417 + 0.325096i
\(659\) −0.317667 0.366608i −0.0123746 0.0142810i 0.749529 0.661972i \(-0.230280\pi\)
−0.761903 + 0.647691i \(0.775735\pi\)
\(660\) 0 0
\(661\) −16.0121 + 10.2903i −0.622797 + 0.400247i −0.813636 0.581374i \(-0.802515\pi\)
0.190840 + 0.981621i \(0.438879\pi\)
\(662\) 0.772899 5.37563i 0.0300396 0.208930i
\(663\) 0 0
\(664\) 8.93869 10.3158i 0.346888 0.400331i
\(665\) −1.80028 0.528611i −0.0698120 0.0204986i
\(666\) 0 0
\(667\) −3.14075 16.9982i −0.121610 0.658175i
\(668\) −10.3687 −0.401179
\(669\) 0 0
\(670\) −7.16669 + 8.27081i −0.276874 + 0.319529i
\(671\) −16.1595 10.3851i −0.623829 0.400911i
\(672\) 0 0
\(673\) 1.05038 0.675039i 0.0404892 0.0260208i −0.520240 0.854020i \(-0.674157\pi\)
0.560729 + 0.827999i \(0.310521\pi\)
\(674\) −1.51925 3.32668i −0.0585192 0.128139i
\(675\) 0 0
\(676\) 0.752760 + 5.23556i 0.0289523 + 0.201368i
\(677\) −12.5543 + 27.4900i −0.482499 + 1.05653i 0.499270 + 0.866447i \(0.333602\pi\)
−0.981769 + 0.190079i \(0.939126\pi\)
\(678\) 0 0
\(679\) −8.51610 + 2.50055i −0.326818 + 0.0959624i
\(680\) −0.539329 + 1.18097i −0.0206823 + 0.0452880i
\(681\) 0 0
\(682\) 19.7468 + 22.7890i 0.756145 + 0.872638i
\(683\) 6.59875 + 14.4493i 0.252494 + 0.552885i 0.992855 0.119324i \(-0.0380727\pi\)
−0.740361 + 0.672209i \(0.765345\pi\)
\(684\) 0 0
\(685\) 1.34362 9.34512i 0.0513373 0.357059i
\(686\) −9.03614 5.80717i −0.345001 0.221719i
\(687\) 0 0
\(688\) 35.8606 + 10.5296i 1.36717 + 0.401438i
\(689\) 15.1673 0.577829
\(690\) 0 0
\(691\) −17.1403 −0.652047 −0.326024 0.945362i \(-0.605709\pi\)
−0.326024 + 0.945362i \(0.605709\pi\)
\(692\) −7.15408 2.10063i −0.271957 0.0798539i
\(693\) 0 0
\(694\) 18.3431 + 11.7884i 0.696296 + 0.447482i
\(695\) 1.00078 6.96060i 0.0379619 0.264031i
\(696\) 0 0
\(697\) 4.71966 + 10.3346i 0.178770 + 0.391452i
\(698\) −22.5710 26.0483i −0.854324 0.985943i
\(699\) 0 0
\(700\) −0.571488 + 1.25138i −0.0216002 + 0.0472979i
\(701\) 24.0907 7.07366i 0.909892 0.267168i 0.206897 0.978363i \(-0.433664\pi\)
0.702995 + 0.711194i \(0.251845\pi\)
\(702\) 0 0
\(703\) −10.5735 + 23.1528i −0.398788 + 0.873223i
\(704\) 2.07730 + 14.4480i 0.0782913 + 0.544528i
\(705\) 0 0
\(706\) −19.6212 42.9644i −0.738454 1.61699i
\(707\) 2.64136 1.69750i 0.0993387 0.0638411i
\(708\) 0 0
\(709\) −36.0468 23.1659i −1.35377 0.870013i −0.355851 0.934543i \(-0.615809\pi\)
−0.997916 + 0.0645293i \(0.979445\pi\)
\(710\) 3.47725 4.01296i 0.130499 0.150604i
\(711\) 0 0
\(712\) 6.35664 0.238225
\(713\) −25.3633 + 8.56046i −0.949862 + 0.320592i
\(714\) 0 0
\(715\) 3.47618 + 1.02070i 0.130002 + 0.0381719i
\(716\) −1.41847 + 1.63700i −0.0530108 + 0.0611777i
\(717\) 0 0
\(718\) −6.67871 + 46.4515i −0.249247 + 1.73355i
\(719\) −12.1284 + 7.79448i −0.452315 + 0.290685i −0.746895 0.664942i \(-0.768456\pi\)
0.294581 + 0.955627i \(0.404820\pi\)
\(720\) 0 0
\(721\) 4.33633 + 5.00439i 0.161493 + 0.186373i
\(722\) −8.08639 56.2421i −0.300944 2.09311i
\(723\) 0 0
\(724\) −6.00990 + 1.76467i −0.223356 + 0.0655833i
\(725\) 16.3321 4.79555i 0.606561 0.178102i
\(726\) 0 0
\(727\) −2.80380 19.5008i −0.103987 0.723246i −0.973392 0.229146i \(-0.926407\pi\)
0.869405 0.494100i \(-0.164502\pi\)
\(728\) 1.46671 + 1.69267i 0.0543599 + 0.0627346i
\(729\) 0 0
\(730\) −0.00606141 + 0.00389543i −0.000224343 + 0.000144176i
\(731\) −1.20075 + 8.35143i −0.0444115 + 0.308889i
\(732\) 0 0
\(733\) 15.3498 17.7146i 0.566956 0.654302i −0.397793 0.917475i \(-0.630224\pi\)
0.964749 + 0.263173i \(0.0847691\pi\)
\(734\) 23.1664 + 6.80228i 0.855088 + 0.251077i
\(735\) 0 0
\(736\) 15.3557 + 3.85053i 0.566018 + 0.141933i
\(737\) −43.1287 −1.58867
\(738\) 0 0
\(739\) 1.33631 1.54218i 0.0491570 0.0567302i −0.730639 0.682764i \(-0.760778\pi\)
0.779796 + 0.626034i \(0.215323\pi\)
\(740\) −0.922543 0.592883i −0.0339134 0.0217948i
\(741\) 0 0
\(742\) 4.84800 3.11562i 0.177976 0.114378i
\(743\) −18.5746 40.6727i −0.681436 1.49214i −0.861114 0.508412i \(-0.830233\pi\)
0.179678 0.983726i \(-0.442495\pi\)
\(744\) 0 0
\(745\) 0.606354 + 4.21728i 0.0222151 + 0.154509i
\(746\) −22.1968 + 48.6042i −0.812683 + 1.77953i
\(747\) 0 0
\(748\) 2.11526 0.621096i 0.0773416 0.0227095i
\(749\) 2.41306 5.28387i 0.0881714 0.193069i
\(750\) 0 0
\(751\) 35.7344 + 41.2397i 1.30397 + 1.50486i 0.722742 + 0.691118i \(0.242882\pi\)
0.581227 + 0.813742i \(0.302573\pi\)
\(752\) 21.7175 + 47.5546i 0.791955 + 1.73414i
\(753\) 0 0
\(754\) −1.69932 + 11.8190i −0.0618856 + 0.430424i
\(755\) 1.99864 + 1.28444i 0.0727378 + 0.0467457i
\(756\) 0 0
\(757\) −46.5029 13.6545i −1.69018 0.496281i −0.711673 0.702511i \(-0.752062\pi\)
−0.978504 + 0.206230i \(0.933880\pi\)
\(758\) −30.4079 −1.10446
\(759\) 0 0
\(760\) −8.74641 −0.317265
\(761\) −41.4432 12.1688i −1.50232 0.441120i −0.575868 0.817542i \(-0.695336\pi\)
−0.926448 + 0.376423i \(0.877154\pi\)
\(762\) 0 0
\(763\) 5.08274 + 3.26648i 0.184008 + 0.118255i
\(764\) −0.574988 + 3.99913i −0.0208023 + 0.144683i
\(765\) 0 0
\(766\) −12.3125 26.9605i −0.444867 0.974124i
\(767\) −1.26359 1.45826i −0.0456254 0.0526545i
\(768\) 0 0
\(769\) −20.6411 + 45.1977i −0.744337 + 1.62987i 0.0319500 + 0.999489i \(0.489828\pi\)
−0.776287 + 0.630380i \(0.782899\pi\)
\(770\) 1.32077 0.387814i 0.0475974 0.0139759i
\(771\) 0 0
\(772\) −3.33024 + 7.29222i −0.119858 + 0.262453i
\(773\) 1.52790 + 10.6267i 0.0549546 + 0.382217i 0.998674 + 0.0514717i \(0.0163912\pi\)
−0.943720 + 0.330746i \(0.892700\pi\)
\(774\) 0 0
\(775\) −10.9502 23.9776i −0.393342 0.861300i
\(776\) −34.8062 + 22.3686i −1.24947 + 0.802985i
\(777\) 0 0
\(778\) 6.05647 + 3.89226i 0.217135 + 0.139544i
\(779\) −50.1228 + 57.8448i −1.79584 + 2.07251i
\(780\) 0 0
\(781\) 20.9258 0.748785
\(782\) −0.868529 + 8.41146i −0.0310585 + 0.300793i
\(783\) 0 0
\(784\) −31.4328 9.22950i −1.12260 0.329625i
\(785\) −0.716571 + 0.826968i −0.0255755 + 0.0295157i
\(786\) 0 0
\(787\) −5.48677 + 38.1613i −0.195582 + 1.36030i 0.621334 + 0.783546i \(0.286591\pi\)
−0.816916 + 0.576757i \(0.804318\pi\)
\(788\) 9.70799 6.23894i 0.345833 0.222253i
\(789\) 0 0
\(790\) −5.75279 6.63908i −0.204675 0.236208i
\(791\) 0.215118 + 1.49618i 0.00764871 + 0.0531980i
\(792\) 0 0
\(793\) −11.3020 + 3.31858i −0.401347 + 0.117846i
\(794\) 22.0704 6.48045i 0.783248 0.229982i
\(795\) 0 0
\(796\) −1.99949 13.9068i −0.0708701 0.492913i
\(797\) −20.0127 23.0959i −0.708886 0.818098i 0.281038 0.959697i \(-0.409321\pi\)
−0.989924 + 0.141598i \(0.954776\pi\)
\(798\) 0 0
\(799\) −9.92847 + 6.38064i −0.351244 + 0.225731i
\(800\) −2.21855 + 15.4303i −0.0784375 + 0.545545i
\(801\) 0 0
\(802\) −37.9032 + 43.7426i −1.33841 + 1.54461i
\(803\) −0.0272449 0.00799982i −0.000961451 0.000282308i
\(804\) 0 0
\(805\) −0.125511 + 1.21553i −0.00442366 + 0.0428420i
\(806\) 18.4911 0.651322
\(807\) 0 0
\(808\) 9.58475 11.0614i 0.337190 0.389138i
\(809\) 3.73925 + 2.40307i 0.131465 + 0.0844874i 0.604720 0.796438i \(-0.293285\pi\)
−0.473255 + 0.880925i \(0.656921\pi\)
\(810\) 0 0
\(811\) 27.3210 17.5582i 0.959371 0.616551i 0.0355474 0.999368i \(-0.488683\pi\)
0.923824 + 0.382817i \(0.125046\pi\)
\(812\) 0.436179 + 0.955100i 0.0153069 + 0.0335174i
\(813\) 0 0
\(814\) −2.65751 18.4834i −0.0931457 0.647843i
\(815\) 3.78715 8.29271i 0.132658 0.290481i
\(816\) 0 0
\(817\) −54.5385 + 16.0140i −1.90806 + 0.560257i
\(818\) 7.86820 17.2290i 0.275105 0.602396i
\(819\) 0 0
\(820\) −2.15952 2.49222i −0.0754138 0.0870322i
\(821\) −14.0204 30.7003i −0.489314 1.07145i −0.979796 0.199997i \(-0.935907\pi\)
0.490482 0.871451i \(-0.336821\pi\)
\(822\) 0 0
\(823\) −2.52621 + 17.5702i −0.0880581 + 0.612458i 0.897231 + 0.441562i \(0.145575\pi\)
−0.985289 + 0.170896i \(0.945334\pi\)
\(824\) 25.9675 + 16.6883i 0.904622 + 0.581365i
\(825\) 0 0
\(826\) −0.703435 0.206547i −0.0244756 0.00718670i
\(827\) 17.7946 0.618778 0.309389 0.950936i \(-0.399875\pi\)
0.309389 + 0.950936i \(0.399875\pi\)
\(828\) 0 0
\(829\) −47.4537 −1.64814 −0.824068 0.566491i \(-0.808301\pi\)
−0.824068 + 0.566491i \(0.808301\pi\)
\(830\) −4.93598 1.44933i −0.171330 0.0503071i
\(831\) 0 0
\(832\) 7.52994 + 4.83920i 0.261054 + 0.167769i
\(833\) 1.05249 7.32026i 0.0364668 0.253632i
\(834\) 0 0
\(835\) −3.76757 8.24982i −0.130382 0.285497i
\(836\) 9.72587 + 11.2243i 0.336376 + 0.388199i
\(837\) 0 0
\(838\) 21.5697 47.2310i 0.745113 1.63157i
\(839\) 1.56477 0.459459i 0.0540220 0.0158623i −0.254610 0.967044i \(-0.581947\pi\)
0.308632 + 0.951182i \(0.400129\pi\)
\(840\) 0 0
\(841\) −6.65017 + 14.5618i −0.229316 + 0.502132i
\(842\) 5.91082 + 41.1107i 0.203700 + 1.41677i
\(843\) 0 0
\(844\) −0.512234 1.12164i −0.0176318 0.0386083i
\(845\) −3.89212 + 2.50131i −0.133893 + 0.0860478i
\(846\) 0 0
\(847\) 0.0876085 + 0.0563025i 0.00301026 + 0.00193458i
\(848\) 23.4177 27.0255i 0.804168 0.928059i
\(849\) 0 0
\(850\) −8.32687 −0.285609
\(851\) 16.0793 + 4.03198i 0.551191 + 0.138215i
\(852\) 0 0
\(853\) 21.2486 + 6.23916i 0.727539 + 0.213625i 0.624469 0.781049i \(-0.285315\pi\)
0.103070 + 0.994674i \(0.467133\pi\)
\(854\) −2.93083 + 3.38236i −0.100291 + 0.115742i
\(855\) 0 0
\(856\) 3.85361 26.8024i 0.131714 0.916088i
\(857\) 19.0420 12.2376i 0.650463 0.418027i −0.173372 0.984856i \(-0.555466\pi\)
0.823835 + 0.566829i \(0.191830\pi\)
\(858\) 0 0
\(859\) −0.824575 0.951611i −0.0281341 0.0324685i 0.741508 0.670944i \(-0.234111\pi\)
−0.769642 + 0.638475i \(0.779565\pi\)
\(860\) −0.348525 2.42405i −0.0118846 0.0826593i
\(861\) 0 0
\(862\) −9.30207 + 2.73133i −0.316830 + 0.0930296i
\(863\) 7.61520 2.23603i 0.259225 0.0761152i −0.149538 0.988756i \(-0.547779\pi\)
0.408763 + 0.912641i \(0.365960\pi\)
\(864\) 0 0
\(865\) −0.928144 6.45538i −0.0315578 0.219490i
\(866\) 31.3396 + 36.1678i 1.06496 + 1.22903i
\(867\) 0 0
\(868\) 1.36788 0.879083i 0.0464289 0.0298380i
\(869\) 4.92693 34.2675i 0.167135 1.16245i
\(870\) 0 0
\(871\) −17.3193 + 19.9875i −0.586842 + 0.677251i
\(872\) 27.0236 + 7.93485i 0.915135 + 0.268708i
\(873\) 0 0
\(874\) −53.9766 + 18.2178i −1.82579 + 0.616228i
\(875\) −2.47733 −0.0837491
\(876\) 0 0
\(877\) 9.70823 11.2039i 0.327824 0.378329i −0.567781 0.823180i \(-0.692198\pi\)
0.895605 + 0.444851i \(0.146743\pi\)
\(878\) 5.10125 + 3.27837i 0.172159 + 0.110640i
\(879\) 0 0
\(880\) 7.18577 4.61801i 0.242232 0.155673i
\(881\) 10.8447 + 23.7466i 0.365368 + 0.800043i 0.999637 + 0.0269316i \(0.00857362\pi\)
−0.634270 + 0.773112i \(0.718699\pi\)
\(882\) 0 0
\(883\) −1.30435 9.07195i −0.0438949 0.305296i −0.999928 0.0120354i \(-0.996169\pi\)
0.956033 0.293260i \(-0.0947402\pi\)
\(884\) 0.561590 1.22971i 0.0188883 0.0413596i
\(885\) 0 0
\(886\) −18.3623 + 5.39166i −0.616894 + 0.181136i
\(887\) −21.1375 + 46.2846i −0.709727 + 1.55408i 0.118038 + 0.993009i \(0.462340\pi\)
−0.827765 + 0.561075i \(0.810388\pi\)
\(888\) 0 0
\(889\) −3.46128 3.99453i −0.116088 0.133972i
\(890\) −0.995214 2.17922i −0.0333597 0.0730475i
\(891\) 0 0
\(892\) −0.0552053 + 0.383961i −0.00184841 + 0.0128560i
\(893\) −66.8867 42.9855i −2.23828 1.43845i
\(894\) 0 0
\(895\) −1.81789 0.533780i −0.0607652 0.0178423i
\(896\) 6.59425 0.220298
\(897\) 0 0
\(898\) 47.6679 1.59070
\(899\) −19.3036 5.66806i −0.643812 0.189040i
\(900\) 0 0
\(901\) 6.79127 + 4.36448i 0.226250 + 0.145402i
\(902\) 7.99143 55.5816i 0.266085 1.85066i
\(903\) 0 0
\(904\) 2.92711 + 6.40948i 0.0973543 + 0.213176i
\(905\) −3.58779 4.14053i −0.119262 0.137636i
\(906\) 0 0
\(907\) 15.9556 34.9378i 0.529795 1.16009i −0.435801 0.900043i \(-0.643535\pi\)
0.965596 0.260047i \(-0.0837380\pi\)
\(908\) 14.3840 4.22351i 0.477349 0.140162i
\(909\) 0 0
\(910\) 0.350658 0.767834i 0.0116242 0.0254535i
\(911\) 0.0791753 + 0.550676i 0.00262319 + 0.0182447i 0.991091 0.133186i \(-0.0425209\pi\)
−0.988468 + 0.151431i \(0.951612\pi\)
\(912\) 0 0
\(913\) −8.42190 18.4414i −0.278724 0.610321i
\(914\) −35.9044 + 23.0744i −1.18761 + 0.763233i
\(915\) 0 0
\(916\) 1.47458 + 0.947655i 0.0487215 + 0.0313114i
\(917\) −0.186381 + 0.215095i −0.00615483 + 0.00710305i
\(918\) 0 0
\(919\) −25.5118 −0.841555 −0.420778 0.907164i \(-0.638243\pi\)
−0.420778 + 0.907164i \(0.638243\pi\)
\(920\) 1.03500 + 5.60159i 0.0341230 + 0.184679i
\(921\) 0 0
\(922\) 61.6098 + 18.0903i 2.02901 + 0.595771i
\(923\) 8.40324 9.69786i 0.276596 0.319209i
\(924\) 0 0
\(925\) −2.32309 + 16.1575i −0.0763828 + 0.531254i
\(926\) 40.2097 25.8412i 1.32137 0.849194i
\(927\) 0 0
\(928\) 7.79158 + 8.99196i 0.255771 + 0.295176i
\(929\) −3.40247 23.6647i −0.111631 0.776413i −0.966333 0.257294i \(-0.917169\pi\)
0.854702 0.519119i \(-0.173740\pi\)
\(930\) 0 0
\(931\) 47.8045 14.0367i 1.56673 0.460034i
\(932\) 3.52897 1.03620i 0.115595 0.0339418i
\(933\) 0 0
\(934\) 0.958319 + 6.66525i 0.0313571 + 0.218094i
\(935\) 1.26277 + 1.45731i 0.0412969 + 0.0476592i
\(936\) 0 0
\(937\) 32.0799 20.6165i 1.04800 0.673511i 0.101050 0.994881i \(-0.467780\pi\)
0.946954 + 0.321370i \(0.104143\pi\)
\(938\) −1.43007 + 9.94637i −0.0466935 + 0.324760i
\(939\) 0 0
\(940\) 2.24329 2.58889i 0.0731679 0.0844403i
\(941\) 13.5602 + 3.98163i 0.442050 + 0.129797i 0.495181 0.868790i \(-0.335102\pi\)
−0.0531310 + 0.998588i \(0.516920\pi\)
\(942\) 0 0
\(943\) 42.9776 + 25.2558i 1.39954 + 0.822444i
\(944\) −4.54927 −0.148066
\(945\) 0 0
\(946\) 27.3085 31.5157i 0.887876 1.02466i
\(947\) −16.2633 10.4518i −0.528487 0.339638i 0.249034 0.968495i \(-0.419887\pi\)
−0.777521 + 0.628857i \(0.783523\pi\)
\(948\) 0 0
\(949\) −0.0146482 + 0.00941384i −0.000475502 + 0.000305586i
\(950\) −23.3035 51.0276i −0.756066 1.65555i
\(951\) 0 0
\(952\) 0.169652 + 1.17996i 0.00549847 + 0.0382427i
\(953\) −5.19078 + 11.3662i −0.168146 + 0.368188i −0.974881 0.222724i \(-0.928505\pi\)
0.806735 + 0.590913i \(0.201232\pi\)
\(954\) 0 0
\(955\) −3.39081 + 0.995631i −0.109724 + 0.0322179i
\(956\) −7.50522 + 16.4341i −0.242736 + 0.531518i
\(957\) 0 0
\(958\) 17.3633 + 20.0384i 0.560984 + 0.647410i
\(959\) −3.60121 7.88554i −0.116289 0.254637i
\(960\) 0 0
\(961\) −0.0221369 + 0.153966i −0.000714095 + 0.00496664i
\(962\) −9.63312 6.19083i −0.310584 0.199600i
\(963\) 0 0
\(964\) −1.75903 0.516499i −0.0566546 0.0166353i
\(965\) −7.01208 −0.225727
\(966\) 0 0
\(967\) 9.35247 0.300755 0.150378 0.988629i \(-0.451951\pi\)
0.150378 + 0.988629i \(0.451951\pi\)
\(968\) 0.465792 + 0.136769i 0.0149711 + 0.00439591i
\(969\) 0 0
\(970\) 13.1179 + 8.43034i 0.421189 + 0.270682i
\(971\) −3.37468 + 23.4714i −0.108299 + 0.753233i 0.861223 + 0.508227i \(0.169699\pi\)
−0.969522 + 0.245006i \(0.921210\pi\)
\(972\) 0 0
\(973\) −2.68232 5.87345i −0.0859911 0.188294i
\(974\) −23.6547 27.2990i −0.757946 0.874716i
\(975\) 0 0
\(976\) −11.5368 + 25.2620i −0.369283 + 0.808616i
\(977\) 46.3820 13.6190i 1.48389 0.435710i 0.563306 0.826248i \(-0.309529\pi\)
0.920587 + 0.390538i \(0.127711\pi\)
\(978\) 0 0
\(979\) 3.92205 8.58809i 0.125349 0.274476i
\(980\) 0.305492 + 2.12474i 0.00975859 + 0.0678725i
\(981\) 0 0
\(982\) 8.01962 + 17.5605i 0.255916 + 0.560379i
\(983\) 30.2232 19.4233i 0.963972 0.619507i 0.0388772 0.999244i \(-0.487622\pi\)
0.925094 + 0.379737i \(0.123986\pi\)
\(984\) 0 0
\(985\) 8.49146 + 5.45713i 0.270560 + 0.173879i
\(986\) −4.16187 + 4.80306i −0.132541 + 0.152961i
\(987\) 0 0
\(988\) 9.10740 0.289745
\(989\) 16.7098 + 33.0339i 0.531342 + 1.05042i
\(990\) 0 0
\(991\) −24.8432 7.29461i −0.789169 0.231721i −0.137778 0.990463i \(-0.543996\pi\)
−0.651391 + 0.758742i \(0.725814\pi\)
\(992\) 12.0660 13.9249i 0.383096 0.442116i
\(993\) 0 0
\(994\) 0.693864 4.82593i 0.0220080 0.153069i
\(995\) 10.3383 6.64403i 0.327746 0.210630i
\(996\) 0 0
\(997\) −20.0725 23.1648i −0.635701 0.733638i 0.342908 0.939369i \(-0.388588\pi\)
−0.978609 + 0.205731i \(0.934043\pi\)
\(998\) −2.57631 17.9186i −0.0815516 0.567204i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.2.i.d.64.1 20
3.2 odd 2 69.2.e.c.64.2 yes 20
23.3 even 11 4761.2.a.bt.1.8 10
23.9 even 11 inner 207.2.i.d.55.1 20
23.20 odd 22 4761.2.a.bu.1.8 10
69.20 even 22 1587.2.a.t.1.3 10
69.26 odd 22 1587.2.a.u.1.3 10
69.32 odd 22 69.2.e.c.55.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.e.c.55.2 20 69.32 odd 22
69.2.e.c.64.2 yes 20 3.2 odd 2
207.2.i.d.55.1 20 23.9 even 11 inner
207.2.i.d.64.1 20 1.1 even 1 trivial
1587.2.a.t.1.3 10 69.20 even 22
1587.2.a.u.1.3 10 69.26 odd 22
4761.2.a.bt.1.8 10 23.3 even 11
4761.2.a.bu.1.8 10 23.20 odd 22