Properties

Label 2057.4.a.s.1.5
Level $2057$
Weight $4$
Character 2057.1
Self dual yes
Analytic conductor $121.367$
Analytic rank $1$
Dimension $44$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2057,4,Mod(1,2057)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2057.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2057, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2057 = 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2057.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,-1,-28,139,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(121.366928882\)
Analytic rank: \(1\)
Dimension: \(44\)
Twist minimal: no (minimal twist has level 187)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 2057.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.73079 q^{2} -1.21482 q^{3} +14.3803 q^{4} -15.1061 q^{5} +5.74704 q^{6} -9.37827 q^{7} -30.1840 q^{8} -25.5242 q^{9} +71.4635 q^{10} -17.4695 q^{12} -74.3698 q^{13} +44.3666 q^{14} +18.3511 q^{15} +27.7515 q^{16} -17.0000 q^{17} +120.750 q^{18} +3.05838 q^{19} -217.230 q^{20} +11.3929 q^{21} -16.3508 q^{23} +36.6681 q^{24} +103.193 q^{25} +351.828 q^{26} +63.8073 q^{27} -134.863 q^{28} -148.700 q^{29} -86.8151 q^{30} -15.4541 q^{31} +110.186 q^{32} +80.4234 q^{34} +141.669 q^{35} -367.047 q^{36} -19.7730 q^{37} -14.4685 q^{38} +90.3458 q^{39} +455.961 q^{40} +255.122 q^{41} -53.8973 q^{42} +277.874 q^{43} +385.570 q^{45} +77.3520 q^{46} -149.172 q^{47} -33.7130 q^{48} -255.048 q^{49} -488.183 q^{50} +20.6519 q^{51} -1069.46 q^{52} +232.610 q^{53} -301.859 q^{54} +283.074 q^{56} -3.71537 q^{57} +703.470 q^{58} -341.102 q^{59} +263.895 q^{60} +703.020 q^{61} +73.1100 q^{62} +239.373 q^{63} -743.278 q^{64} +1123.43 q^{65} -115.186 q^{67} -244.466 q^{68} +19.8632 q^{69} -670.204 q^{70} -646.835 q^{71} +770.424 q^{72} +276.780 q^{73} +93.5418 q^{74} -125.360 q^{75} +43.9805 q^{76} -427.407 q^{78} +727.486 q^{79} -419.215 q^{80} +611.640 q^{81} -1206.93 q^{82} +1305.51 q^{83} +163.834 q^{84} +256.803 q^{85} -1314.56 q^{86} +180.644 q^{87} +1062.02 q^{89} -1824.05 q^{90} +697.460 q^{91} -235.130 q^{92} +18.7739 q^{93} +705.702 q^{94} -46.2000 q^{95} -133.856 q^{96} -1475.26 q^{97} +1206.58 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - q^{2} - 28 q^{3} + 139 q^{4} - 24 q^{5} + 24 q^{6} + 2 q^{7} + 63 q^{8} + 356 q^{9} + 65 q^{10} - 337 q^{12} - 12 q^{13} - 151 q^{14} - 320 q^{15} + 311 q^{16} - 748 q^{17} + 55 q^{18} + 36 q^{19}+ \cdots - 2302 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.73079 −1.67259 −0.836293 0.548283i \(-0.815282\pi\)
−0.836293 + 0.548283i \(0.815282\pi\)
\(3\) −1.21482 −0.233792 −0.116896 0.993144i \(-0.537294\pi\)
−0.116896 + 0.993144i \(0.537294\pi\)
\(4\) 14.3803 1.79754
\(5\) −15.1061 −1.35113 −0.675563 0.737302i \(-0.736099\pi\)
−0.675563 + 0.737302i \(0.736099\pi\)
\(6\) 5.74704 0.391037
\(7\) −9.37827 −0.506379 −0.253189 0.967417i \(-0.581480\pi\)
−0.253189 + 0.967417i \(0.581480\pi\)
\(8\) −30.1840 −1.33396
\(9\) −25.5242 −0.945341
\(10\) 71.4635 2.25987
\(11\) 0 0
\(12\) −17.4695 −0.420251
\(13\) −74.3698 −1.58665 −0.793326 0.608797i \(-0.791653\pi\)
−0.793326 + 0.608797i \(0.791653\pi\)
\(14\) 44.3666 0.846962
\(15\) 18.3511 0.315882
\(16\) 27.7515 0.433617
\(17\) −17.0000 −0.242536
\(18\) 120.750 1.58116
\(19\) 3.05838 0.0369284 0.0184642 0.999830i \(-0.494122\pi\)
0.0184642 + 0.999830i \(0.494122\pi\)
\(20\) −217.230 −2.42871
\(21\) 11.3929 0.118387
\(22\) 0 0
\(23\) −16.3508 −0.148234 −0.0741168 0.997250i \(-0.523614\pi\)
−0.0741168 + 0.997250i \(0.523614\pi\)
\(24\) 36.6681 0.311868
\(25\) 103.193 0.825542
\(26\) 351.828 2.65381
\(27\) 63.8073 0.454805
\(28\) −134.863 −0.910238
\(29\) −148.700 −0.952172 −0.476086 0.879399i \(-0.657945\pi\)
−0.476086 + 0.879399i \(0.657945\pi\)
\(30\) −86.8151 −0.528340
\(31\) −15.4541 −0.0895367 −0.0447683 0.998997i \(-0.514255\pi\)
−0.0447683 + 0.998997i \(0.514255\pi\)
\(32\) 110.186 0.608697
\(33\) 0 0
\(34\) 80.4234 0.405662
\(35\) 141.669 0.684182
\(36\) −367.047 −1.69929
\(37\) −19.7730 −0.0878556 −0.0439278 0.999035i \(-0.513987\pi\)
−0.0439278 + 0.999035i \(0.513987\pi\)
\(38\) −14.4685 −0.0617660
\(39\) 90.3458 0.370946
\(40\) 455.961 1.80235
\(41\) 255.122 0.971791 0.485896 0.874017i \(-0.338494\pi\)
0.485896 + 0.874017i \(0.338494\pi\)
\(42\) −53.8973 −0.198013
\(43\) 277.874 0.985475 0.492738 0.870178i \(-0.335996\pi\)
0.492738 + 0.870178i \(0.335996\pi\)
\(44\) 0 0
\(45\) 385.570 1.27728
\(46\) 77.3520 0.247933
\(47\) −149.172 −0.462958 −0.231479 0.972840i \(-0.574356\pi\)
−0.231479 + 0.972840i \(0.574356\pi\)
\(48\) −33.7130 −0.101376
\(49\) −255.048 −0.743580
\(50\) −488.183 −1.38079
\(51\) 20.6519 0.0567028
\(52\) −1069.46 −2.85208
\(53\) 232.610 0.602856 0.301428 0.953489i \(-0.402537\pi\)
0.301428 + 0.953489i \(0.402537\pi\)
\(54\) −301.859 −0.760700
\(55\) 0 0
\(56\) 283.074 0.675488
\(57\) −3.71537 −0.00863356
\(58\) 703.470 1.59259
\(59\) −341.102 −0.752673 −0.376337 0.926483i \(-0.622816\pi\)
−0.376337 + 0.926483i \(0.622816\pi\)
\(60\) 263.895 0.567812
\(61\) 703.020 1.47561 0.737807 0.675012i \(-0.235862\pi\)
0.737807 + 0.675012i \(0.235862\pi\)
\(62\) 73.1100 0.149758
\(63\) 239.373 0.478701
\(64\) −743.278 −1.45171
\(65\) 1123.43 2.14377
\(66\) 0 0
\(67\) −115.186 −0.210034 −0.105017 0.994470i \(-0.533490\pi\)
−0.105017 + 0.994470i \(0.533490\pi\)
\(68\) −244.466 −0.435968
\(69\) 19.8632 0.0346558
\(70\) −670.204 −1.14435
\(71\) −646.835 −1.08120 −0.540600 0.841280i \(-0.681803\pi\)
−0.540600 + 0.841280i \(0.681803\pi\)
\(72\) 770.424 1.26105
\(73\) 276.780 0.443763 0.221882 0.975074i \(-0.428780\pi\)
0.221882 + 0.975074i \(0.428780\pi\)
\(74\) 93.5418 0.146946
\(75\) −125.360 −0.193005
\(76\) 43.9805 0.0663804
\(77\) 0 0
\(78\) −427.407 −0.620439
\(79\) 727.486 1.03606 0.518029 0.855363i \(-0.326666\pi\)
0.518029 + 0.855363i \(0.326666\pi\)
\(80\) −419.215 −0.585871
\(81\) 611.640 0.839012
\(82\) −1206.93 −1.62540
\(83\) 1305.51 1.72648 0.863242 0.504790i \(-0.168430\pi\)
0.863242 + 0.504790i \(0.168430\pi\)
\(84\) 163.834 0.212806
\(85\) 256.803 0.327696
\(86\) −1314.56 −1.64829
\(87\) 180.644 0.222610
\(88\) 0 0
\(89\) 1062.02 1.26488 0.632438 0.774611i \(-0.282054\pi\)
0.632438 + 0.774611i \(0.282054\pi\)
\(90\) −1824.05 −2.13635
\(91\) 697.460 0.803447
\(92\) −235.130 −0.266456
\(93\) 18.7739 0.0209329
\(94\) 705.702 0.774337
\(95\) −46.2000 −0.0498950
\(96\) −133.856 −0.142308
\(97\) −1475.26 −1.54423 −0.772113 0.635486i \(-0.780800\pi\)
−0.772113 + 0.635486i \(0.780800\pi\)
\(98\) 1206.58 1.24370
\(99\) 0 0
\(100\) 1483.95 1.48395
\(101\) −1411.38 −1.39047 −0.695234 0.718784i \(-0.744699\pi\)
−0.695234 + 0.718784i \(0.744699\pi\)
\(102\) −97.6997 −0.0948403
\(103\) −97.4268 −0.0932014 −0.0466007 0.998914i \(-0.514839\pi\)
−0.0466007 + 0.998914i \(0.514839\pi\)
\(104\) 2244.78 2.11653
\(105\) −172.102 −0.159956
\(106\) −1100.43 −1.00833
\(107\) 762.495 0.688909 0.344454 0.938803i \(-0.388064\pi\)
0.344454 + 0.938803i \(0.388064\pi\)
\(108\) 917.571 0.817531
\(109\) −1551.22 −1.36312 −0.681558 0.731764i \(-0.738697\pi\)
−0.681558 + 0.731764i \(0.738697\pi\)
\(110\) 0 0
\(111\) 24.0206 0.0205399
\(112\) −260.261 −0.219574
\(113\) −754.694 −0.628280 −0.314140 0.949377i \(-0.601716\pi\)
−0.314140 + 0.949377i \(0.601716\pi\)
\(114\) 17.5766 0.0144404
\(115\) 246.996 0.200282
\(116\) −2138.36 −1.71157
\(117\) 1898.23 1.49993
\(118\) 1613.68 1.25891
\(119\) 159.431 0.122815
\(120\) −553.910 −0.421374
\(121\) 0 0
\(122\) −3325.84 −2.46809
\(123\) −309.927 −0.227197
\(124\) −222.235 −0.160946
\(125\) 329.421 0.235714
\(126\) −1132.42 −0.800668
\(127\) −2245.95 −1.56926 −0.784629 0.619966i \(-0.787146\pi\)
−0.784629 + 0.619966i \(0.787146\pi\)
\(128\) 2634.80 1.81942
\(129\) −337.567 −0.230396
\(130\) −5314.73 −3.58564
\(131\) 181.227 0.120869 0.0604346 0.998172i \(-0.480751\pi\)
0.0604346 + 0.998172i \(0.480751\pi\)
\(132\) 0 0
\(133\) −28.6823 −0.0186998
\(134\) 544.922 0.351299
\(135\) −963.877 −0.614499
\(136\) 513.128 0.323532
\(137\) 2369.81 1.47786 0.738928 0.673784i \(-0.235332\pi\)
0.738928 + 0.673784i \(0.235332\pi\)
\(138\) −93.9685 −0.0579647
\(139\) 2476.11 1.51094 0.755470 0.655183i \(-0.227409\pi\)
0.755470 + 0.655183i \(0.227409\pi\)
\(140\) 2037.24 1.22985
\(141\) 181.217 0.108236
\(142\) 3060.04 1.80840
\(143\) 0 0
\(144\) −708.334 −0.409916
\(145\) 2246.28 1.28650
\(146\) −1309.39 −0.742232
\(147\) 309.837 0.173843
\(148\) −284.342 −0.157924
\(149\) 2603.50 1.43145 0.715727 0.698380i \(-0.246095\pi\)
0.715727 + 0.698380i \(0.246095\pi\)
\(150\) 593.053 0.322817
\(151\) 3000.60 1.61712 0.808560 0.588414i \(-0.200247\pi\)
0.808560 + 0.588414i \(0.200247\pi\)
\(152\) −92.3142 −0.0492610
\(153\) 433.912 0.229279
\(154\) 0 0
\(155\) 233.450 0.120975
\(156\) 1299.20 0.666792
\(157\) −2381.27 −1.21048 −0.605242 0.796042i \(-0.706924\pi\)
−0.605242 + 0.796042i \(0.706924\pi\)
\(158\) −3441.58 −1.73290
\(159\) −282.578 −0.140943
\(160\) −1664.48 −0.822427
\(161\) 153.342 0.0750623
\(162\) −2893.54 −1.40332
\(163\) −107.379 −0.0515985 −0.0257993 0.999667i \(-0.508213\pi\)
−0.0257993 + 0.999667i \(0.508213\pi\)
\(164\) 3668.75 1.74684
\(165\) 0 0
\(166\) −6176.08 −2.88769
\(167\) 1677.71 0.777394 0.388697 0.921366i \(-0.372925\pi\)
0.388697 + 0.921366i \(0.372925\pi\)
\(168\) −343.883 −0.157924
\(169\) 3333.87 1.51747
\(170\) −1214.88 −0.548100
\(171\) −78.0627 −0.0349100
\(172\) 3995.93 1.77143
\(173\) −750.859 −0.329981 −0.164991 0.986295i \(-0.552759\pi\)
−0.164991 + 0.986295i \(0.552759\pi\)
\(174\) −854.588 −0.372334
\(175\) −967.770 −0.418037
\(176\) 0 0
\(177\) 414.377 0.175969
\(178\) −5024.19 −2.11561
\(179\) −158.994 −0.0663896 −0.0331948 0.999449i \(-0.510568\pi\)
−0.0331948 + 0.999449i \(0.510568\pi\)
\(180\) 5544.63 2.29596
\(181\) −1761.26 −0.723277 −0.361638 0.932318i \(-0.617783\pi\)
−0.361638 + 0.932318i \(0.617783\pi\)
\(182\) −3299.54 −1.34383
\(183\) −854.040 −0.344986
\(184\) 493.532 0.197737
\(185\) 298.692 0.118704
\(186\) −88.8153 −0.0350121
\(187\) 0 0
\(188\) −2145.15 −0.832186
\(189\) −598.402 −0.230304
\(190\) 218.562 0.0834536
\(191\) 3696.38 1.40032 0.700158 0.713988i \(-0.253113\pi\)
0.700158 + 0.713988i \(0.253113\pi\)
\(192\) 902.947 0.339399
\(193\) −3726.91 −1.38999 −0.694997 0.719012i \(-0.744594\pi\)
−0.694997 + 0.719012i \(0.744594\pi\)
\(194\) 6979.13 2.58285
\(195\) −1364.77 −0.501195
\(196\) −3667.68 −1.33662
\(197\) −3744.19 −1.35412 −0.677062 0.735926i \(-0.736747\pi\)
−0.677062 + 0.735926i \(0.736747\pi\)
\(198\) 0 0
\(199\) 2175.62 0.775004 0.387502 0.921869i \(-0.373338\pi\)
0.387502 + 0.921869i \(0.373338\pi\)
\(200\) −3114.77 −1.10124
\(201\) 139.930 0.0491041
\(202\) 6676.92 2.32568
\(203\) 1394.55 0.482160
\(204\) 296.981 0.101926
\(205\) −3853.89 −1.31301
\(206\) 460.905 0.155887
\(207\) 417.341 0.140131
\(208\) −2063.87 −0.687999
\(209\) 0 0
\(210\) 814.175 0.267540
\(211\) 4637.23 1.51299 0.756493 0.654002i \(-0.226911\pi\)
0.756493 + 0.654002i \(0.226911\pi\)
\(212\) 3345.01 1.08366
\(213\) 785.786 0.252775
\(214\) −3607.20 −1.15226
\(215\) −4197.58 −1.33150
\(216\) −1925.96 −0.606690
\(217\) 144.933 0.0453395
\(218\) 7338.47 2.27993
\(219\) −336.238 −0.103748
\(220\) 0 0
\(221\) 1264.29 0.384820
\(222\) −113.636 −0.0343548
\(223\) 2094.00 0.628809 0.314404 0.949289i \(-0.398195\pi\)
0.314404 + 0.949289i \(0.398195\pi\)
\(224\) −1033.35 −0.308231
\(225\) −2633.92 −0.780419
\(226\) 3570.29 1.05085
\(227\) 4297.27 1.25648 0.628238 0.778021i \(-0.283777\pi\)
0.628238 + 0.778021i \(0.283777\pi\)
\(228\) −53.4283 −0.0155192
\(229\) −2283.29 −0.658881 −0.329441 0.944176i \(-0.606860\pi\)
−0.329441 + 0.944176i \(0.606860\pi\)
\(230\) −1168.48 −0.334989
\(231\) 0 0
\(232\) 4488.38 1.27016
\(233\) 4491.52 1.26287 0.631436 0.775428i \(-0.282466\pi\)
0.631436 + 0.775428i \(0.282466\pi\)
\(234\) −8980.13 −2.50876
\(235\) 2253.40 0.625514
\(236\) −4905.17 −1.35296
\(237\) −883.763 −0.242222
\(238\) −754.232 −0.205418
\(239\) 5282.16 1.42960 0.714801 0.699328i \(-0.246517\pi\)
0.714801 + 0.699328i \(0.246517\pi\)
\(240\) 509.270 0.136972
\(241\) 371.992 0.0994278 0.0497139 0.998763i \(-0.484169\pi\)
0.0497139 + 0.998763i \(0.484169\pi\)
\(242\) 0 0
\(243\) −2465.83 −0.650959
\(244\) 10109.7 2.65248
\(245\) 3852.77 1.00467
\(246\) 1466.20 0.380006
\(247\) −227.451 −0.0585926
\(248\) 466.467 0.119438
\(249\) −1585.96 −0.403638
\(250\) −1558.42 −0.394252
\(251\) 5802.13 1.45907 0.729536 0.683942i \(-0.239736\pi\)
0.729536 + 0.683942i \(0.239736\pi\)
\(252\) 3442.26 0.860485
\(253\) 0 0
\(254\) 10625.1 2.62472
\(255\) −311.969 −0.0766127
\(256\) −6518.46 −1.59142
\(257\) 2506.95 0.608479 0.304240 0.952596i \(-0.401598\pi\)
0.304240 + 0.952596i \(0.401598\pi\)
\(258\) 1596.96 0.385357
\(259\) 185.436 0.0444882
\(260\) 16155.4 3.85351
\(261\) 3795.46 0.900127
\(262\) −857.345 −0.202164
\(263\) −4285.24 −1.00471 −0.502356 0.864661i \(-0.667533\pi\)
−0.502356 + 0.864661i \(0.667533\pi\)
\(264\) 0 0
\(265\) −3513.81 −0.814535
\(266\) 135.690 0.0312770
\(267\) −1290.16 −0.295717
\(268\) −1656.42 −0.377544
\(269\) 1905.08 0.431801 0.215901 0.976415i \(-0.430731\pi\)
0.215901 + 0.976415i \(0.430731\pi\)
\(270\) 4559.90 1.02780
\(271\) −3449.04 −0.773116 −0.386558 0.922265i \(-0.626336\pi\)
−0.386558 + 0.922265i \(0.626336\pi\)
\(272\) −471.775 −0.105167
\(273\) −847.287 −0.187839
\(274\) −11211.1 −2.47184
\(275\) 0 0
\(276\) 285.640 0.0622952
\(277\) −1524.50 −0.330679 −0.165339 0.986237i \(-0.552872\pi\)
−0.165339 + 0.986237i \(0.552872\pi\)
\(278\) −11713.9 −2.52718
\(279\) 394.454 0.0846427
\(280\) −4276.13 −0.912670
\(281\) 1521.46 0.323000 0.161500 0.986873i \(-0.448367\pi\)
0.161500 + 0.986873i \(0.448367\pi\)
\(282\) −857.299 −0.181033
\(283\) 5816.59 1.22177 0.610884 0.791720i \(-0.290814\pi\)
0.610884 + 0.791720i \(0.290814\pi\)
\(284\) −9301.70 −1.94350
\(285\) 56.1246 0.0116650
\(286\) 0 0
\(287\) −2392.61 −0.492095
\(288\) −2812.41 −0.575427
\(289\) 289.000 0.0588235
\(290\) −10626.7 −2.15179
\(291\) 1792.17 0.361027
\(292\) 3980.20 0.797683
\(293\) −3998.19 −0.797191 −0.398595 0.917127i \(-0.630502\pi\)
−0.398595 + 0.917127i \(0.630502\pi\)
\(294\) −1465.77 −0.290767
\(295\) 5152.71 1.01696
\(296\) 596.828 0.117196
\(297\) 0 0
\(298\) −12316.6 −2.39423
\(299\) 1216.00 0.235195
\(300\) −1802.73 −0.346935
\(301\) −2605.98 −0.499024
\(302\) −14195.2 −2.70477
\(303\) 1714.57 0.325080
\(304\) 84.8745 0.0160128
\(305\) −10619.8 −1.99374
\(306\) −2052.74 −0.383489
\(307\) −8679.98 −1.61366 −0.806829 0.590785i \(-0.798818\pi\)
−0.806829 + 0.590785i \(0.798818\pi\)
\(308\) 0 0
\(309\) 118.356 0.0217897
\(310\) −1104.40 −0.202342
\(311\) 7271.08 1.32574 0.662870 0.748734i \(-0.269338\pi\)
0.662870 + 0.748734i \(0.269338\pi\)
\(312\) −2727.00 −0.494827
\(313\) −107.036 −0.0193291 −0.00966454 0.999953i \(-0.503076\pi\)
−0.00966454 + 0.999953i \(0.503076\pi\)
\(314\) 11265.3 2.02464
\(315\) −3615.98 −0.646785
\(316\) 10461.5 1.86236
\(317\) −7857.41 −1.39216 −0.696082 0.717962i \(-0.745075\pi\)
−0.696082 + 0.717962i \(0.745075\pi\)
\(318\) 1336.82 0.235739
\(319\) 0 0
\(320\) 11228.0 1.96145
\(321\) −926.293 −0.161061
\(322\) −725.428 −0.125548
\(323\) −51.9924 −0.00895646
\(324\) 8795.59 1.50816
\(325\) −7674.43 −1.30985
\(326\) 507.986 0.0863030
\(327\) 1884.44 0.318685
\(328\) −7700.62 −1.29633
\(329\) 1398.98 0.234432
\(330\) 0 0
\(331\) −4599.42 −0.763767 −0.381883 0.924210i \(-0.624724\pi\)
−0.381883 + 0.924210i \(0.624724\pi\)
\(332\) 18773.7 3.10343
\(333\) 504.690 0.0830536
\(334\) −7936.87 −1.30026
\(335\) 1740.01 0.283782
\(336\) 316.169 0.0513347
\(337\) −10001.6 −1.61668 −0.808342 0.588713i \(-0.799635\pi\)
−0.808342 + 0.588713i \(0.799635\pi\)
\(338\) −15771.8 −2.53809
\(339\) 916.815 0.146887
\(340\) 3692.91 0.589048
\(341\) 0 0
\(342\) 369.298 0.0583899
\(343\) 5608.66 0.882912
\(344\) −8387.36 −1.31458
\(345\) −300.054 −0.0468243
\(346\) 3552.16 0.551922
\(347\) 9009.87 1.39388 0.696939 0.717131i \(-0.254545\pi\)
0.696939 + 0.717131i \(0.254545\pi\)
\(348\) 2597.72 0.400151
\(349\) −3822.52 −0.586289 −0.293145 0.956068i \(-0.594702\pi\)
−0.293145 + 0.956068i \(0.594702\pi\)
\(350\) 4578.31 0.699203
\(351\) −4745.34 −0.721617
\(352\) 0 0
\(353\) −6424.02 −0.968601 −0.484301 0.874902i \(-0.660926\pi\)
−0.484301 + 0.874902i \(0.660926\pi\)
\(354\) −1960.33 −0.294323
\(355\) 9771.12 1.46084
\(356\) 15272.2 2.27367
\(357\) −193.679 −0.0287131
\(358\) 752.165 0.111042
\(359\) 3170.70 0.466137 0.233068 0.972460i \(-0.425123\pi\)
0.233068 + 0.972460i \(0.425123\pi\)
\(360\) −11638.1 −1.70383
\(361\) −6849.65 −0.998636
\(362\) 8332.13 1.20974
\(363\) 0 0
\(364\) 10029.7 1.44423
\(365\) −4181.06 −0.599580
\(366\) 4040.28 0.577019
\(367\) −5181.48 −0.736978 −0.368489 0.929632i \(-0.620125\pi\)
−0.368489 + 0.929632i \(0.620125\pi\)
\(368\) −453.758 −0.0642765
\(369\) −6511.80 −0.918674
\(370\) −1413.05 −0.198543
\(371\) −2181.48 −0.305274
\(372\) 269.975 0.0376278
\(373\) −552.488 −0.0766936 −0.0383468 0.999264i \(-0.512209\pi\)
−0.0383468 + 0.999264i \(0.512209\pi\)
\(374\) 0 0
\(375\) −400.186 −0.0551080
\(376\) 4502.62 0.617566
\(377\) 11058.8 1.51077
\(378\) 2830.91 0.385202
\(379\) −5889.14 −0.798165 −0.399083 0.916915i \(-0.630671\pi\)
−0.399083 + 0.916915i \(0.630671\pi\)
\(380\) −664.372 −0.0896883
\(381\) 2728.42 0.366879
\(382\) −17486.8 −2.34215
\(383\) 6268.16 0.836261 0.418130 0.908387i \(-0.362686\pi\)
0.418130 + 0.908387i \(0.362686\pi\)
\(384\) −3200.80 −0.425365
\(385\) 0 0
\(386\) 17631.2 2.32488
\(387\) −7092.52 −0.931610
\(388\) −21214.7 −2.77581
\(389\) 9789.98 1.27602 0.638010 0.770028i \(-0.279758\pi\)
0.638010 + 0.770028i \(0.279758\pi\)
\(390\) 6456.43 0.838292
\(391\) 277.963 0.0359519
\(392\) 7698.38 0.991905
\(393\) −220.157 −0.0282582
\(394\) 17712.9 2.26489
\(395\) −10989.4 −1.39984
\(396\) 0 0
\(397\) −12072.6 −1.52621 −0.763103 0.646276i \(-0.776325\pi\)
−0.763103 + 0.646276i \(0.776325\pi\)
\(398\) −10292.4 −1.29626
\(399\) 34.8438 0.00437185
\(400\) 2863.75 0.357969
\(401\) −7906.87 −0.984664 −0.492332 0.870408i \(-0.663855\pi\)
−0.492332 + 0.870408i \(0.663855\pi\)
\(402\) −661.981 −0.0821308
\(403\) 1149.32 0.142064
\(404\) −20296.1 −2.49943
\(405\) −9239.46 −1.13361
\(406\) −6597.33 −0.806453
\(407\) 0 0
\(408\) −623.357 −0.0756392
\(409\) −6786.60 −0.820479 −0.410240 0.911978i \(-0.634555\pi\)
−0.410240 + 0.911978i \(0.634555\pi\)
\(410\) 18231.9 2.19613
\(411\) −2878.88 −0.345511
\(412\) −1401.03 −0.167533
\(413\) 3198.95 0.381138
\(414\) −1974.35 −0.234382
\(415\) −19721.1 −2.33270
\(416\) −8194.51 −0.965791
\(417\) −3008.02 −0.353245
\(418\) 0 0
\(419\) −8453.14 −0.985592 −0.492796 0.870145i \(-0.664025\pi\)
−0.492796 + 0.870145i \(0.664025\pi\)
\(420\) −2474.88 −0.287528
\(421\) −5918.54 −0.685159 −0.342580 0.939489i \(-0.611301\pi\)
−0.342580 + 0.939489i \(0.611301\pi\)
\(422\) −21937.7 −2.53060
\(423\) 3807.51 0.437653
\(424\) −7021.10 −0.804185
\(425\) −1754.28 −0.200223
\(426\) −3717.39 −0.422789
\(427\) −6593.11 −0.747220
\(428\) 10964.9 1.23834
\(429\) 0 0
\(430\) 19857.9 2.22705
\(431\) −9869.66 −1.10303 −0.551514 0.834166i \(-0.685950\pi\)
−0.551514 + 0.834166i \(0.685950\pi\)
\(432\) 1770.75 0.197211
\(433\) 4697.07 0.521309 0.260654 0.965432i \(-0.416062\pi\)
0.260654 + 0.965432i \(0.416062\pi\)
\(434\) −685.645 −0.0758342
\(435\) −2728.82 −0.300774
\(436\) −22307.0 −2.45026
\(437\) −50.0068 −0.00547403
\(438\) 1590.67 0.173528
\(439\) −11226.2 −1.22049 −0.610246 0.792212i \(-0.708929\pi\)
−0.610246 + 0.792212i \(0.708929\pi\)
\(440\) 0 0
\(441\) 6509.90 0.702937
\(442\) −5981.07 −0.643644
\(443\) −18172.0 −1.94893 −0.974467 0.224529i \(-0.927916\pi\)
−0.974467 + 0.224529i \(0.927916\pi\)
\(444\) 345.424 0.0369214
\(445\) −16042.9 −1.70901
\(446\) −9906.25 −1.05174
\(447\) −3162.77 −0.334662
\(448\) 6970.66 0.735118
\(449\) 1078.61 0.113369 0.0566847 0.998392i \(-0.481947\pi\)
0.0566847 + 0.998392i \(0.481947\pi\)
\(450\) 12460.5 1.30532
\(451\) 0 0
\(452\) −10852.7 −1.12936
\(453\) −3645.18 −0.378069
\(454\) −20329.5 −2.10156
\(455\) −10535.9 −1.08556
\(456\) 112.145 0.0115168
\(457\) 7130.96 0.729918 0.364959 0.931024i \(-0.381083\pi\)
0.364959 + 0.931024i \(0.381083\pi\)
\(458\) 10801.7 1.10204
\(459\) −1084.72 −0.110306
\(460\) 3551.88 0.360016
\(461\) −4180.76 −0.422380 −0.211190 0.977445i \(-0.567734\pi\)
−0.211190 + 0.977445i \(0.567734\pi\)
\(462\) 0 0
\(463\) 14236.4 1.42899 0.714495 0.699641i \(-0.246657\pi\)
0.714495 + 0.699641i \(0.246657\pi\)
\(464\) −4126.66 −0.412877
\(465\) −283.599 −0.0282830
\(466\) −21248.4 −2.11226
\(467\) 1646.29 0.163129 0.0815643 0.996668i \(-0.474008\pi\)
0.0815643 + 0.996668i \(0.474008\pi\)
\(468\) 27297.2 2.69619
\(469\) 1080.25 0.106357
\(470\) −10660.4 −1.04623
\(471\) 2892.81 0.283001
\(472\) 10295.8 1.00403
\(473\) 0 0
\(474\) 4180.89 0.405137
\(475\) 315.603 0.0304860
\(476\) 2292.67 0.220765
\(477\) −5937.18 −0.569905
\(478\) −24988.8 −2.39113
\(479\) −8856.11 −0.844773 −0.422386 0.906416i \(-0.638807\pi\)
−0.422386 + 0.906416i \(0.638807\pi\)
\(480\) 2022.03 0.192277
\(481\) 1470.51 0.139396
\(482\) −1759.81 −0.166302
\(483\) −186.282 −0.0175489
\(484\) 0 0
\(485\) 22285.3 2.08644
\(486\) 11665.3 1.08878
\(487\) 4234.58 0.394018 0.197009 0.980402i \(-0.436877\pi\)
0.197009 + 0.980402i \(0.436877\pi\)
\(488\) −21220.0 −1.96841
\(489\) 130.446 0.0120633
\(490\) −18226.6 −1.68040
\(491\) 14812.4 1.36145 0.680726 0.732538i \(-0.261664\pi\)
0.680726 + 0.732538i \(0.261664\pi\)
\(492\) −4456.86 −0.408396
\(493\) 2527.91 0.230936
\(494\) 1076.02 0.0980011
\(495\) 0 0
\(496\) −428.874 −0.0388246
\(497\) 6066.19 0.547497
\(498\) 7502.82 0.675119
\(499\) −9301.35 −0.834440 −0.417220 0.908806i \(-0.636996\pi\)
−0.417220 + 0.908806i \(0.636996\pi\)
\(500\) 4737.18 0.423706
\(501\) −2038.11 −0.181748
\(502\) −27448.6 −2.44042
\(503\) −16109.2 −1.42798 −0.713991 0.700155i \(-0.753114\pi\)
−0.713991 + 0.700155i \(0.753114\pi\)
\(504\) −7225.24 −0.638567
\(505\) 21320.3 1.87870
\(506\) 0 0
\(507\) −4050.05 −0.354771
\(508\) −32297.5 −2.82081
\(509\) 12174.1 1.06013 0.530067 0.847956i \(-0.322167\pi\)
0.530067 + 0.847956i \(0.322167\pi\)
\(510\) 1475.86 0.128141
\(511\) −2595.72 −0.224712
\(512\) 9759.03 0.842368
\(513\) 195.147 0.0167952
\(514\) −11859.8 −1.01773
\(515\) 1471.73 0.125927
\(516\) −4854.32 −0.414146
\(517\) 0 0
\(518\) −877.260 −0.0744104
\(519\) 912.157 0.0771469
\(520\) −33909.8 −2.85970
\(521\) −17043.3 −1.43317 −0.716585 0.697500i \(-0.754296\pi\)
−0.716585 + 0.697500i \(0.754296\pi\)
\(522\) −17955.5 −1.50554
\(523\) −21496.6 −1.79728 −0.898642 0.438684i \(-0.855445\pi\)
−0.898642 + 0.438684i \(0.855445\pi\)
\(524\) 2606.10 0.217267
\(525\) 1175.66 0.0977337
\(526\) 20272.5 1.68047
\(527\) 262.720 0.0217158
\(528\) 0 0
\(529\) −11899.7 −0.978027
\(530\) 16623.1 1.36238
\(531\) 8706.37 0.711533
\(532\) −412.461 −0.0336136
\(533\) −18973.4 −1.54189
\(534\) 6103.47 0.494613
\(535\) −11518.3 −0.930803
\(536\) 3476.79 0.280176
\(537\) 193.148 0.0155214
\(538\) −9012.51 −0.722224
\(539\) 0 0
\(540\) −13860.9 −1.10459
\(541\) 18718.8 1.48759 0.743793 0.668410i \(-0.233025\pi\)
0.743793 + 0.668410i \(0.233025\pi\)
\(542\) 16316.7 1.29310
\(543\) 2139.60 0.169096
\(544\) −1873.16 −0.147631
\(545\) 23432.8 1.84174
\(546\) 4008.33 0.314177
\(547\) 15414.5 1.20490 0.602448 0.798158i \(-0.294192\pi\)
0.602448 + 0.798158i \(0.294192\pi\)
\(548\) 34078.6 2.65651
\(549\) −17944.0 −1.39496
\(550\) 0 0
\(551\) −454.782 −0.0351622
\(552\) −599.551 −0.0462293
\(553\) −6822.56 −0.524638
\(554\) 7212.06 0.553089
\(555\) −362.856 −0.0277520
\(556\) 35607.3 2.71598
\(557\) −7138.14 −0.543003 −0.271502 0.962438i \(-0.587520\pi\)
−0.271502 + 0.962438i \(0.587520\pi\)
\(558\) −1866.08 −0.141572
\(559\) −20665.5 −1.56361
\(560\) 3931.51 0.296673
\(561\) 0 0
\(562\) −7197.72 −0.540245
\(563\) −6563.19 −0.491306 −0.245653 0.969358i \(-0.579002\pi\)
−0.245653 + 0.969358i \(0.579002\pi\)
\(564\) 2605.96 0.194558
\(565\) 11400.4 0.848885
\(566\) −27517.0 −2.04351
\(567\) −5736.12 −0.424858
\(568\) 19524.1 1.44227
\(569\) 17000.2 1.25252 0.626262 0.779613i \(-0.284584\pi\)
0.626262 + 0.779613i \(0.284584\pi\)
\(570\) −265.513 −0.0195108
\(571\) −5317.38 −0.389712 −0.194856 0.980832i \(-0.562424\pi\)
−0.194856 + 0.980832i \(0.562424\pi\)
\(572\) 0 0
\(573\) −4490.42 −0.327382
\(574\) 11318.9 0.823070
\(575\) −1687.28 −0.122373
\(576\) 18971.6 1.37237
\(577\) −20855.3 −1.50471 −0.752353 0.658760i \(-0.771081\pi\)
−0.752353 + 0.658760i \(0.771081\pi\)
\(578\) −1367.20 −0.0983874
\(579\) 4527.52 0.324969
\(580\) 32302.2 2.31255
\(581\) −12243.4 −0.874256
\(582\) −8478.37 −0.603849
\(583\) 0 0
\(584\) −8354.35 −0.591961
\(585\) −28674.8 −2.02659
\(586\) 18914.6 1.33337
\(587\) 12109.2 0.851448 0.425724 0.904853i \(-0.360019\pi\)
0.425724 + 0.904853i \(0.360019\pi\)
\(588\) 4455.56 0.312490
\(589\) −47.2645 −0.00330645
\(590\) −24376.4 −1.70095
\(591\) 4548.50 0.316583
\(592\) −548.729 −0.0380957
\(593\) −18341.2 −1.27012 −0.635060 0.772463i \(-0.719025\pi\)
−0.635060 + 0.772463i \(0.719025\pi\)
\(594\) 0 0
\(595\) −2408.37 −0.165938
\(596\) 37439.1 2.57310
\(597\) −2642.99 −0.181190
\(598\) −5752.66 −0.393384
\(599\) 11973.5 0.816732 0.408366 0.912818i \(-0.366099\pi\)
0.408366 + 0.912818i \(0.366099\pi\)
\(600\) 3783.88 0.257461
\(601\) −4316.20 −0.292948 −0.146474 0.989215i \(-0.546792\pi\)
−0.146474 + 0.989215i \(0.546792\pi\)
\(602\) 12328.3 0.834660
\(603\) 2940.04 0.198553
\(604\) 43149.6 2.90684
\(605\) 0 0
\(606\) −8111.24 −0.543724
\(607\) 23784.3 1.59041 0.795203 0.606344i \(-0.207364\pi\)
0.795203 + 0.606344i \(0.207364\pi\)
\(608\) 336.990 0.0224782
\(609\) −1694.13 −0.112725
\(610\) 50240.2 3.33470
\(611\) 11093.9 0.734553
\(612\) 6239.80 0.412139
\(613\) −20172.2 −1.32912 −0.664559 0.747236i \(-0.731380\pi\)
−0.664559 + 0.747236i \(0.731380\pi\)
\(614\) 41063.2 2.69898
\(615\) 4681.78 0.306971
\(616\) 0 0
\(617\) 27515.2 1.79533 0.897667 0.440674i \(-0.145261\pi\)
0.897667 + 0.440674i \(0.145261\pi\)
\(618\) −559.916 −0.0364452
\(619\) 16484.3 1.07037 0.535187 0.844734i \(-0.320241\pi\)
0.535187 + 0.844734i \(0.320241\pi\)
\(620\) 3357.09 0.217458
\(621\) −1043.30 −0.0674173
\(622\) −34397.9 −2.21741
\(623\) −9959.91 −0.640506
\(624\) 2507.23 0.160848
\(625\) −17875.3 −1.14402
\(626\) 506.362 0.0323296
\(627\) 0 0
\(628\) −34243.4 −2.17590
\(629\) 336.141 0.0213081
\(630\) 17106.4 1.08180
\(631\) −2385.42 −0.150494 −0.0752472 0.997165i \(-0.523975\pi\)
−0.0752472 + 0.997165i \(0.523975\pi\)
\(632\) −21958.5 −1.38206
\(633\) −5633.39 −0.353723
\(634\) 37171.7 2.32851
\(635\) 33927.4 2.12026
\(636\) −4063.57 −0.253351
\(637\) 18967.9 1.17980
\(638\) 0 0
\(639\) 16509.9 1.02210
\(640\) −39801.5 −2.45827
\(641\) −3037.05 −0.187139 −0.0935697 0.995613i \(-0.529828\pi\)
−0.0935697 + 0.995613i \(0.529828\pi\)
\(642\) 4382.09 0.269389
\(643\) 25746.1 1.57904 0.789522 0.613722i \(-0.210328\pi\)
0.789522 + 0.613722i \(0.210328\pi\)
\(644\) 2205.11 0.134928
\(645\) 5099.30 0.311294
\(646\) 245.965 0.0149804
\(647\) 9022.58 0.548244 0.274122 0.961695i \(-0.411613\pi\)
0.274122 + 0.961695i \(0.411613\pi\)
\(648\) −18461.7 −1.11921
\(649\) 0 0
\(650\) 36306.1 2.19083
\(651\) −176.067 −0.0106000
\(652\) −1544.14 −0.0927505
\(653\) 4560.66 0.273312 0.136656 0.990619i \(-0.456365\pi\)
0.136656 + 0.990619i \(0.456365\pi\)
\(654\) −8914.90 −0.533028
\(655\) −2737.62 −0.163310
\(656\) 7080.02 0.421385
\(657\) −7064.60 −0.419508
\(658\) −6618.27 −0.392108
\(659\) −6296.60 −0.372201 −0.186101 0.982531i \(-0.559585\pi\)
−0.186101 + 0.982531i \(0.559585\pi\)
\(660\) 0 0
\(661\) 17023.8 1.00174 0.500870 0.865522i \(-0.333013\pi\)
0.500870 + 0.865522i \(0.333013\pi\)
\(662\) 21758.9 1.27747
\(663\) −1535.88 −0.0899677
\(664\) −39405.5 −2.30306
\(665\) 433.276 0.0252658
\(666\) −2387.58 −0.138914
\(667\) 2431.37 0.141144
\(668\) 24126.0 1.39740
\(669\) −2543.82 −0.147010
\(670\) −8231.62 −0.474650
\(671\) 0 0
\(672\) 1255.34 0.0720620
\(673\) 18760.0 1.07451 0.537256 0.843419i \(-0.319461\pi\)
0.537256 + 0.843419i \(0.319461\pi\)
\(674\) 47315.5 2.70404
\(675\) 6584.46 0.375461
\(676\) 47942.2 2.72771
\(677\) −17467.6 −0.991632 −0.495816 0.868428i \(-0.665131\pi\)
−0.495816 + 0.868428i \(0.665131\pi\)
\(678\) −4337.26 −0.245680
\(679\) 13835.4 0.781963
\(680\) −7751.34 −0.437133
\(681\) −5220.40 −0.293754
\(682\) 0 0
\(683\) −13898.3 −0.778630 −0.389315 0.921105i \(-0.627288\pi\)
−0.389315 + 0.921105i \(0.627288\pi\)
\(684\) −1122.57 −0.0627522
\(685\) −35798.4 −1.99677
\(686\) −26533.4 −1.47675
\(687\) 2773.78 0.154041
\(688\) 7711.42 0.427318
\(689\) −17299.1 −0.956524
\(690\) 1419.49 0.0783177
\(691\) 21052.6 1.15901 0.579507 0.814967i \(-0.303245\pi\)
0.579507 + 0.814967i \(0.303245\pi\)
\(692\) −10797.6 −0.593156
\(693\) 0 0
\(694\) −42623.8 −2.33138
\(695\) −37404.2 −2.04147
\(696\) −5452.56 −0.296952
\(697\) −4337.08 −0.235694
\(698\) 18083.5 0.980619
\(699\) −5456.37 −0.295249
\(700\) −13916.9 −0.751440
\(701\) 1890.63 0.101866 0.0509331 0.998702i \(-0.483780\pi\)
0.0509331 + 0.998702i \(0.483780\pi\)
\(702\) 22449.2 1.20697
\(703\) −60.4733 −0.00324437
\(704\) 0 0
\(705\) −2737.48 −0.146240
\(706\) 30390.7 1.62007
\(707\) 13236.3 0.704104
\(708\) 5958.88 0.316311
\(709\) −11087.8 −0.587323 −0.293662 0.955909i \(-0.594874\pi\)
−0.293662 + 0.955909i \(0.594874\pi\)
\(710\) −46225.1 −2.44337
\(711\) −18568.5 −0.979428
\(712\) −32056.0 −1.68729
\(713\) 252.686 0.0132723
\(714\) 916.254 0.0480251
\(715\) 0 0
\(716\) −2286.38 −0.119338
\(717\) −6416.86 −0.334229
\(718\) −14999.9 −0.779654
\(719\) 17864.1 0.926591 0.463296 0.886204i \(-0.346667\pi\)
0.463296 + 0.886204i \(0.346667\pi\)
\(720\) 10700.1 0.553848
\(721\) 913.694 0.0471952
\(722\) 32404.2 1.67030
\(723\) −451.902 −0.0232454
\(724\) −25327.5 −1.30012
\(725\) −15344.8 −0.786058
\(726\) 0 0
\(727\) −31914.5 −1.62812 −0.814060 0.580781i \(-0.802747\pi\)
−0.814060 + 0.580781i \(0.802747\pi\)
\(728\) −21052.2 −1.07177
\(729\) −13518.7 −0.686823
\(730\) 19779.7 1.00285
\(731\) −4723.86 −0.239013
\(732\) −12281.4 −0.620127
\(733\) 8147.34 0.410544 0.205272 0.978705i \(-0.434192\pi\)
0.205272 + 0.978705i \(0.434192\pi\)
\(734\) 24512.5 1.23266
\(735\) −4680.41 −0.234884
\(736\) −1801.63 −0.0902293
\(737\) 0 0
\(738\) 30805.9 1.53656
\(739\) 36042.0 1.79408 0.897041 0.441948i \(-0.145712\pi\)
0.897041 + 0.441948i \(0.145712\pi\)
\(740\) 4295.29 0.213376
\(741\) 276.312 0.0136985
\(742\) 10320.1 0.510597
\(743\) 23296.4 1.15028 0.575142 0.818053i \(-0.304947\pi\)
0.575142 + 0.818053i \(0.304947\pi\)
\(744\) −566.672 −0.0279237
\(745\) −39328.5 −1.93408
\(746\) 2613.70 0.128277
\(747\) −33322.1 −1.63212
\(748\) 0 0
\(749\) −7150.89 −0.348849
\(750\) 1893.19 0.0921729
\(751\) −21029.5 −1.02181 −0.510903 0.859638i \(-0.670689\pi\)
−0.510903 + 0.859638i \(0.670689\pi\)
\(752\) −4139.75 −0.200746
\(753\) −7048.53 −0.341119
\(754\) −52317.0 −2.52689
\(755\) −45327.2 −2.18493
\(756\) −8605.23 −0.413980
\(757\) 13708.1 0.658165 0.329082 0.944301i \(-0.393261\pi\)
0.329082 + 0.944301i \(0.393261\pi\)
\(758\) 27860.3 1.33500
\(759\) 0 0
\(760\) 1394.50 0.0665578
\(761\) −1992.12 −0.0948941 −0.0474471 0.998874i \(-0.515109\pi\)
−0.0474471 + 0.998874i \(0.515109\pi\)
\(762\) −12907.6 −0.613637
\(763\) 14547.7 0.690253
\(764\) 53155.2 2.51713
\(765\) −6554.69 −0.309785
\(766\) −29653.3 −1.39872
\(767\) 25367.7 1.19423
\(768\) 7918.74 0.372061
\(769\) 29040.4 1.36180 0.680899 0.732377i \(-0.261589\pi\)
0.680899 + 0.732377i \(0.261589\pi\)
\(770\) 0 0
\(771\) −3045.48 −0.142257
\(772\) −53594.2 −2.49857
\(773\) 33225.6 1.54598 0.772991 0.634418i \(-0.218760\pi\)
0.772991 + 0.634418i \(0.218760\pi\)
\(774\) 33553.2 1.55820
\(775\) −1594.75 −0.0739163
\(776\) 44529.3 2.05993
\(777\) −225.271 −0.0104010
\(778\) −46314.3 −2.13425
\(779\) 780.261 0.0358867
\(780\) −19625.8 −0.900920
\(781\) 0 0
\(782\) −1314.98 −0.0601326
\(783\) −9488.18 −0.433052
\(784\) −7077.96 −0.322429
\(785\) 35971.6 1.63552
\(786\) 1041.52 0.0472643
\(787\) −7750.27 −0.351038 −0.175519 0.984476i \(-0.556160\pi\)
−0.175519 + 0.984476i \(0.556160\pi\)
\(788\) −53842.7 −2.43409
\(789\) 5205.78 0.234893
\(790\) 51988.7 2.34136
\(791\) 7077.72 0.318148
\(792\) 0 0
\(793\) −52283.5 −2.34129
\(794\) 57112.7 2.55271
\(795\) 4268.64 0.190432
\(796\) 31286.2 1.39310
\(797\) −2604.81 −0.115768 −0.0578841 0.998323i \(-0.518435\pi\)
−0.0578841 + 0.998323i \(0.518435\pi\)
\(798\) −164.838 −0.00731230
\(799\) 2535.93 0.112284
\(800\) 11370.4 0.502505
\(801\) −27107.2 −1.19574
\(802\) 37405.7 1.64693
\(803\) 0 0
\(804\) 2012.25 0.0882667
\(805\) −2316.39 −0.101419
\(806\) −5437.18 −0.237613
\(807\) −2314.32 −0.100952
\(808\) 42601.0 1.85483
\(809\) −4489.12 −0.195091 −0.0975457 0.995231i \(-0.531099\pi\)
−0.0975457 + 0.995231i \(0.531099\pi\)
\(810\) 43709.9 1.89606
\(811\) 24225.5 1.04892 0.524460 0.851435i \(-0.324267\pi\)
0.524460 + 0.851435i \(0.324267\pi\)
\(812\) 20054.1 0.866703
\(813\) 4189.96 0.180748
\(814\) 0 0
\(815\) 1622.07 0.0697161
\(816\) 573.120 0.0245873
\(817\) 849.845 0.0363920
\(818\) 32106.0 1.37232
\(819\) −17802.1 −0.759532
\(820\) −55420.3 −2.36020
\(821\) −16743.1 −0.711739 −0.355870 0.934536i \(-0.615815\pi\)
−0.355870 + 0.934536i \(0.615815\pi\)
\(822\) 13619.4 0.577896
\(823\) −21611.2 −0.915331 −0.457665 0.889124i \(-0.651314\pi\)
−0.457665 + 0.889124i \(0.651314\pi\)
\(824\) 2940.73 0.124327
\(825\) 0 0
\(826\) −15133.5 −0.637486
\(827\) 5126.94 0.215576 0.107788 0.994174i \(-0.465623\pi\)
0.107788 + 0.994174i \(0.465623\pi\)
\(828\) 6001.50 0.251892
\(829\) −16626.3 −0.696570 −0.348285 0.937389i \(-0.613236\pi\)
−0.348285 + 0.937389i \(0.613236\pi\)
\(830\) 93296.3 3.90164
\(831\) 1851.98 0.0773100
\(832\) 55277.5 2.30337
\(833\) 4335.82 0.180345
\(834\) 14230.3 0.590833
\(835\) −25343.5 −1.05036
\(836\) 0 0
\(837\) −986.084 −0.0407217
\(838\) 39990.0 1.64849
\(839\) 3374.89 0.138873 0.0694363 0.997586i \(-0.477880\pi\)
0.0694363 + 0.997586i \(0.477880\pi\)
\(840\) 5194.72 0.213375
\(841\) −2277.17 −0.0933688
\(842\) 27999.4 1.14599
\(843\) −1848.30 −0.0755147
\(844\) 66684.9 2.71966
\(845\) −50361.7 −2.05029
\(846\) −18012.5 −0.732012
\(847\) 0 0
\(848\) 6455.26 0.261409
\(849\) −7066.10 −0.285639
\(850\) 8299.11 0.334891
\(851\) 323.303 0.0130231
\(852\) 11299.9 0.454375
\(853\) −8375.87 −0.336207 −0.168103 0.985769i \(-0.553764\pi\)
−0.168103 + 0.985769i \(0.553764\pi\)
\(854\) 31190.6 1.24979
\(855\) 1179.22 0.0471678
\(856\) −23015.2 −0.918975
\(857\) −44120.2 −1.75860 −0.879298 0.476273i \(-0.841987\pi\)
−0.879298 + 0.476273i \(0.841987\pi\)
\(858\) 0 0
\(859\) 16898.3 0.671203 0.335601 0.942004i \(-0.391060\pi\)
0.335601 + 0.942004i \(0.391060\pi\)
\(860\) −60362.7 −2.39343
\(861\) 2906.58 0.115048
\(862\) 46691.2 1.84491
\(863\) 4152.99 0.163812 0.0819058 0.996640i \(-0.473899\pi\)
0.0819058 + 0.996640i \(0.473899\pi\)
\(864\) 7030.67 0.276838
\(865\) 11342.5 0.445847
\(866\) −22220.8 −0.871933
\(867\) −351.082 −0.0137525
\(868\) 2084.18 0.0814996
\(869\) 0 0
\(870\) 12909.4 0.503070
\(871\) 8566.39 0.333250
\(872\) 46821.9 1.81834
\(873\) 37654.8 1.45982
\(874\) 236.572 0.00915578
\(875\) −3089.40 −0.119361
\(876\) −4835.21 −0.186492
\(877\) −25779.1 −0.992585 −0.496293 0.868155i \(-0.665306\pi\)
−0.496293 + 0.868155i \(0.665306\pi\)
\(878\) 53108.6 2.04138
\(879\) 4857.08 0.186377
\(880\) 0 0
\(881\) 41808.9 1.59884 0.799420 0.600773i \(-0.205140\pi\)
0.799420 + 0.600773i \(0.205140\pi\)
\(882\) −30797.0 −1.17572
\(883\) −7314.84 −0.278781 −0.139391 0.990237i \(-0.544514\pi\)
−0.139391 + 0.990237i \(0.544514\pi\)
\(884\) 18180.9 0.691730
\(885\) −6259.60 −0.237756
\(886\) 85967.9 3.25976
\(887\) −7807.55 −0.295549 −0.147775 0.989021i \(-0.547211\pi\)
−0.147775 + 0.989021i \(0.547211\pi\)
\(888\) −725.037 −0.0273994
\(889\) 21063.1 0.794639
\(890\) 75895.7 2.85846
\(891\) 0 0
\(892\) 30112.4 1.13031
\(893\) −456.225 −0.0170963
\(894\) 14962.4 0.559751
\(895\) 2401.77 0.0897008
\(896\) −24709.9 −0.921316
\(897\) −1477.22 −0.0549867
\(898\) −5102.68 −0.189620
\(899\) 2298.03 0.0852543
\(900\) −37876.6 −1.40284
\(901\) −3954.36 −0.146214
\(902\) 0 0
\(903\) 3165.79 0.116668
\(904\) 22779.7 0.838099
\(905\) 26605.6 0.977239
\(906\) 17244.6 0.632353
\(907\) −15301.5 −0.560175 −0.280087 0.959975i \(-0.590363\pi\)
−0.280087 + 0.959975i \(0.590363\pi\)
\(908\) 61796.2 2.25857
\(909\) 36024.3 1.31447
\(910\) 49843.0 1.81569
\(911\) −19515.5 −0.709744 −0.354872 0.934915i \(-0.615475\pi\)
−0.354872 + 0.934915i \(0.615475\pi\)
\(912\) −103.107 −0.00374366
\(913\) 0 0
\(914\) −33735.1 −1.22085
\(915\) 12901.2 0.466120
\(916\) −32834.4 −1.18437
\(917\) −1699.59 −0.0612056
\(918\) 5131.60 0.184497
\(919\) −7054.60 −0.253221 −0.126610 0.991953i \(-0.540410\pi\)
−0.126610 + 0.991953i \(0.540410\pi\)
\(920\) −7455.32 −0.267168
\(921\) 10544.6 0.377260
\(922\) 19778.3 0.706467
\(923\) 48105.0 1.71549
\(924\) 0 0
\(925\) −2040.43 −0.0725286
\(926\) −67349.4 −2.39011
\(927\) 2486.74 0.0881071
\(928\) −16384.7 −0.579584
\(929\) −12597.3 −0.444891 −0.222445 0.974945i \(-0.571404\pi\)
−0.222445 + 0.974945i \(0.571404\pi\)
\(930\) 1341.65 0.0473058
\(931\) −780.034 −0.0274593
\(932\) 64589.6 2.27007
\(933\) −8833.04 −0.309947
\(934\) −7788.23 −0.272847
\(935\) 0 0
\(936\) −57296.3 −2.00084
\(937\) 18890.2 0.658608 0.329304 0.944224i \(-0.393186\pi\)
0.329304 + 0.944224i \(0.393186\pi\)
\(938\) −5110.43 −0.177891
\(939\) 130.029 0.00451898
\(940\) 32404.7 1.12439
\(941\) 31591.7 1.09443 0.547216 0.836991i \(-0.315688\pi\)
0.547216 + 0.836991i \(0.315688\pi\)
\(942\) −13685.2 −0.473343
\(943\) −4171.45 −0.144052
\(944\) −9466.09 −0.326372
\(945\) 9039.50 0.311169
\(946\) 0 0
\(947\) 48580.1 1.66699 0.833495 0.552527i \(-0.186336\pi\)
0.833495 + 0.552527i \(0.186336\pi\)
\(948\) −12708.8 −0.435404
\(949\) −20584.1 −0.704098
\(950\) −1493.05 −0.0509904
\(951\) 9545.32 0.325476
\(952\) −4812.26 −0.163830
\(953\) 30330.4 1.03095 0.515477 0.856904i \(-0.327615\pi\)
0.515477 + 0.856904i \(0.327615\pi\)
\(954\) 28087.5 0.953215
\(955\) −55837.7 −1.89200
\(956\) 75959.3 2.56977
\(957\) 0 0
\(958\) 41896.4 1.41295
\(959\) −22224.7 −0.748355
\(960\) −13640.0 −0.458571
\(961\) −29552.2 −0.991983
\(962\) −6956.69 −0.233152
\(963\) −19462.1 −0.651254
\(964\) 5349.37 0.178726
\(965\) 56298.9 1.87806
\(966\) 881.262 0.0293521
\(967\) −3638.39 −0.120996 −0.0604978 0.998168i \(-0.519269\pi\)
−0.0604978 + 0.998168i \(0.519269\pi\)
\(968\) 0 0
\(969\) 63.1613 0.00209395
\(970\) −105427. −3.48976
\(971\) 45444.2 1.50193 0.750964 0.660343i \(-0.229589\pi\)
0.750964 + 0.660343i \(0.229589\pi\)
\(972\) −35459.5 −1.17013
\(973\) −23221.6 −0.765108
\(974\) −20032.9 −0.659030
\(975\) 9323.04 0.306232
\(976\) 19509.8 0.639851
\(977\) −57757.6 −1.89133 −0.945666 0.325140i \(-0.894588\pi\)
−0.945666 + 0.325140i \(0.894588\pi\)
\(978\) −617.111 −0.0201769
\(979\) 0 0
\(980\) 55404.1 1.80594
\(981\) 39593.6 1.28861
\(982\) −70074.2 −2.27715
\(983\) 20371.0 0.660971 0.330486 0.943811i \(-0.392787\pi\)
0.330486 + 0.943811i \(0.392787\pi\)
\(984\) 9354.85 0.303071
\(985\) 56559.9 1.82959
\(986\) −11959.0 −0.386260
\(987\) −1699.50 −0.0548083
\(988\) −3270.82 −0.105323
\(989\) −4543.46 −0.146080
\(990\) 0 0
\(991\) −26839.8 −0.860336 −0.430168 0.902749i \(-0.641546\pi\)
−0.430168 + 0.902749i \(0.641546\pi\)
\(992\) −1702.82 −0.0545007
\(993\) 5587.45 0.178562
\(994\) −28697.8 −0.915735
\(995\) −32865.1 −1.04713
\(996\) −22806.6 −0.725556
\(997\) −7516.18 −0.238756 −0.119378 0.992849i \(-0.538090\pi\)
−0.119378 + 0.992849i \(0.538090\pi\)
\(998\) 44002.7 1.39567
\(999\) −1261.66 −0.0399572
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2057.4.a.s.1.5 44
11.7 odd 10 187.4.g.a.137.20 yes 88
11.8 odd 10 187.4.g.a.86.20 88
11.10 odd 2 2057.4.a.t.1.40 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
187.4.g.a.86.20 88 11.8 odd 10
187.4.g.a.137.20 yes 88 11.7 odd 10
2057.4.a.s.1.5 44 1.1 even 1 trivial
2057.4.a.t.1.40 44 11.10 odd 2