Properties

Label 2057.4.a.s.1.18
Level $2057$
Weight $4$
Character 2057.1
Self dual yes
Analytic conductor $121.367$
Analytic rank $1$
Dimension $44$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2057,4,Mod(1,2057)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2057.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2057, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2057 = 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2057.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,-1,-28,139,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(121.366928882\)
Analytic rank: \(1\)
Dimension: \(44\)
Twist minimal: no (minimal twist has level 187)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 2057.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.49542 q^{2} -4.41660 q^{3} -5.76373 q^{4} -15.6043 q^{5} +6.60466 q^{6} +31.8747 q^{7} +20.5825 q^{8} -7.49362 q^{9} +23.3349 q^{10} +25.4561 q^{12} +21.7566 q^{13} -47.6660 q^{14} +68.9180 q^{15} +15.3304 q^{16} -17.0000 q^{17} +11.2061 q^{18} -106.640 q^{19} +89.9389 q^{20} -140.778 q^{21} -202.129 q^{23} -90.9048 q^{24} +118.494 q^{25} -32.5353 q^{26} +152.345 q^{27} -183.717 q^{28} +133.356 q^{29} -103.061 q^{30} +96.7146 q^{31} -187.585 q^{32} +25.4221 q^{34} -497.382 q^{35} +43.1912 q^{36} -223.110 q^{37} +159.472 q^{38} -96.0905 q^{39} -321.176 q^{40} +230.504 q^{41} +210.522 q^{42} -419.986 q^{43} +116.933 q^{45} +302.267 q^{46} -136.012 q^{47} -67.7082 q^{48} +672.997 q^{49} -177.198 q^{50} +75.0822 q^{51} -125.399 q^{52} +685.851 q^{53} -227.819 q^{54} +656.062 q^{56} +470.987 q^{57} -199.423 q^{58} -155.901 q^{59} -397.224 q^{60} +377.256 q^{61} -144.629 q^{62} -238.857 q^{63} +157.875 q^{64} -339.497 q^{65} +5.55804 q^{67} +97.9834 q^{68} +892.722 q^{69} +743.794 q^{70} +394.434 q^{71} -154.238 q^{72} +333.509 q^{73} +333.642 q^{74} -523.341 q^{75} +614.645 q^{76} +143.695 q^{78} -449.839 q^{79} -239.220 q^{80} -470.518 q^{81} -344.700 q^{82} -200.319 q^{83} +811.406 q^{84} +265.273 q^{85} +628.054 q^{86} -588.981 q^{87} +1554.53 q^{89} -174.863 q^{90} +693.487 q^{91} +1165.01 q^{92} -427.150 q^{93} +203.395 q^{94} +1664.04 q^{95} +828.490 q^{96} -1688.97 q^{97} -1006.41 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - q^{2} - 28 q^{3} + 139 q^{4} - 24 q^{5} + 24 q^{6} + 2 q^{7} + 63 q^{8} + 356 q^{9} + 65 q^{10} - 337 q^{12} - 12 q^{13} - 151 q^{14} - 320 q^{15} + 311 q^{16} - 748 q^{17} + 55 q^{18} + 36 q^{19}+ \cdots - 2302 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.49542 −0.528710 −0.264355 0.964425i \(-0.585159\pi\)
−0.264355 + 0.964425i \(0.585159\pi\)
\(3\) −4.41660 −0.849976 −0.424988 0.905199i \(-0.639722\pi\)
−0.424988 + 0.905199i \(0.639722\pi\)
\(4\) −5.76373 −0.720466
\(5\) −15.6043 −1.39569 −0.697845 0.716249i \(-0.745858\pi\)
−0.697845 + 0.716249i \(0.745858\pi\)
\(6\) 6.60466 0.449390
\(7\) 31.8747 1.72107 0.860536 0.509389i \(-0.170129\pi\)
0.860536 + 0.509389i \(0.170129\pi\)
\(8\) 20.5825 0.909627
\(9\) −7.49362 −0.277542
\(10\) 23.3349 0.737915
\(11\) 0 0
\(12\) 25.4561 0.612378
\(13\) 21.7566 0.464170 0.232085 0.972696i \(-0.425445\pi\)
0.232085 + 0.972696i \(0.425445\pi\)
\(14\) −47.6660 −0.909948
\(15\) 68.9180 1.18630
\(16\) 15.3304 0.239537
\(17\) −17.0000 −0.242536
\(18\) 11.2061 0.146739
\(19\) −106.640 −1.28763 −0.643814 0.765182i \(-0.722649\pi\)
−0.643814 + 0.765182i \(0.722649\pi\)
\(20\) 89.9389 1.00555
\(21\) −140.778 −1.46287
\(22\) 0 0
\(23\) −202.129 −1.83247 −0.916233 0.400645i \(-0.868786\pi\)
−0.916233 + 0.400645i \(0.868786\pi\)
\(24\) −90.9048 −0.773161
\(25\) 118.494 0.947951
\(26\) −32.5353 −0.245411
\(27\) 152.345 1.08588
\(28\) −183.717 −1.23997
\(29\) 133.356 0.853917 0.426959 0.904271i \(-0.359585\pi\)
0.426959 + 0.904271i \(0.359585\pi\)
\(30\) −103.061 −0.627210
\(31\) 96.7146 0.560337 0.280169 0.959951i \(-0.409610\pi\)
0.280169 + 0.959951i \(0.409610\pi\)
\(32\) −187.585 −1.03627
\(33\) 0 0
\(34\) 25.4221 0.128231
\(35\) −497.382 −2.40208
\(36\) 43.1912 0.199959
\(37\) −223.110 −0.991325 −0.495662 0.868515i \(-0.665075\pi\)
−0.495662 + 0.868515i \(0.665075\pi\)
\(38\) 159.472 0.680782
\(39\) −96.0905 −0.394533
\(40\) −321.176 −1.26956
\(41\) 230.504 0.878018 0.439009 0.898483i \(-0.355330\pi\)
0.439009 + 0.898483i \(0.355330\pi\)
\(42\) 210.522 0.773434
\(43\) −419.986 −1.48947 −0.744736 0.667360i \(-0.767424\pi\)
−0.744736 + 0.667360i \(0.767424\pi\)
\(44\) 0 0
\(45\) 116.933 0.387362
\(46\) 302.267 0.968843
\(47\) −136.012 −0.422116 −0.211058 0.977474i \(-0.567691\pi\)
−0.211058 + 0.977474i \(0.567691\pi\)
\(48\) −67.7082 −0.203601
\(49\) 672.997 1.96209
\(50\) −177.198 −0.501191
\(51\) 75.0822 0.206149
\(52\) −125.399 −0.334419
\(53\) 685.851 1.77753 0.888763 0.458367i \(-0.151565\pi\)
0.888763 + 0.458367i \(0.151565\pi\)
\(54\) −227.819 −0.574115
\(55\) 0 0
\(56\) 656.062 1.56553
\(57\) 470.987 1.09445
\(58\) −199.423 −0.451474
\(59\) −155.901 −0.344009 −0.172005 0.985096i \(-0.555024\pi\)
−0.172005 + 0.985096i \(0.555024\pi\)
\(60\) −397.224 −0.854691
\(61\) 377.256 0.791847 0.395924 0.918283i \(-0.370424\pi\)
0.395924 + 0.918283i \(0.370424\pi\)
\(62\) −144.629 −0.296256
\(63\) −238.857 −0.477669
\(64\) 157.875 0.308350
\(65\) −339.497 −0.647837
\(66\) 0 0
\(67\) 5.55804 0.0101347 0.00506733 0.999987i \(-0.498387\pi\)
0.00506733 + 0.999987i \(0.498387\pi\)
\(68\) 97.9834 0.174739
\(69\) 892.722 1.55755
\(70\) 743.794 1.27001
\(71\) 394.434 0.659305 0.329653 0.944102i \(-0.393068\pi\)
0.329653 + 0.944102i \(0.393068\pi\)
\(72\) −154.238 −0.252459
\(73\) 333.509 0.534716 0.267358 0.963597i \(-0.413849\pi\)
0.267358 + 0.963597i \(0.413849\pi\)
\(74\) 333.642 0.524123
\(75\) −523.341 −0.805735
\(76\) 614.645 0.927692
\(77\) 0 0
\(78\) 143.695 0.208593
\(79\) −449.839 −0.640644 −0.320322 0.947309i \(-0.603791\pi\)
−0.320322 + 0.947309i \(0.603791\pi\)
\(80\) −239.220 −0.334320
\(81\) −470.518 −0.645429
\(82\) −344.700 −0.464217
\(83\) −200.319 −0.264915 −0.132457 0.991189i \(-0.542287\pi\)
−0.132457 + 0.991189i \(0.542287\pi\)
\(84\) 811.406 1.05395
\(85\) 265.273 0.338505
\(86\) 628.054 0.787498
\(87\) −588.981 −0.725809
\(88\) 0 0
\(89\) 1554.53 1.85146 0.925731 0.378183i \(-0.123451\pi\)
0.925731 + 0.378183i \(0.123451\pi\)
\(90\) −174.863 −0.204802
\(91\) 693.487 0.798870
\(92\) 1165.01 1.32023
\(93\) −427.150 −0.476273
\(94\) 203.395 0.223177
\(95\) 1664.04 1.79713
\(96\) 828.490 0.880807
\(97\) −1688.97 −1.76793 −0.883963 0.467556i \(-0.845135\pi\)
−0.883963 + 0.467556i \(0.845135\pi\)
\(98\) −1006.41 −1.03738
\(99\) 0 0
\(100\) −682.967 −0.682967
\(101\) 1452.13 1.43062 0.715308 0.698810i \(-0.246287\pi\)
0.715308 + 0.698810i \(0.246287\pi\)
\(102\) −112.279 −0.108993
\(103\) −1068.18 −1.02185 −0.510925 0.859625i \(-0.670697\pi\)
−0.510925 + 0.859625i \(0.670697\pi\)
\(104\) 447.806 0.422222
\(105\) 2196.74 2.04171
\(106\) −1025.63 −0.939795
\(107\) 473.070 0.427415 0.213707 0.976898i \(-0.431446\pi\)
0.213707 + 0.976898i \(0.431446\pi\)
\(108\) −878.073 −0.782339
\(109\) 1151.12 1.01153 0.505767 0.862670i \(-0.331209\pi\)
0.505767 + 0.862670i \(0.331209\pi\)
\(110\) 0 0
\(111\) 985.387 0.842602
\(112\) 488.652 0.412261
\(113\) 871.025 0.725125 0.362563 0.931959i \(-0.381902\pi\)
0.362563 + 0.931959i \(0.381902\pi\)
\(114\) −704.322 −0.578648
\(115\) 3154.07 2.55756
\(116\) −768.628 −0.615218
\(117\) −163.036 −0.128826
\(118\) 233.137 0.181881
\(119\) −541.870 −0.417421
\(120\) 1418.50 1.07909
\(121\) 0 0
\(122\) −564.155 −0.418657
\(123\) −1018.05 −0.746294
\(124\) −557.437 −0.403704
\(125\) 101.523 0.0726438
\(126\) 357.191 0.252548
\(127\) 1229.37 0.858967 0.429483 0.903075i \(-0.358696\pi\)
0.429483 + 0.903075i \(0.358696\pi\)
\(128\) 1264.59 0.873245
\(129\) 1854.91 1.26601
\(130\) 507.690 0.342518
\(131\) −2071.99 −1.38191 −0.690956 0.722897i \(-0.742810\pi\)
−0.690956 + 0.722897i \(0.742810\pi\)
\(132\) 0 0
\(133\) −3399.13 −2.21610
\(134\) −8.31159 −0.00535830
\(135\) −2377.23 −1.51555
\(136\) −349.903 −0.220617
\(137\) 2397.90 1.49538 0.747688 0.664050i \(-0.231164\pi\)
0.747688 + 0.664050i \(0.231164\pi\)
\(138\) −1334.99 −0.823493
\(139\) 1097.10 0.669461 0.334730 0.942314i \(-0.391355\pi\)
0.334730 + 0.942314i \(0.391355\pi\)
\(140\) 2866.78 1.73062
\(141\) 600.712 0.358788
\(142\) −589.843 −0.348581
\(143\) 0 0
\(144\) −114.880 −0.0664816
\(145\) −2080.93 −1.19180
\(146\) −498.735 −0.282709
\(147\) −2972.36 −1.66773
\(148\) 1285.94 0.714216
\(149\) 2879.54 1.58323 0.791614 0.611021i \(-0.209241\pi\)
0.791614 + 0.611021i \(0.209241\pi\)
\(150\) 782.612 0.426000
\(151\) −1623.91 −0.875178 −0.437589 0.899175i \(-0.644167\pi\)
−0.437589 + 0.899175i \(0.644167\pi\)
\(152\) −2194.92 −1.17126
\(153\) 127.392 0.0673137
\(154\) 0 0
\(155\) −1509.16 −0.782057
\(156\) 553.839 0.284248
\(157\) 1411.85 0.717696 0.358848 0.933396i \(-0.383170\pi\)
0.358848 + 0.933396i \(0.383170\pi\)
\(158\) 672.697 0.338715
\(159\) −3029.13 −1.51085
\(160\) 2927.14 1.44632
\(161\) −6442.79 −3.15381
\(162\) 703.620 0.341245
\(163\) 49.2889 0.0236847 0.0118423 0.999930i \(-0.496230\pi\)
0.0118423 + 0.999930i \(0.496230\pi\)
\(164\) −1328.57 −0.632582
\(165\) 0 0
\(166\) 299.561 0.140063
\(167\) −2190.40 −1.01496 −0.507479 0.861664i \(-0.669423\pi\)
−0.507479 + 0.861664i \(0.669423\pi\)
\(168\) −2897.56 −1.33067
\(169\) −1723.65 −0.784546
\(170\) −396.694 −0.178971
\(171\) 799.121 0.357370
\(172\) 2420.68 1.07311
\(173\) −283.327 −0.124514 −0.0622571 0.998060i \(-0.519830\pi\)
−0.0622571 + 0.998060i \(0.519830\pi\)
\(174\) 880.772 0.383742
\(175\) 3776.96 1.63149
\(176\) 0 0
\(177\) 688.552 0.292400
\(178\) −2324.67 −0.978886
\(179\) 1177.37 0.491625 0.245813 0.969317i \(-0.420945\pi\)
0.245813 + 0.969317i \(0.420945\pi\)
\(180\) −673.968 −0.279081
\(181\) −1795.12 −0.737183 −0.368592 0.929591i \(-0.620160\pi\)
−0.368592 + 0.929591i \(0.620160\pi\)
\(182\) −1037.05 −0.422370
\(183\) −1666.19 −0.673051
\(184\) −4160.31 −1.66686
\(185\) 3481.47 1.38358
\(186\) 638.767 0.251810
\(187\) 0 0
\(188\) 783.938 0.304120
\(189\) 4855.94 1.86888
\(190\) −2488.44 −0.950160
\(191\) −1754.23 −0.664565 −0.332282 0.943180i \(-0.607819\pi\)
−0.332282 + 0.943180i \(0.607819\pi\)
\(192\) −697.273 −0.262090
\(193\) −2883.02 −1.07526 −0.537628 0.843182i \(-0.680680\pi\)
−0.537628 + 0.843182i \(0.680680\pi\)
\(194\) 2525.71 0.934720
\(195\) 1499.42 0.550646
\(196\) −3878.97 −1.41362
\(197\) −554.915 −0.200691 −0.100345 0.994953i \(-0.531995\pi\)
−0.100345 + 0.994953i \(0.531995\pi\)
\(198\) 0 0
\(199\) 2232.48 0.795259 0.397629 0.917546i \(-0.369833\pi\)
0.397629 + 0.917546i \(0.369833\pi\)
\(200\) 2438.90 0.862282
\(201\) −24.5477 −0.00861422
\(202\) −2171.54 −0.756380
\(203\) 4250.69 1.46965
\(204\) −432.754 −0.148524
\(205\) −3596.86 −1.22544
\(206\) 1597.37 0.540262
\(207\) 1514.68 0.508586
\(208\) 333.538 0.111186
\(209\) 0 0
\(210\) −3285.04 −1.07947
\(211\) −1394.14 −0.454866 −0.227433 0.973794i \(-0.573033\pi\)
−0.227433 + 0.973794i \(0.573033\pi\)
\(212\) −3953.06 −1.28065
\(213\) −1742.06 −0.560393
\(214\) −707.436 −0.225978
\(215\) 6553.58 2.07884
\(216\) 3135.64 0.987745
\(217\) 3082.75 0.964381
\(218\) −1721.40 −0.534808
\(219\) −1472.98 −0.454495
\(220\) 0 0
\(221\) −369.863 −0.112578
\(222\) −1473.56 −0.445492
\(223\) 1233.42 0.370386 0.185193 0.982702i \(-0.440709\pi\)
0.185193 + 0.982702i \(0.440709\pi\)
\(224\) −5979.23 −1.78350
\(225\) −887.949 −0.263096
\(226\) −1302.55 −0.383381
\(227\) −261.485 −0.0764555 −0.0382277 0.999269i \(-0.512171\pi\)
−0.0382277 + 0.999269i \(0.512171\pi\)
\(228\) −2714.64 −0.788516
\(229\) −713.661 −0.205939 −0.102970 0.994685i \(-0.532834\pi\)
−0.102970 + 0.994685i \(0.532834\pi\)
\(230\) −4716.66 −1.35220
\(231\) 0 0
\(232\) 2744.80 0.776746
\(233\) 1065.51 0.299587 0.149794 0.988717i \(-0.452139\pi\)
0.149794 + 0.988717i \(0.452139\pi\)
\(234\) 243.807 0.0681118
\(235\) 2122.38 0.589143
\(236\) 898.570 0.247847
\(237\) 1986.76 0.544532
\(238\) 810.322 0.220695
\(239\) −2975.70 −0.805364 −0.402682 0.915340i \(-0.631922\pi\)
−0.402682 + 0.915340i \(0.631922\pi\)
\(240\) 1056.54 0.284164
\(241\) −4302.38 −1.14996 −0.574980 0.818167i \(-0.694990\pi\)
−0.574980 + 0.818167i \(0.694990\pi\)
\(242\) 0 0
\(243\) −2035.21 −0.537280
\(244\) −2174.40 −0.570499
\(245\) −10501.6 −2.73847
\(246\) 1522.40 0.394573
\(247\) −2320.13 −0.597678
\(248\) 1990.63 0.509698
\(249\) 884.731 0.225171
\(250\) −151.819 −0.0384075
\(251\) −1156.91 −0.290930 −0.145465 0.989363i \(-0.546468\pi\)
−0.145465 + 0.989363i \(0.546468\pi\)
\(252\) 1376.71 0.344144
\(253\) 0 0
\(254\) −1838.42 −0.454144
\(255\) −1171.61 −0.287721
\(256\) −3154.10 −0.770043
\(257\) 3387.17 0.822125 0.411062 0.911607i \(-0.365158\pi\)
0.411062 + 0.911607i \(0.365158\pi\)
\(258\) −2773.87 −0.669354
\(259\) −7111.56 −1.70614
\(260\) 1956.77 0.466745
\(261\) −999.320 −0.236998
\(262\) 3098.48 0.730630
\(263\) −2296.19 −0.538361 −0.269180 0.963090i \(-0.586753\pi\)
−0.269180 + 0.963090i \(0.586753\pi\)
\(264\) 0 0
\(265\) −10702.2 −2.48088
\(266\) 5083.11 1.17167
\(267\) −6865.75 −1.57370
\(268\) −32.0350 −0.00730169
\(269\) −718.997 −0.162967 −0.0814833 0.996675i \(-0.525966\pi\)
−0.0814833 + 0.996675i \(0.525966\pi\)
\(270\) 3554.95 0.801287
\(271\) −6404.99 −1.43570 −0.717852 0.696196i \(-0.754875\pi\)
−0.717852 + 0.696196i \(0.754875\pi\)
\(272\) −260.617 −0.0580963
\(273\) −3062.86 −0.679020
\(274\) −3585.86 −0.790620
\(275\) 0 0
\(276\) −5145.41 −1.12216
\(277\) −2852.91 −0.618825 −0.309413 0.950928i \(-0.600132\pi\)
−0.309413 + 0.950928i \(0.600132\pi\)
\(278\) −1640.63 −0.353950
\(279\) −724.743 −0.155517
\(280\) −10237.4 −2.18500
\(281\) 4307.78 0.914522 0.457261 0.889332i \(-0.348830\pi\)
0.457261 + 0.889332i \(0.348830\pi\)
\(282\) −898.315 −0.189695
\(283\) 1991.75 0.418365 0.209183 0.977877i \(-0.432920\pi\)
0.209183 + 0.977877i \(0.432920\pi\)
\(284\) −2273.41 −0.475007
\(285\) −7349.42 −1.52752
\(286\) 0 0
\(287\) 7347.26 1.51113
\(288\) 1405.69 0.287609
\(289\) 289.000 0.0588235
\(290\) 3111.85 0.630118
\(291\) 7459.51 1.50269
\(292\) −1922.25 −0.385245
\(293\) 597.874 0.119209 0.0596044 0.998222i \(-0.481016\pi\)
0.0596044 + 0.998222i \(0.481016\pi\)
\(294\) 4444.92 0.881745
\(295\) 2432.72 0.480131
\(296\) −4592.16 −0.901736
\(297\) 0 0
\(298\) −4306.11 −0.837068
\(299\) −4397.64 −0.850576
\(300\) 3016.39 0.580505
\(301\) −13386.9 −2.56349
\(302\) 2428.42 0.462715
\(303\) −6413.47 −1.21599
\(304\) −1634.84 −0.308435
\(305\) −5886.81 −1.10517
\(306\) −190.504 −0.0355894
\(307\) 3912.03 0.727268 0.363634 0.931542i \(-0.381536\pi\)
0.363634 + 0.931542i \(0.381536\pi\)
\(308\) 0 0
\(309\) 4717.71 0.868548
\(310\) 2256.83 0.413481
\(311\) 5524.46 1.00728 0.503639 0.863914i \(-0.331994\pi\)
0.503639 + 0.863914i \(0.331994\pi\)
\(312\) −1977.78 −0.358878
\(313\) −846.446 −0.152856 −0.0764280 0.997075i \(-0.524352\pi\)
−0.0764280 + 0.997075i \(0.524352\pi\)
\(314\) −2111.31 −0.379453
\(315\) 3727.20 0.666678
\(316\) 2592.75 0.461562
\(317\) 6260.91 1.10930 0.554649 0.832084i \(-0.312853\pi\)
0.554649 + 0.832084i \(0.312853\pi\)
\(318\) 4529.81 0.798803
\(319\) 0 0
\(320\) −2463.53 −0.430361
\(321\) −2089.36 −0.363292
\(322\) 9634.66 1.66745
\(323\) 1812.88 0.312296
\(324\) 2711.94 0.465010
\(325\) 2578.03 0.440010
\(326\) −73.7075 −0.0125223
\(327\) −5084.04 −0.859780
\(328\) 4744.36 0.798669
\(329\) −4335.35 −0.726492
\(330\) 0 0
\(331\) 104.588 0.0173676 0.00868380 0.999962i \(-0.497236\pi\)
0.00868380 + 0.999962i \(0.497236\pi\)
\(332\) 1154.59 0.190862
\(333\) 1671.90 0.275134
\(334\) 3275.56 0.536618
\(335\) −86.7293 −0.0141449
\(336\) −2158.18 −0.350412
\(337\) −10467.5 −1.69199 −0.845997 0.533188i \(-0.820994\pi\)
−0.845997 + 0.533188i \(0.820994\pi\)
\(338\) 2577.57 0.414797
\(339\) −3846.97 −0.616339
\(340\) −1528.96 −0.243881
\(341\) 0 0
\(342\) −1195.02 −0.188945
\(343\) 10518.6 1.65583
\(344\) −8644.37 −1.35486
\(345\) −13930.3 −2.17386
\(346\) 423.692 0.0658319
\(347\) 8711.96 1.34779 0.673894 0.738828i \(-0.264620\pi\)
0.673894 + 0.738828i \(0.264620\pi\)
\(348\) 3394.73 0.522921
\(349\) −4643.42 −0.712196 −0.356098 0.934449i \(-0.615893\pi\)
−0.356098 + 0.934449i \(0.615893\pi\)
\(350\) −5648.13 −0.862586
\(351\) 3314.51 0.504032
\(352\) 0 0
\(353\) −7914.58 −1.19334 −0.596672 0.802485i \(-0.703511\pi\)
−0.596672 + 0.802485i \(0.703511\pi\)
\(354\) −1029.67 −0.154595
\(355\) −6154.86 −0.920186
\(356\) −8959.90 −1.33392
\(357\) 2393.23 0.354798
\(358\) −1760.66 −0.259927
\(359\) 11442.2 1.68217 0.841083 0.540906i \(-0.181918\pi\)
0.841083 + 0.540906i \(0.181918\pi\)
\(360\) 2406.77 0.352355
\(361\) 4513.13 0.657987
\(362\) 2684.45 0.389756
\(363\) 0 0
\(364\) −3997.07 −0.575559
\(365\) −5204.17 −0.746298
\(366\) 2491.65 0.355849
\(367\) 8895.20 1.26519 0.632596 0.774482i \(-0.281989\pi\)
0.632596 + 0.774482i \(0.281989\pi\)
\(368\) −3098.71 −0.438944
\(369\) −1727.31 −0.243687
\(370\) −5206.25 −0.731513
\(371\) 21861.3 3.05925
\(372\) 2461.98 0.343138
\(373\) 11644.0 1.61636 0.808179 0.588937i \(-0.200453\pi\)
0.808179 + 0.588937i \(0.200453\pi\)
\(374\) 0 0
\(375\) −448.386 −0.0617455
\(376\) −2799.47 −0.383968
\(377\) 2901.38 0.396363
\(378\) −7261.66 −0.988093
\(379\) 7181.59 0.973334 0.486667 0.873588i \(-0.338213\pi\)
0.486667 + 0.873588i \(0.338213\pi\)
\(380\) −9591.10 −1.29477
\(381\) −5429.63 −0.730101
\(382\) 2623.31 0.351362
\(383\) −12489.8 −1.66631 −0.833157 0.553037i \(-0.813469\pi\)
−0.833157 + 0.553037i \(0.813469\pi\)
\(384\) −5585.21 −0.742237
\(385\) 0 0
\(386\) 4311.32 0.568498
\(387\) 3147.22 0.413390
\(388\) 9734.76 1.27373
\(389\) 9213.37 1.20087 0.600433 0.799675i \(-0.294995\pi\)
0.600433 + 0.799675i \(0.294995\pi\)
\(390\) −2242.26 −0.291132
\(391\) 3436.19 0.444438
\(392\) 13852.0 1.78477
\(393\) 9151.14 1.17459
\(394\) 829.830 0.106107
\(395\) 7019.42 0.894141
\(396\) 0 0
\(397\) 640.374 0.0809558 0.0404779 0.999180i \(-0.487112\pi\)
0.0404779 + 0.999180i \(0.487112\pi\)
\(398\) −3338.49 −0.420461
\(399\) 15012.6 1.88363
\(400\) 1816.56 0.227070
\(401\) 4465.93 0.556155 0.278077 0.960559i \(-0.410303\pi\)
0.278077 + 0.960559i \(0.410303\pi\)
\(402\) 36.7090 0.00455442
\(403\) 2104.19 0.260092
\(404\) −8369.67 −1.03071
\(405\) 7342.10 0.900819
\(406\) −6356.55 −0.777020
\(407\) 0 0
\(408\) 1545.38 0.187519
\(409\) −7112.64 −0.859896 −0.429948 0.902854i \(-0.641468\pi\)
−0.429948 + 0.902854i \(0.641468\pi\)
\(410\) 5378.80 0.647903
\(411\) −10590.6 −1.27103
\(412\) 6156.68 0.736208
\(413\) −4969.29 −0.592065
\(414\) −2265.07 −0.268894
\(415\) 3125.84 0.369739
\(416\) −4081.23 −0.481007
\(417\) −4845.47 −0.569025
\(418\) 0 0
\(419\) −8658.88 −1.00958 −0.504790 0.863242i \(-0.668430\pi\)
−0.504790 + 0.863242i \(0.668430\pi\)
\(420\) −12661.4 −1.47098
\(421\) 9273.85 1.07359 0.536793 0.843714i \(-0.319636\pi\)
0.536793 + 0.843714i \(0.319636\pi\)
\(422\) 2084.83 0.240492
\(423\) 1019.22 0.117155
\(424\) 14116.5 1.61689
\(425\) −2014.40 −0.229912
\(426\) 2605.10 0.296285
\(427\) 12024.9 1.36283
\(428\) −2726.65 −0.307938
\(429\) 0 0
\(430\) −9800.34 −1.09910
\(431\) −3728.56 −0.416701 −0.208351 0.978054i \(-0.566810\pi\)
−0.208351 + 0.978054i \(0.566810\pi\)
\(432\) 2335.50 0.260109
\(433\) −4907.52 −0.544666 −0.272333 0.962203i \(-0.587795\pi\)
−0.272333 + 0.962203i \(0.587795\pi\)
\(434\) −4610.00 −0.509878
\(435\) 9190.63 1.01300
\(436\) −6634.74 −0.728776
\(437\) 21555.0 2.35954
\(438\) 2202.71 0.240296
\(439\) 84.3252 0.00916770 0.00458385 0.999989i \(-0.498541\pi\)
0.00458385 + 0.999989i \(0.498541\pi\)
\(440\) 0 0
\(441\) −5043.19 −0.544562
\(442\) 553.099 0.0595209
\(443\) −12903.7 −1.38391 −0.691957 0.721939i \(-0.743251\pi\)
−0.691957 + 0.721939i \(0.743251\pi\)
\(444\) −5679.50 −0.607066
\(445\) −24257.4 −2.58407
\(446\) −1844.48 −0.195826
\(447\) −12717.8 −1.34571
\(448\) 5032.23 0.530693
\(449\) 8605.38 0.904483 0.452241 0.891896i \(-0.350625\pi\)
0.452241 + 0.891896i \(0.350625\pi\)
\(450\) 1327.85 0.139101
\(451\) 0 0
\(452\) −5020.35 −0.522428
\(453\) 7172.16 0.743880
\(454\) 391.030 0.0404228
\(455\) −10821.4 −1.11498
\(456\) 9694.10 0.995544
\(457\) −6565.81 −0.672069 −0.336034 0.941850i \(-0.609086\pi\)
−0.336034 + 0.941850i \(0.609086\pi\)
\(458\) 1067.22 0.108882
\(459\) −2589.86 −0.263364
\(460\) −18179.2 −1.84263
\(461\) −2492.28 −0.251794 −0.125897 0.992043i \(-0.540181\pi\)
−0.125897 + 0.992043i \(0.540181\pi\)
\(462\) 0 0
\(463\) −17573.5 −1.76396 −0.881978 0.471290i \(-0.843788\pi\)
−0.881978 + 0.471290i \(0.843788\pi\)
\(464\) 2044.40 0.204545
\(465\) 6665.37 0.664729
\(466\) −1593.38 −0.158395
\(467\) 3282.78 0.325287 0.162644 0.986685i \(-0.447998\pi\)
0.162644 + 0.986685i \(0.447998\pi\)
\(468\) 939.696 0.0928151
\(469\) 177.161 0.0174425
\(470\) −3173.84 −0.311485
\(471\) −6235.60 −0.610024
\(472\) −3208.83 −0.312920
\(473\) 0 0
\(474\) −2971.04 −0.287899
\(475\) −12636.2 −1.22061
\(476\) 3123.19 0.300738
\(477\) −5139.51 −0.493337
\(478\) 4449.91 0.425804
\(479\) −2403.66 −0.229282 −0.114641 0.993407i \(-0.536572\pi\)
−0.114641 + 0.993407i \(0.536572\pi\)
\(480\) −12928.0 −1.22933
\(481\) −4854.12 −0.460143
\(482\) 6433.85 0.607995
\(483\) 28455.3 2.68066
\(484\) 0 0
\(485\) 26355.2 2.46748
\(486\) 3043.49 0.284065
\(487\) −8497.33 −0.790659 −0.395329 0.918539i \(-0.629370\pi\)
−0.395329 + 0.918539i \(0.629370\pi\)
\(488\) 7764.88 0.720286
\(489\) −217.689 −0.0201314
\(490\) 15704.3 1.44786
\(491\) −13855.9 −1.27354 −0.636771 0.771053i \(-0.719730\pi\)
−0.636771 + 0.771053i \(0.719730\pi\)
\(492\) 5867.74 0.537680
\(493\) −2267.05 −0.207105
\(494\) 3469.57 0.315998
\(495\) 0 0
\(496\) 1482.67 0.134222
\(497\) 12572.5 1.13471
\(498\) −1323.04 −0.119050
\(499\) 3506.86 0.314607 0.157303 0.987550i \(-0.449720\pi\)
0.157303 + 0.987550i \(0.449720\pi\)
\(500\) −585.150 −0.0523374
\(501\) 9674.11 0.862690
\(502\) 1730.06 0.153818
\(503\) −2426.32 −0.215078 −0.107539 0.994201i \(-0.534297\pi\)
−0.107539 + 0.994201i \(0.534297\pi\)
\(504\) −4916.28 −0.434501
\(505\) −22659.4 −1.99670
\(506\) 0 0
\(507\) 7612.67 0.666845
\(508\) −7085.74 −0.618856
\(509\) −10845.0 −0.944397 −0.472198 0.881492i \(-0.656539\pi\)
−0.472198 + 0.881492i \(0.656539\pi\)
\(510\) 1752.04 0.152121
\(511\) 10630.5 0.920285
\(512\) −5400.06 −0.466116
\(513\) −16246.1 −1.39821
\(514\) −5065.23 −0.434665
\(515\) 16668.1 1.42619
\(516\) −10691.2 −0.912120
\(517\) 0 0
\(518\) 10634.7 0.902054
\(519\) 1251.34 0.105834
\(520\) −6987.70 −0.589290
\(521\) 7344.97 0.617637 0.308819 0.951121i \(-0.400066\pi\)
0.308819 + 0.951121i \(0.400066\pi\)
\(522\) 1494.40 0.125303
\(523\) 1641.60 0.137251 0.0686255 0.997642i \(-0.478139\pi\)
0.0686255 + 0.997642i \(0.478139\pi\)
\(524\) 11942.4 0.995620
\(525\) −16681.3 −1.38673
\(526\) 3433.76 0.284637
\(527\) −1644.15 −0.135902
\(528\) 0 0
\(529\) 28689.0 2.35793
\(530\) 16004.3 1.31166
\(531\) 1168.26 0.0954769
\(532\) 19591.6 1.59663
\(533\) 5015.00 0.407550
\(534\) 10267.2 0.832029
\(535\) −7381.92 −0.596539
\(536\) 114.398 0.00921877
\(537\) −5199.98 −0.417869
\(538\) 1075.20 0.0861620
\(539\) 0 0
\(540\) 13701.7 1.09190
\(541\) −10867.7 −0.863661 −0.431831 0.901955i \(-0.642132\pi\)
−0.431831 + 0.901955i \(0.642132\pi\)
\(542\) 9578.14 0.759071
\(543\) 7928.33 0.626588
\(544\) 3188.95 0.251333
\(545\) −17962.4 −1.41179
\(546\) 4580.25 0.359005
\(547\) −1011.33 −0.0790516 −0.0395258 0.999219i \(-0.512585\pi\)
−0.0395258 + 0.999219i \(0.512585\pi\)
\(548\) −13820.9 −1.07737
\(549\) −2827.01 −0.219771
\(550\) 0 0
\(551\) −14221.1 −1.09953
\(552\) 18374.5 1.41679
\(553\) −14338.5 −1.10260
\(554\) 4266.29 0.327179
\(555\) −15376.3 −1.17601
\(556\) −6323.40 −0.482324
\(557\) 13427.8 1.02146 0.510732 0.859740i \(-0.329374\pi\)
0.510732 + 0.859740i \(0.329374\pi\)
\(558\) 1083.79 0.0822233
\(559\) −9137.49 −0.691368
\(560\) −7625.06 −0.575389
\(561\) 0 0
\(562\) −6441.93 −0.483517
\(563\) −16146.6 −1.20870 −0.604349 0.796720i \(-0.706567\pi\)
−0.604349 + 0.796720i \(0.706567\pi\)
\(564\) −3462.34 −0.258494
\(565\) −13591.7 −1.01205
\(566\) −2978.50 −0.221194
\(567\) −14997.6 −1.11083
\(568\) 8118.44 0.599722
\(569\) −14175.9 −1.04444 −0.522219 0.852812i \(-0.674895\pi\)
−0.522219 + 0.852812i \(0.674895\pi\)
\(570\) 10990.5 0.807613
\(571\) −7696.76 −0.564097 −0.282049 0.959400i \(-0.591014\pi\)
−0.282049 + 0.959400i \(0.591014\pi\)
\(572\) 0 0
\(573\) 7747.75 0.564864
\(574\) −10987.2 −0.798951
\(575\) −23951.0 −1.73709
\(576\) −1183.06 −0.0855800
\(577\) −21496.6 −1.55098 −0.775490 0.631360i \(-0.782497\pi\)
−0.775490 + 0.631360i \(0.782497\pi\)
\(578\) −432.175 −0.0311006
\(579\) 12733.2 0.913942
\(580\) 11993.9 0.858654
\(581\) −6385.12 −0.455937
\(582\) −11155.1 −0.794489
\(583\) 0 0
\(584\) 6864.45 0.486392
\(585\) 2544.06 0.179802
\(586\) −894.072 −0.0630269
\(587\) 24560.0 1.72692 0.863459 0.504419i \(-0.168293\pi\)
0.863459 + 0.504419i \(0.168293\pi\)
\(588\) 17131.9 1.20154
\(589\) −10313.7 −0.721506
\(590\) −3637.93 −0.253850
\(591\) 2450.84 0.170582
\(592\) −3420.36 −0.237459
\(593\) −22430.8 −1.55333 −0.776663 0.629917i \(-0.783089\pi\)
−0.776663 + 0.629917i \(0.783089\pi\)
\(594\) 0 0
\(595\) 8455.50 0.582591
\(596\) −16596.9 −1.14066
\(597\) −9859.99 −0.675951
\(598\) 6576.31 0.449708
\(599\) −12888.5 −0.879145 −0.439573 0.898207i \(-0.644870\pi\)
−0.439573 + 0.898207i \(0.644870\pi\)
\(600\) −10771.7 −0.732919
\(601\) 20398.3 1.38447 0.692234 0.721673i \(-0.256626\pi\)
0.692234 + 0.721673i \(0.256626\pi\)
\(602\) 20019.0 1.35534
\(603\) −41.6499 −0.00281279
\(604\) 9359.77 0.630536
\(605\) 0 0
\(606\) 9590.82 0.642905
\(607\) −20652.1 −1.38096 −0.690481 0.723351i \(-0.742601\pi\)
−0.690481 + 0.723351i \(0.742601\pi\)
\(608\) 20004.1 1.33433
\(609\) −18773.6 −1.24917
\(610\) 8803.24 0.584316
\(611\) −2959.17 −0.195933
\(612\) −734.250 −0.0484973
\(613\) 21523.8 1.41817 0.709085 0.705123i \(-0.249108\pi\)
0.709085 + 0.705123i \(0.249108\pi\)
\(614\) −5850.11 −0.384513
\(615\) 15885.9 1.04160
\(616\) 0 0
\(617\) −7872.87 −0.513695 −0.256847 0.966452i \(-0.582684\pi\)
−0.256847 + 0.966452i \(0.582684\pi\)
\(618\) −7054.95 −0.459210
\(619\) −5264.88 −0.341864 −0.170932 0.985283i \(-0.554678\pi\)
−0.170932 + 0.985283i \(0.554678\pi\)
\(620\) 8698.40 0.563446
\(621\) −30793.2 −1.98984
\(622\) −8261.37 −0.532558
\(623\) 49550.3 3.18650
\(624\) −1473.10 −0.0945054
\(625\) −16395.9 −1.04934
\(626\) 1265.79 0.0808165
\(627\) 0 0
\(628\) −8137.54 −0.517075
\(629\) 3792.86 0.240432
\(630\) −5573.71 −0.352479
\(631\) 26907.2 1.69756 0.848779 0.528748i \(-0.177338\pi\)
0.848779 + 0.528748i \(0.177338\pi\)
\(632\) −9258.82 −0.582747
\(633\) 6157.38 0.386625
\(634\) −9362.66 −0.586497
\(635\) −19183.4 −1.19885
\(636\) 17459.1 1.08852
\(637\) 14642.2 0.910744
\(638\) 0 0
\(639\) −2955.74 −0.182985
\(640\) −19733.1 −1.21878
\(641\) −10649.6 −0.656215 −0.328108 0.944640i \(-0.606411\pi\)
−0.328108 + 0.944640i \(0.606411\pi\)
\(642\) 3124.47 0.192076
\(643\) −26955.1 −1.65320 −0.826598 0.562792i \(-0.809727\pi\)
−0.826598 + 0.562792i \(0.809727\pi\)
\(644\) 37134.5 2.27221
\(645\) −28944.6 −1.76696
\(646\) −2711.02 −0.165114
\(647\) 7272.21 0.441886 0.220943 0.975287i \(-0.429087\pi\)
0.220943 + 0.975287i \(0.429087\pi\)
\(648\) −9684.44 −0.587100
\(649\) 0 0
\(650\) −3855.23 −0.232638
\(651\) −13615.3 −0.819700
\(652\) −284.088 −0.0170640
\(653\) −10555.2 −0.632555 −0.316277 0.948667i \(-0.602433\pi\)
−0.316277 + 0.948667i \(0.602433\pi\)
\(654\) 7602.76 0.454574
\(655\) 32331.9 1.92872
\(656\) 3533.72 0.210318
\(657\) −2499.19 −0.148406
\(658\) 6483.16 0.384103
\(659\) −27154.5 −1.60514 −0.802572 0.596555i \(-0.796536\pi\)
−0.802572 + 0.596555i \(0.796536\pi\)
\(660\) 0 0
\(661\) −15024.1 −0.884069 −0.442035 0.896998i \(-0.645743\pi\)
−0.442035 + 0.896998i \(0.645743\pi\)
\(662\) −156.403 −0.00918242
\(663\) 1633.54 0.0956883
\(664\) −4123.08 −0.240973
\(665\) 53040.9 3.09299
\(666\) −2500.19 −0.145466
\(667\) −26955.1 −1.56477
\(668\) 12624.9 0.731243
\(669\) −5447.53 −0.314819
\(670\) 129.696 0.00747853
\(671\) 0 0
\(672\) 26407.9 1.51593
\(673\) −2397.60 −0.137327 −0.0686633 0.997640i \(-0.521873\pi\)
−0.0686633 + 0.997640i \(0.521873\pi\)
\(674\) 15653.3 0.894573
\(675\) 18051.9 1.02936
\(676\) 9934.64 0.565239
\(677\) 11268.4 0.639707 0.319853 0.947467i \(-0.396366\pi\)
0.319853 + 0.947467i \(0.396366\pi\)
\(678\) 5752.83 0.325864
\(679\) −53835.4 −3.04273
\(680\) 5459.98 0.307913
\(681\) 1154.88 0.0649853
\(682\) 0 0
\(683\) −10787.5 −0.604350 −0.302175 0.953252i \(-0.597713\pi\)
−0.302175 + 0.953252i \(0.597713\pi\)
\(684\) −4605.92 −0.257473
\(685\) −37417.6 −2.08708
\(686\) −15729.7 −0.875453
\(687\) 3151.96 0.175043
\(688\) −6438.55 −0.356784
\(689\) 14921.8 0.825074
\(690\) 20831.6 1.14934
\(691\) −9034.83 −0.497397 −0.248698 0.968581i \(-0.580003\pi\)
−0.248698 + 0.968581i \(0.580003\pi\)
\(692\) 1633.02 0.0897083
\(693\) 0 0
\(694\) −13028.0 −0.712589
\(695\) −17119.5 −0.934360
\(696\) −12122.7 −0.660215
\(697\) −3918.58 −0.212951
\(698\) 6943.85 0.376545
\(699\) −4705.93 −0.254642
\(700\) −21769.4 −1.17544
\(701\) −34213.5 −1.84340 −0.921701 0.387901i \(-0.873200\pi\)
−0.921701 + 0.387901i \(0.873200\pi\)
\(702\) −4956.57 −0.266487
\(703\) 23792.5 1.27646
\(704\) 0 0
\(705\) −9373.69 −0.500757
\(706\) 11835.6 0.630933
\(707\) 46286.2 2.46219
\(708\) −3968.63 −0.210664
\(709\) 12764.6 0.676142 0.338071 0.941121i \(-0.390226\pi\)
0.338071 + 0.941121i \(0.390226\pi\)
\(710\) 9204.08 0.486511
\(711\) 3370.93 0.177805
\(712\) 31996.2 1.68414
\(713\) −19548.8 −1.02680
\(714\) −3578.87 −0.187585
\(715\) 0 0
\(716\) −6786.05 −0.354199
\(717\) 13142.5 0.684540
\(718\) −17110.9 −0.889378
\(719\) −17617.5 −0.913800 −0.456900 0.889518i \(-0.651040\pi\)
−0.456900 + 0.889518i \(0.651040\pi\)
\(720\) 1792.62 0.0927877
\(721\) −34047.8 −1.75868
\(722\) −6749.01 −0.347884
\(723\) 19001.9 0.977438
\(724\) 10346.6 0.531116
\(725\) 15801.9 0.809472
\(726\) 0 0
\(727\) −33812.5 −1.72494 −0.862472 0.506105i \(-0.831085\pi\)
−0.862472 + 0.506105i \(0.831085\pi\)
\(728\) 14273.7 0.726674
\(729\) 21692.7 1.10210
\(730\) 7782.40 0.394575
\(731\) 7139.76 0.361250
\(732\) 9603.47 0.484910
\(733\) 13072.0 0.658700 0.329350 0.944208i \(-0.393170\pi\)
0.329350 + 0.944208i \(0.393170\pi\)
\(734\) −13302.0 −0.668920
\(735\) 46381.6 2.32763
\(736\) 37916.4 1.89894
\(737\) 0 0
\(738\) 2583.05 0.128839
\(739\) 26183.9 1.30337 0.651685 0.758489i \(-0.274062\pi\)
0.651685 + 0.758489i \(0.274062\pi\)
\(740\) −20066.2 −0.996824
\(741\) 10247.1 0.508012
\(742\) −32691.8 −1.61746
\(743\) −17676.4 −0.872793 −0.436396 0.899755i \(-0.643745\pi\)
−0.436396 + 0.899755i \(0.643745\pi\)
\(744\) −8791.82 −0.433231
\(745\) −44933.2 −2.20970
\(746\) −17412.6 −0.854584
\(747\) 1501.12 0.0735248
\(748\) 0 0
\(749\) 15079.0 0.735612
\(750\) 670.524 0.0326454
\(751\) 12798.7 0.621879 0.310939 0.950430i \(-0.399356\pi\)
0.310939 + 0.950430i \(0.399356\pi\)
\(752\) −2085.12 −0.101112
\(753\) 5109.61 0.247284
\(754\) −4338.77 −0.209561
\(755\) 25339.9 1.22148
\(756\) −27988.3 −1.34646
\(757\) 19686.2 0.945190 0.472595 0.881280i \(-0.343317\pi\)
0.472595 + 0.881280i \(0.343317\pi\)
\(758\) −10739.5 −0.514611
\(759\) 0 0
\(760\) 34250.2 1.63472
\(761\) −6660.94 −0.317291 −0.158646 0.987336i \(-0.550713\pi\)
−0.158646 + 0.987336i \(0.550713\pi\)
\(762\) 8119.56 0.386011
\(763\) 36691.6 1.74093
\(764\) 10110.9 0.478796
\(765\) −1987.86 −0.0939491
\(766\) 18677.4 0.880996
\(767\) −3391.88 −0.159679
\(768\) 13930.4 0.654518
\(769\) 22328.3 1.04705 0.523523 0.852011i \(-0.324617\pi\)
0.523523 + 0.852011i \(0.324617\pi\)
\(770\) 0 0
\(771\) −14959.8 −0.698786
\(772\) 16617.0 0.774686
\(773\) −3418.53 −0.159063 −0.0795317 0.996832i \(-0.525342\pi\)
−0.0795317 + 0.996832i \(0.525342\pi\)
\(774\) −4706.40 −0.218563
\(775\) 11460.1 0.531172
\(776\) −34763.2 −1.60815
\(777\) 31408.9 1.45018
\(778\) −13777.8 −0.634909
\(779\) −24581.0 −1.13056
\(780\) −8642.27 −0.396722
\(781\) 0 0
\(782\) −5138.53 −0.234979
\(783\) 20316.1 0.927251
\(784\) 10317.3 0.469994
\(785\) −22031.0 −1.00168
\(786\) −13684.8 −0.621017
\(787\) 7877.99 0.356824 0.178412 0.983956i \(-0.442904\pi\)
0.178412 + 0.983956i \(0.442904\pi\)
\(788\) 3198.38 0.144591
\(789\) 10141.3 0.457594
\(790\) −10497.0 −0.472741
\(791\) 27763.7 1.24799
\(792\) 0 0
\(793\) 8207.83 0.367552
\(794\) −957.627 −0.0428021
\(795\) 47267.5 2.10868
\(796\) −12867.4 −0.572957
\(797\) 13082.6 0.581444 0.290722 0.956808i \(-0.406104\pi\)
0.290722 + 0.956808i \(0.406104\pi\)
\(798\) −22450.1 −0.995895
\(799\) 2312.21 0.102378
\(800\) −22227.7 −0.982336
\(801\) −11649.1 −0.513858
\(802\) −6678.43 −0.294044
\(803\) 0 0
\(804\) 141.486 0.00620625
\(805\) 100535. 4.40174
\(806\) −3146.63 −0.137513
\(807\) 3175.52 0.138518
\(808\) 29888.4 1.30133
\(809\) −15905.3 −0.691223 −0.345611 0.938378i \(-0.612328\pi\)
−0.345611 + 0.938378i \(0.612328\pi\)
\(810\) −10979.5 −0.476272
\(811\) −3286.15 −0.142284 −0.0711421 0.997466i \(-0.522664\pi\)
−0.0711421 + 0.997466i \(0.522664\pi\)
\(812\) −24499.8 −1.05884
\(813\) 28288.3 1.22031
\(814\) 0 0
\(815\) −769.118 −0.0330565
\(816\) 1151.04 0.0493805
\(817\) 44787.4 1.91788
\(818\) 10636.4 0.454635
\(819\) −5196.73 −0.221720
\(820\) 20731.3 0.882889
\(821\) −31145.2 −1.32396 −0.661982 0.749520i \(-0.730284\pi\)
−0.661982 + 0.749520i \(0.730284\pi\)
\(822\) 15837.3 0.672008
\(823\) −47102.2 −1.99499 −0.997497 0.0707041i \(-0.977475\pi\)
−0.997497 + 0.0707041i \(0.977475\pi\)
\(824\) −21985.8 −0.929503
\(825\) 0 0
\(826\) 7431.17 0.313031
\(827\) 8462.69 0.355836 0.177918 0.984045i \(-0.443064\pi\)
0.177918 + 0.984045i \(0.443064\pi\)
\(828\) −8730.18 −0.366419
\(829\) 16497.7 0.691181 0.345590 0.938385i \(-0.387679\pi\)
0.345590 + 0.938385i \(0.387679\pi\)
\(830\) −4674.44 −0.195484
\(831\) 12600.2 0.525986
\(832\) 3434.84 0.143127
\(833\) −11441.0 −0.475877
\(834\) 7245.99 0.300849
\(835\) 34179.6 1.41657
\(836\) 0 0
\(837\) 14733.9 0.608458
\(838\) 12948.6 0.533775
\(839\) 8646.29 0.355784 0.177892 0.984050i \(-0.443072\pi\)
0.177892 + 0.984050i \(0.443072\pi\)
\(840\) 45214.4 1.85720
\(841\) −6605.16 −0.270825
\(842\) −13868.3 −0.567616
\(843\) −19025.8 −0.777322
\(844\) 8035.46 0.327716
\(845\) 26896.3 1.09498
\(846\) −1524.17 −0.0619408
\(847\) 0 0
\(848\) 10514.4 0.425784
\(849\) −8796.78 −0.355600
\(850\) 3012.36 0.121557
\(851\) 45096.9 1.81657
\(852\) 10040.7 0.403744
\(853\) 5835.31 0.234229 0.117114 0.993118i \(-0.462636\pi\)
0.117114 + 0.993118i \(0.462636\pi\)
\(854\) −17982.3 −0.720540
\(855\) −12469.7 −0.498778
\(856\) 9736.96 0.388788
\(857\) −6819.10 −0.271804 −0.135902 0.990722i \(-0.543393\pi\)
−0.135902 + 0.990722i \(0.543393\pi\)
\(858\) 0 0
\(859\) 28500.5 1.13204 0.566020 0.824391i \(-0.308482\pi\)
0.566020 + 0.824391i \(0.308482\pi\)
\(860\) −37773.1 −1.49773
\(861\) −32449.9 −1.28443
\(862\) 5575.75 0.220314
\(863\) −10383.3 −0.409562 −0.204781 0.978808i \(-0.565648\pi\)
−0.204781 + 0.978808i \(0.565648\pi\)
\(864\) −28577.6 −1.12527
\(865\) 4421.12 0.173783
\(866\) 7338.80 0.287970
\(867\) −1276.40 −0.0499986
\(868\) −17768.1 −0.694804
\(869\) 0 0
\(870\) −13743.8 −0.535585
\(871\) 120.924 0.00470421
\(872\) 23692.9 0.920119
\(873\) 12656.5 0.490673
\(874\) −32233.8 −1.24751
\(875\) 3236.01 0.125025
\(876\) 8489.83 0.327448
\(877\) −9730.29 −0.374651 −0.187325 0.982298i \(-0.559982\pi\)
−0.187325 + 0.982298i \(0.559982\pi\)
\(878\) −126.101 −0.00484705
\(879\) −2640.57 −0.101325
\(880\) 0 0
\(881\) −37327.4 −1.42746 −0.713730 0.700421i \(-0.752995\pi\)
−0.713730 + 0.700421i \(0.752995\pi\)
\(882\) 7541.67 0.287915
\(883\) −14389.4 −0.548407 −0.274203 0.961672i \(-0.588414\pi\)
−0.274203 + 0.961672i \(0.588414\pi\)
\(884\) 2131.79 0.0811084
\(885\) −10744.4 −0.408099
\(886\) 19296.4 0.731689
\(887\) 38356.7 1.45196 0.725982 0.687714i \(-0.241386\pi\)
0.725982 + 0.687714i \(0.241386\pi\)
\(888\) 20281.7 0.766453
\(889\) 39185.8 1.47834
\(890\) 36274.9 1.36622
\(891\) 0 0
\(892\) −7109.10 −0.266850
\(893\) 14504.4 0.543528
\(894\) 19018.4 0.711488
\(895\) −18372.1 −0.686156
\(896\) 40308.6 1.50292
\(897\) 19422.6 0.722969
\(898\) −12868.6 −0.478209
\(899\) 12897.5 0.478482
\(900\) 5117.90 0.189552
\(901\) −11659.5 −0.431113
\(902\) 0 0
\(903\) 59124.8 2.17890
\(904\) 17927.9 0.659593
\(905\) 28011.6 1.02888
\(906\) −10725.4 −0.393296
\(907\) −19562.8 −0.716177 −0.358089 0.933688i \(-0.616571\pi\)
−0.358089 + 0.933688i \(0.616571\pi\)
\(908\) 1507.13 0.0550836
\(909\) −10881.7 −0.397055
\(910\) 16182.5 0.589498
\(911\) −1194.41 −0.0434387 −0.0217194 0.999764i \(-0.506914\pi\)
−0.0217194 + 0.999764i \(0.506914\pi\)
\(912\) 7220.42 0.262162
\(913\) 0 0
\(914\) 9818.62 0.355329
\(915\) 25999.7 0.939370
\(916\) 4113.35 0.148372
\(917\) −66044.0 −2.37837
\(918\) 3872.92 0.139243
\(919\) −3059.04 −0.109802 −0.0549012 0.998492i \(-0.517484\pi\)
−0.0549012 + 0.998492i \(0.517484\pi\)
\(920\) 64918.8 2.32642
\(921\) −17277.9 −0.618160
\(922\) 3727.00 0.133126
\(923\) 8581.56 0.306030
\(924\) 0 0
\(925\) −26437.1 −0.939727
\(926\) 26279.8 0.932621
\(927\) 8004.51 0.283606
\(928\) −25015.7 −0.884891
\(929\) 16418.2 0.579832 0.289916 0.957052i \(-0.406373\pi\)
0.289916 + 0.957052i \(0.406373\pi\)
\(930\) −9967.51 −0.351449
\(931\) −71768.6 −2.52644
\(932\) −6141.30 −0.215842
\(933\) −24399.3 −0.856161
\(934\) −4909.13 −0.171983
\(935\) 0 0
\(936\) −3355.69 −0.117184
\(937\) 21079.0 0.734922 0.367461 0.930039i \(-0.380227\pi\)
0.367461 + 0.930039i \(0.380227\pi\)
\(938\) −264.930 −0.00922202
\(939\) 3738.42 0.129924
\(940\) −12232.8 −0.424457
\(941\) −2769.28 −0.0959362 −0.0479681 0.998849i \(-0.515275\pi\)
−0.0479681 + 0.998849i \(0.515275\pi\)
\(942\) 9324.82 0.322525
\(943\) −46591.6 −1.60894
\(944\) −2390.02 −0.0824031
\(945\) −75773.5 −2.60837
\(946\) 0 0
\(947\) 2386.23 0.0818818 0.0409409 0.999162i \(-0.486964\pi\)
0.0409409 + 0.999162i \(0.486964\pi\)
\(948\) −11451.2 −0.392317
\(949\) 7256.03 0.248199
\(950\) 18896.4 0.645348
\(951\) −27651.9 −0.942876
\(952\) −11153.0 −0.379698
\(953\) 13711.6 0.466066 0.233033 0.972469i \(-0.425135\pi\)
0.233033 + 0.972469i \(0.425135\pi\)
\(954\) 7685.71 0.260832
\(955\) 27373.6 0.927527
\(956\) 17151.1 0.580237
\(957\) 0 0
\(958\) 3594.47 0.121223
\(959\) 76432.4 2.57365
\(960\) 10880.4 0.365797
\(961\) −20437.3 −0.686022
\(962\) 7258.93 0.243282
\(963\) −3545.01 −0.118625
\(964\) 24797.7 0.828508
\(965\) 44987.5 1.50072
\(966\) −42552.5 −1.41729
\(967\) 35220.4 1.17126 0.585632 0.810577i \(-0.300847\pi\)
0.585632 + 0.810577i \(0.300847\pi\)
\(968\) 0 0
\(969\) −8006.78 −0.265444
\(970\) −39412.0 −1.30458
\(971\) −15030.9 −0.496771 −0.248386 0.968661i \(-0.579900\pi\)
−0.248386 + 0.968661i \(0.579900\pi\)
\(972\) 11730.4 0.387092
\(973\) 34969.8 1.15219
\(974\) 12707.1 0.418029
\(975\) −11386.1 −0.373998
\(976\) 5783.48 0.189677
\(977\) 28323.6 0.927486 0.463743 0.885970i \(-0.346506\pi\)
0.463743 + 0.885970i \(0.346506\pi\)
\(978\) 325.537 0.0106437
\(979\) 0 0
\(980\) 60528.6 1.97298
\(981\) −8626.06 −0.280743
\(982\) 20720.4 0.673334
\(983\) 32925.5 1.06832 0.534161 0.845383i \(-0.320628\pi\)
0.534161 + 0.845383i \(0.320628\pi\)
\(984\) −20954.0 −0.678849
\(985\) 8659.06 0.280102
\(986\) 3390.19 0.109499
\(987\) 19147.5 0.617500
\(988\) 13372.6 0.430607
\(989\) 84891.2 2.72941
\(990\) 0 0
\(991\) 43658.0 1.39944 0.699719 0.714419i \(-0.253309\pi\)
0.699719 + 0.714419i \(0.253309\pi\)
\(992\) −18142.2 −0.580662
\(993\) −461.924 −0.0147620
\(994\) −18801.1 −0.599934
\(995\) −34836.3 −1.10994
\(996\) −5099.35 −0.162228
\(997\) −23471.4 −0.745585 −0.372792 0.927915i \(-0.621600\pi\)
−0.372792 + 0.927915i \(0.621600\pi\)
\(998\) −5244.22 −0.166336
\(999\) −33989.6 −1.07646
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2057.4.a.s.1.18 44
11.2 odd 10 187.4.g.a.103.9 yes 88
11.6 odd 10 187.4.g.a.69.9 88
11.10 odd 2 2057.4.a.t.1.27 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
187.4.g.a.69.9 88 11.6 odd 10
187.4.g.a.103.9 yes 88 11.2 odd 10
2057.4.a.s.1.18 44 1.1 even 1 trivial
2057.4.a.t.1.27 44 11.10 odd 2