Properties

Label 2057.4.a.s.1.17
Level $2057$
Weight $4$
Character 2057.1
Self dual yes
Analytic conductor $121.367$
Analytic rank $1$
Dimension $44$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2057,4,Mod(1,2057)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2057.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2057, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2057 = 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2057.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,-1,-28,139,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(121.366928882\)
Analytic rank: \(1\)
Dimension: \(44\)
Twist minimal: no (minimal twist has level 187)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 2057.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.50580 q^{2} +6.30025 q^{3} -5.73256 q^{4} +3.99925 q^{5} -9.48693 q^{6} +11.1510 q^{7} +20.6785 q^{8} +12.6932 q^{9} -6.02208 q^{10} -36.1166 q^{12} -22.6601 q^{13} -16.7911 q^{14} +25.1963 q^{15} +14.7228 q^{16} -17.0000 q^{17} -19.1134 q^{18} +2.68258 q^{19} -22.9260 q^{20} +70.2539 q^{21} +79.8743 q^{23} +130.280 q^{24} -109.006 q^{25} +34.1216 q^{26} -90.1366 q^{27} -63.9236 q^{28} -170.274 q^{29} -37.9406 q^{30} +135.823 q^{31} -187.598 q^{32} +25.5986 q^{34} +44.5955 q^{35} -72.7645 q^{36} -181.035 q^{37} -4.03943 q^{38} -142.764 q^{39} +82.6985 q^{40} +172.155 q^{41} -105.788 q^{42} +200.616 q^{43} +50.7632 q^{45} -120.275 q^{46} -420.433 q^{47} +92.7574 q^{48} -218.656 q^{49} +164.141 q^{50} -107.104 q^{51} +129.900 q^{52} +756.563 q^{53} +135.728 q^{54} +230.585 q^{56} +16.9009 q^{57} +256.399 q^{58} -681.645 q^{59} -144.439 q^{60} -72.3490 q^{61} -204.522 q^{62} +141.541 q^{63} +164.702 q^{64} -90.6234 q^{65} -600.206 q^{67} +97.4536 q^{68} +503.228 q^{69} -67.1519 q^{70} -952.156 q^{71} +262.476 q^{72} -245.062 q^{73} +272.603 q^{74} -686.765 q^{75} -15.3780 q^{76} +214.975 q^{78} -292.538 q^{79} +58.8802 q^{80} -910.599 q^{81} -259.231 q^{82} +1418.56 q^{83} -402.735 q^{84} -67.9873 q^{85} -302.088 q^{86} -1072.77 q^{87} -578.399 q^{89} -76.4393 q^{90} -252.682 q^{91} -457.885 q^{92} +855.718 q^{93} +633.089 q^{94} +10.7283 q^{95} -1181.91 q^{96} +1150.30 q^{97} +329.252 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - q^{2} - 28 q^{3} + 139 q^{4} - 24 q^{5} + 24 q^{6} + 2 q^{7} + 63 q^{8} + 356 q^{9} + 65 q^{10} - 337 q^{12} - 12 q^{13} - 151 q^{14} - 320 q^{15} + 311 q^{16} - 748 q^{17} + 55 q^{18} + 36 q^{19}+ \cdots - 2302 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50580 −0.532381 −0.266190 0.963920i \(-0.585765\pi\)
−0.266190 + 0.963920i \(0.585765\pi\)
\(3\) 6.30025 1.21248 0.606242 0.795280i \(-0.292676\pi\)
0.606242 + 0.795280i \(0.292676\pi\)
\(4\) −5.73256 −0.716570
\(5\) 3.99925 0.357704 0.178852 0.983876i \(-0.442762\pi\)
0.178852 + 0.983876i \(0.442762\pi\)
\(6\) −9.48693 −0.645503
\(7\) 11.1510 0.602095 0.301048 0.953609i \(-0.402664\pi\)
0.301048 + 0.953609i \(0.402664\pi\)
\(8\) 20.6785 0.913869
\(9\) 12.6932 0.470118
\(10\) −6.02208 −0.190435
\(11\) 0 0
\(12\) −36.1166 −0.868830
\(13\) −22.6601 −0.483444 −0.241722 0.970346i \(-0.577712\pi\)
−0.241722 + 0.970346i \(0.577712\pi\)
\(14\) −16.7911 −0.320544
\(15\) 25.1963 0.433710
\(16\) 14.7228 0.230044
\(17\) −17.0000 −0.242536
\(18\) −19.1134 −0.250282
\(19\) 2.68258 0.0323908 0.0161954 0.999869i \(-0.494845\pi\)
0.0161954 + 0.999869i \(0.494845\pi\)
\(20\) −22.9260 −0.256320
\(21\) 70.2539 0.730031
\(22\) 0 0
\(23\) 79.8743 0.724128 0.362064 0.932153i \(-0.382072\pi\)
0.362064 + 0.932153i \(0.382072\pi\)
\(24\) 130.280 1.10805
\(25\) −109.006 −0.872048
\(26\) 34.1216 0.257377
\(27\) −90.1366 −0.642474
\(28\) −63.9236 −0.431444
\(29\) −170.274 −1.09031 −0.545157 0.838334i \(-0.683530\pi\)
−0.545157 + 0.838334i \(0.683530\pi\)
\(30\) −37.9406 −0.230899
\(31\) 135.823 0.786919 0.393459 0.919342i \(-0.371278\pi\)
0.393459 + 0.919342i \(0.371278\pi\)
\(32\) −187.598 −1.03634
\(33\) 0 0
\(34\) 25.5986 0.129121
\(35\) 44.5955 0.215372
\(36\) −72.7645 −0.336873
\(37\) −181.035 −0.804378 −0.402189 0.915557i \(-0.631751\pi\)
−0.402189 + 0.915557i \(0.631751\pi\)
\(38\) −4.03943 −0.0172443
\(39\) −142.764 −0.586169
\(40\) 82.6985 0.326895
\(41\) 172.155 0.655759 0.327879 0.944720i \(-0.393666\pi\)
0.327879 + 0.944720i \(0.393666\pi\)
\(42\) −105.788 −0.388655
\(43\) 200.616 0.711480 0.355740 0.934585i \(-0.384229\pi\)
0.355740 + 0.934585i \(0.384229\pi\)
\(44\) 0 0
\(45\) 50.7632 0.168163
\(46\) −120.275 −0.385512
\(47\) −420.433 −1.30482 −0.652410 0.757866i \(-0.726242\pi\)
−0.652410 + 0.757866i \(0.726242\pi\)
\(48\) 92.7574 0.278924
\(49\) −218.656 −0.637481
\(50\) 164.141 0.464262
\(51\) −107.104 −0.294071
\(52\) 129.900 0.346422
\(53\) 756.563 1.96079 0.980395 0.197043i \(-0.0631338\pi\)
0.980395 + 0.197043i \(0.0631338\pi\)
\(54\) 135.728 0.342041
\(55\) 0 0
\(56\) 230.585 0.550237
\(57\) 16.9009 0.0392734
\(58\) 256.399 0.580462
\(59\) −681.645 −1.50411 −0.752056 0.659099i \(-0.770938\pi\)
−0.752056 + 0.659099i \(0.770938\pi\)
\(60\) −144.439 −0.310784
\(61\) −72.3490 −0.151858 −0.0759290 0.997113i \(-0.524192\pi\)
−0.0759290 + 0.997113i \(0.524192\pi\)
\(62\) −204.522 −0.418941
\(63\) 141.541 0.283056
\(64\) 164.702 0.321684
\(65\) −90.6234 −0.172930
\(66\) 0 0
\(67\) −600.206 −1.09443 −0.547215 0.836992i \(-0.684312\pi\)
−0.547215 + 0.836992i \(0.684312\pi\)
\(68\) 97.4536 0.173794
\(69\) 503.228 0.877994
\(70\) −67.1519 −0.114660
\(71\) −952.156 −1.59155 −0.795776 0.605592i \(-0.792936\pi\)
−0.795776 + 0.605592i \(0.792936\pi\)
\(72\) 262.476 0.429626
\(73\) −245.062 −0.392909 −0.196454 0.980513i \(-0.562943\pi\)
−0.196454 + 0.980513i \(0.562943\pi\)
\(74\) 272.603 0.428236
\(75\) −686.765 −1.05734
\(76\) −15.3780 −0.0232103
\(77\) 0 0
\(78\) 214.975 0.312065
\(79\) −292.538 −0.416621 −0.208311 0.978063i \(-0.566797\pi\)
−0.208311 + 0.978063i \(0.566797\pi\)
\(80\) 58.8802 0.0822875
\(81\) −910.599 −1.24911
\(82\) −259.231 −0.349114
\(83\) 1418.56 1.87599 0.937993 0.346655i \(-0.112683\pi\)
0.937993 + 0.346655i \(0.112683\pi\)
\(84\) −402.735 −0.523119
\(85\) −67.9873 −0.0867559
\(86\) −302.088 −0.378779
\(87\) −1072.77 −1.32199
\(88\) 0 0
\(89\) −578.399 −0.688879 −0.344439 0.938809i \(-0.611931\pi\)
−0.344439 + 0.938809i \(0.611931\pi\)
\(90\) −76.4393 −0.0895268
\(91\) −252.682 −0.291080
\(92\) −457.885 −0.518889
\(93\) 855.718 0.954127
\(94\) 633.089 0.694661
\(95\) 10.7283 0.0115863
\(96\) −1181.91 −1.25655
\(97\) 1150.30 1.20408 0.602040 0.798466i \(-0.294355\pi\)
0.602040 + 0.798466i \(0.294355\pi\)
\(98\) 329.252 0.339383
\(99\) 0 0
\(100\) 624.884 0.624884
\(101\) 397.161 0.391277 0.195638 0.980676i \(-0.437322\pi\)
0.195638 + 0.980676i \(0.437322\pi\)
\(102\) 161.278 0.156558
\(103\) −626.854 −0.599668 −0.299834 0.953991i \(-0.596931\pi\)
−0.299834 + 0.953991i \(0.596931\pi\)
\(104\) −468.577 −0.441805
\(105\) 280.963 0.261135
\(106\) −1139.23 −1.04389
\(107\) −842.255 −0.760971 −0.380485 0.924787i \(-0.624243\pi\)
−0.380485 + 0.924787i \(0.624243\pi\)
\(108\) 516.714 0.460378
\(109\) 1418.65 1.24662 0.623312 0.781974i \(-0.285787\pi\)
0.623312 + 0.781974i \(0.285787\pi\)
\(110\) 0 0
\(111\) −1140.57 −0.975295
\(112\) 164.173 0.138508
\(113\) −302.413 −0.251758 −0.125879 0.992046i \(-0.540175\pi\)
−0.125879 + 0.992046i \(0.540175\pi\)
\(114\) −25.4494 −0.0209084
\(115\) 319.437 0.259023
\(116\) 976.106 0.781286
\(117\) −287.629 −0.227276
\(118\) 1026.42 0.800761
\(119\) −189.566 −0.146030
\(120\) 521.022 0.396355
\(121\) 0 0
\(122\) 108.943 0.0808463
\(123\) 1084.62 0.795097
\(124\) −778.613 −0.563883
\(125\) −935.849 −0.669639
\(126\) −213.133 −0.150693
\(127\) 415.092 0.290027 0.145014 0.989430i \(-0.453677\pi\)
0.145014 + 0.989430i \(0.453677\pi\)
\(128\) 1252.77 0.865082
\(129\) 1263.93 0.862659
\(130\) 136.461 0.0920646
\(131\) 1435.89 0.957665 0.478832 0.877906i \(-0.341060\pi\)
0.478832 + 0.877906i \(0.341060\pi\)
\(132\) 0 0
\(133\) 29.9133 0.0195024
\(134\) 903.791 0.582654
\(135\) −360.479 −0.229815
\(136\) −351.535 −0.221646
\(137\) −1024.05 −0.638615 −0.319307 0.947651i \(-0.603450\pi\)
−0.319307 + 0.947651i \(0.603450\pi\)
\(138\) −757.761 −0.467427
\(139\) −111.869 −0.0682632 −0.0341316 0.999417i \(-0.510867\pi\)
−0.0341316 + 0.999417i \(0.510867\pi\)
\(140\) −255.647 −0.154329
\(141\) −2648.84 −1.58207
\(142\) 1433.76 0.847312
\(143\) 0 0
\(144\) 186.879 0.108148
\(145\) −680.968 −0.390009
\(146\) 369.014 0.209177
\(147\) −1377.59 −0.772936
\(148\) 1037.80 0.576393
\(149\) −1560.89 −0.858206 −0.429103 0.903256i \(-0.641170\pi\)
−0.429103 + 0.903256i \(0.641170\pi\)
\(150\) 1034.13 0.562910
\(151\) 905.685 0.488104 0.244052 0.969762i \(-0.421523\pi\)
0.244052 + 0.969762i \(0.421523\pi\)
\(152\) 55.4717 0.0296010
\(153\) −215.784 −0.114020
\(154\) 0 0
\(155\) 543.189 0.281484
\(156\) 818.405 0.420031
\(157\) −2995.40 −1.52267 −0.761335 0.648359i \(-0.775456\pi\)
−0.761335 + 0.648359i \(0.775456\pi\)
\(158\) 440.504 0.221801
\(159\) 4766.53 2.37743
\(160\) −750.250 −0.370703
\(161\) 890.675 0.435994
\(162\) 1371.18 0.665001
\(163\) −1021.29 −0.490759 −0.245379 0.969427i \(-0.578913\pi\)
−0.245379 + 0.969427i \(0.578913\pi\)
\(164\) −986.890 −0.469897
\(165\) 0 0
\(166\) −2136.06 −0.998739
\(167\) 1442.09 0.668216 0.334108 0.942535i \(-0.391565\pi\)
0.334108 + 0.942535i \(0.391565\pi\)
\(168\) 1452.75 0.667153
\(169\) −1683.52 −0.766282
\(170\) 102.375 0.0461872
\(171\) 34.0504 0.0152275
\(172\) −1150.04 −0.509826
\(173\) −3638.54 −1.59903 −0.799517 0.600644i \(-0.794911\pi\)
−0.799517 + 0.600644i \(0.794911\pi\)
\(174\) 1615.38 0.703801
\(175\) −1215.52 −0.525056
\(176\) 0 0
\(177\) −4294.54 −1.82371
\(178\) 870.954 0.366746
\(179\) 1093.04 0.456410 0.228205 0.973613i \(-0.426714\pi\)
0.228205 + 0.973613i \(0.426714\pi\)
\(180\) −291.003 −0.120501
\(181\) −813.441 −0.334047 −0.167024 0.985953i \(-0.553416\pi\)
−0.167024 + 0.985953i \(0.553416\pi\)
\(182\) 380.488 0.154965
\(183\) −455.817 −0.184125
\(184\) 1651.68 0.661758
\(185\) −724.005 −0.287729
\(186\) −1288.54 −0.507959
\(187\) 0 0
\(188\) 2410.16 0.934995
\(189\) −1005.11 −0.386830
\(190\) −16.1547 −0.00616834
\(191\) 898.735 0.340472 0.170236 0.985403i \(-0.445547\pi\)
0.170236 + 0.985403i \(0.445547\pi\)
\(192\) 1037.67 0.390037
\(193\) 110.064 0.0410496 0.0205248 0.999789i \(-0.493466\pi\)
0.0205248 + 0.999789i \(0.493466\pi\)
\(194\) −1732.13 −0.641029
\(195\) −570.950 −0.209675
\(196\) 1253.46 0.456800
\(197\) −4331.34 −1.56647 −0.783237 0.621723i \(-0.786433\pi\)
−0.783237 + 0.621723i \(0.786433\pi\)
\(198\) 0 0
\(199\) 1169.70 0.416674 0.208337 0.978057i \(-0.433195\pi\)
0.208337 + 0.978057i \(0.433195\pi\)
\(200\) −2254.08 −0.796938
\(201\) −3781.45 −1.32698
\(202\) −598.045 −0.208308
\(203\) −1898.72 −0.656472
\(204\) 613.982 0.210722
\(205\) 688.492 0.234568
\(206\) 943.917 0.319252
\(207\) 1013.86 0.340425
\(208\) −333.620 −0.111213
\(209\) 0 0
\(210\) −423.074 −0.139023
\(211\) −1998.27 −0.651975 −0.325987 0.945374i \(-0.605697\pi\)
−0.325987 + 0.945374i \(0.605697\pi\)
\(212\) −4337.04 −1.40504
\(213\) −5998.82 −1.92973
\(214\) 1268.27 0.405126
\(215\) 802.314 0.254499
\(216\) −1863.89 −0.587137
\(217\) 1514.55 0.473800
\(218\) −2136.20 −0.663678
\(219\) −1543.95 −0.476395
\(220\) 0 0
\(221\) 385.221 0.117252
\(222\) 1717.47 0.519229
\(223\) 2759.52 0.828660 0.414330 0.910127i \(-0.364016\pi\)
0.414330 + 0.910127i \(0.364016\pi\)
\(224\) −2091.89 −0.623976
\(225\) −1383.63 −0.409965
\(226\) 455.374 0.134031
\(227\) 1133.37 0.331386 0.165693 0.986177i \(-0.447014\pi\)
0.165693 + 0.986177i \(0.447014\pi\)
\(228\) −96.8856 −0.0281421
\(229\) 2038.96 0.588377 0.294188 0.955747i \(-0.404951\pi\)
0.294188 + 0.955747i \(0.404951\pi\)
\(230\) −481.009 −0.137899
\(231\) 0 0
\(232\) −3521.01 −0.996404
\(233\) −1183.12 −0.332656 −0.166328 0.986070i \(-0.553191\pi\)
−0.166328 + 0.986070i \(0.553191\pi\)
\(234\) 433.111 0.120997
\(235\) −1681.42 −0.466739
\(236\) 3907.57 1.07780
\(237\) −1843.06 −0.505147
\(238\) 285.449 0.0777434
\(239\) 2497.60 0.675967 0.337983 0.941152i \(-0.390255\pi\)
0.337983 + 0.941152i \(0.390255\pi\)
\(240\) 370.960 0.0997723
\(241\) −2821.54 −0.754156 −0.377078 0.926182i \(-0.623071\pi\)
−0.377078 + 0.926182i \(0.623071\pi\)
\(242\) 0 0
\(243\) −3303.32 −0.872049
\(244\) 414.745 0.108817
\(245\) −874.460 −0.228030
\(246\) −1633.22 −0.423295
\(247\) −60.7874 −0.0156592
\(248\) 2808.61 0.719141
\(249\) 8937.26 2.27460
\(250\) 1409.20 0.356503
\(251\) −2702.82 −0.679684 −0.339842 0.940483i \(-0.610374\pi\)
−0.339842 + 0.940483i \(0.610374\pi\)
\(252\) −811.394 −0.202829
\(253\) 0 0
\(254\) −625.046 −0.154405
\(255\) −428.337 −0.105190
\(256\) −3204.04 −0.782237
\(257\) −3368.12 −0.817499 −0.408750 0.912647i \(-0.634035\pi\)
−0.408750 + 0.912647i \(0.634035\pi\)
\(258\) −1903.23 −0.459263
\(259\) −2018.72 −0.484312
\(260\) 519.504 0.123916
\(261\) −2161.32 −0.512576
\(262\) −2162.16 −0.509843
\(263\) −7600.25 −1.78194 −0.890972 0.454058i \(-0.849976\pi\)
−0.890972 + 0.454058i \(0.849976\pi\)
\(264\) 0 0
\(265\) 3025.68 0.701382
\(266\) −45.0435 −0.0103827
\(267\) −3644.06 −0.835254
\(268\) 3440.72 0.784237
\(269\) 276.256 0.0626157 0.0313078 0.999510i \(-0.490033\pi\)
0.0313078 + 0.999510i \(0.490033\pi\)
\(270\) 542.809 0.122349
\(271\) 1881.55 0.421756 0.210878 0.977512i \(-0.432368\pi\)
0.210878 + 0.977512i \(0.432368\pi\)
\(272\) −250.288 −0.0557938
\(273\) −1591.96 −0.352929
\(274\) 1542.01 0.339986
\(275\) 0 0
\(276\) −2884.79 −0.629144
\(277\) 6207.66 1.34651 0.673253 0.739412i \(-0.264896\pi\)
0.673253 + 0.739412i \(0.264896\pi\)
\(278\) 168.452 0.0363420
\(279\) 1724.02 0.369945
\(280\) 922.168 0.196822
\(281\) 6991.90 1.48435 0.742174 0.670207i \(-0.233795\pi\)
0.742174 + 0.670207i \(0.233795\pi\)
\(282\) 3988.62 0.842266
\(283\) 2659.40 0.558604 0.279302 0.960203i \(-0.409897\pi\)
0.279302 + 0.960203i \(0.409897\pi\)
\(284\) 5458.30 1.14046
\(285\) 67.5910 0.0140482
\(286\) 0 0
\(287\) 1919.70 0.394829
\(288\) −2381.21 −0.487202
\(289\) 289.000 0.0588235
\(290\) 1025.40 0.207633
\(291\) 7247.21 1.45993
\(292\) 1404.83 0.281547
\(293\) −6449.04 −1.28586 −0.642930 0.765925i \(-0.722281\pi\)
−0.642930 + 0.765925i \(0.722281\pi\)
\(294\) 2074.37 0.411496
\(295\) −2726.07 −0.538027
\(296\) −3743.53 −0.735096
\(297\) 0 0
\(298\) 2350.38 0.456893
\(299\) −1809.96 −0.350076
\(300\) 3936.93 0.757662
\(301\) 2237.06 0.428379
\(302\) −1363.78 −0.259857
\(303\) 2502.21 0.474417
\(304\) 39.4951 0.00745131
\(305\) −289.342 −0.0543202
\(306\) 324.928 0.0607022
\(307\) −5577.92 −1.03697 −0.518483 0.855088i \(-0.673503\pi\)
−0.518483 + 0.855088i \(0.673503\pi\)
\(308\) 0 0
\(309\) −3949.34 −0.727087
\(310\) −817.935 −0.149857
\(311\) −4156.41 −0.757840 −0.378920 0.925429i \(-0.623704\pi\)
−0.378920 + 0.925429i \(0.623704\pi\)
\(312\) −2952.15 −0.535682
\(313\) −2372.20 −0.428385 −0.214193 0.976791i \(-0.568712\pi\)
−0.214193 + 0.976791i \(0.568712\pi\)
\(314\) 4510.48 0.810640
\(315\) 566.059 0.101250
\(316\) 1676.99 0.298539
\(317\) −908.954 −0.161047 −0.0805236 0.996753i \(-0.525659\pi\)
−0.0805236 + 0.996753i \(0.525659\pi\)
\(318\) −7177.45 −1.26570
\(319\) 0 0
\(320\) 658.686 0.115068
\(321\) −5306.42 −0.922665
\(322\) −1341.18 −0.232115
\(323\) −45.6038 −0.00785593
\(324\) 5220.07 0.895073
\(325\) 2470.08 0.421587
\(326\) 1537.86 0.261271
\(327\) 8937.85 1.51151
\(328\) 3559.91 0.599278
\(329\) −4688.24 −0.785626
\(330\) 0 0
\(331\) −7925.80 −1.31614 −0.658068 0.752958i \(-0.728626\pi\)
−0.658068 + 0.752958i \(0.728626\pi\)
\(332\) −8131.96 −1.34428
\(333\) −2297.91 −0.378152
\(334\) −2171.50 −0.355746
\(335\) −2400.38 −0.391482
\(336\) 1034.33 0.167939
\(337\) −4354.86 −0.703930 −0.351965 0.936013i \(-0.614486\pi\)
−0.351965 + 0.936013i \(0.614486\pi\)
\(338\) 2535.05 0.407954
\(339\) −1905.28 −0.305253
\(340\) 389.741 0.0621667
\(341\) 0 0
\(342\) −51.2732 −0.00810683
\(343\) −6263.00 −0.985920
\(344\) 4148.44 0.650200
\(345\) 2012.54 0.314062
\(346\) 5478.91 0.851295
\(347\) −2614.97 −0.404550 −0.202275 0.979329i \(-0.564833\pi\)
−0.202275 + 0.979329i \(0.564833\pi\)
\(348\) 6149.72 0.947297
\(349\) −7268.79 −1.11487 −0.557435 0.830221i \(-0.688214\pi\)
−0.557435 + 0.830221i \(0.688214\pi\)
\(350\) 1830.33 0.279530
\(351\) 2042.50 0.310600
\(352\) 0 0
\(353\) 4735.05 0.713941 0.356970 0.934116i \(-0.383810\pi\)
0.356970 + 0.934116i \(0.383810\pi\)
\(354\) 6466.72 0.970910
\(355\) −3807.91 −0.569304
\(356\) 3315.71 0.493630
\(357\) −1194.32 −0.177059
\(358\) −1645.90 −0.242984
\(359\) 584.329 0.0859045 0.0429523 0.999077i \(-0.486324\pi\)
0.0429523 + 0.999077i \(0.486324\pi\)
\(360\) 1049.71 0.153679
\(361\) −6851.80 −0.998951
\(362\) 1224.88 0.177840
\(363\) 0 0
\(364\) 1448.51 0.208579
\(365\) −980.064 −0.140545
\(366\) 686.369 0.0980248
\(367\) 9157.19 1.30246 0.651228 0.758882i \(-0.274254\pi\)
0.651228 + 0.758882i \(0.274254\pi\)
\(368\) 1175.97 0.166581
\(369\) 2185.20 0.308284
\(370\) 1090.21 0.153182
\(371\) 8436.40 1.18058
\(372\) −4905.46 −0.683699
\(373\) 4022.61 0.558399 0.279200 0.960233i \(-0.409931\pi\)
0.279200 + 0.960233i \(0.409931\pi\)
\(374\) 0 0
\(375\) −5896.08 −0.811926
\(376\) −8693.94 −1.19243
\(377\) 3858.42 0.527106
\(378\) 1513.49 0.205941
\(379\) 7595.19 1.02939 0.514695 0.857373i \(-0.327905\pi\)
0.514695 + 0.857373i \(0.327905\pi\)
\(380\) −61.5007 −0.00830242
\(381\) 2615.18 0.351653
\(382\) −1353.32 −0.181261
\(383\) 796.779 0.106302 0.0531508 0.998586i \(-0.483074\pi\)
0.0531508 + 0.998586i \(0.483074\pi\)
\(384\) 7892.78 1.04890
\(385\) 0 0
\(386\) −165.734 −0.0218540
\(387\) 2546.45 0.334480
\(388\) −6594.19 −0.862808
\(389\) −12611.6 −1.64378 −0.821892 0.569643i \(-0.807082\pi\)
−0.821892 + 0.569643i \(0.807082\pi\)
\(390\) 859.737 0.111627
\(391\) −1357.86 −0.175627
\(392\) −4521.48 −0.582575
\(393\) 9046.46 1.16115
\(394\) 6522.14 0.833961
\(395\) −1169.93 −0.149027
\(396\) 0 0
\(397\) 5783.57 0.731157 0.365578 0.930781i \(-0.380871\pi\)
0.365578 + 0.930781i \(0.380871\pi\)
\(398\) −1761.34 −0.221829
\(399\) 188.461 0.0236463
\(400\) −1604.87 −0.200609
\(401\) 4826.35 0.601038 0.300519 0.953776i \(-0.402840\pi\)
0.300519 + 0.953776i \(0.402840\pi\)
\(402\) 5694.11 0.706459
\(403\) −3077.75 −0.380431
\(404\) −2276.75 −0.280378
\(405\) −3641.71 −0.446810
\(406\) 2859.09 0.349493
\(407\) 0 0
\(408\) −2214.76 −0.268742
\(409\) −16074.0 −1.94329 −0.971647 0.236435i \(-0.924021\pi\)
−0.971647 + 0.236435i \(0.924021\pi\)
\(410\) −1036.73 −0.124879
\(411\) −6451.75 −0.774310
\(412\) 3593.48 0.429704
\(413\) −7601.00 −0.905619
\(414\) −1526.67 −0.181236
\(415\) 5673.16 0.671047
\(416\) 4250.98 0.501013
\(417\) −704.802 −0.0827681
\(418\) 0 0
\(419\) −7459.94 −0.869789 −0.434895 0.900481i \(-0.643214\pi\)
−0.434895 + 0.900481i \(0.643214\pi\)
\(420\) −1610.64 −0.187122
\(421\) 11766.6 1.36216 0.681078 0.732211i \(-0.261512\pi\)
0.681078 + 0.732211i \(0.261512\pi\)
\(422\) 3009.00 0.347099
\(423\) −5336.64 −0.613419
\(424\) 15644.6 1.79191
\(425\) 1853.10 0.211503
\(426\) 9033.03 1.02735
\(427\) −806.761 −0.0914330
\(428\) 4828.28 0.545289
\(429\) 0 0
\(430\) −1208.12 −0.135491
\(431\) 12685.4 1.41771 0.708856 0.705353i \(-0.249212\pi\)
0.708856 + 0.705353i \(0.249212\pi\)
\(432\) −1327.06 −0.147797
\(433\) −12744.4 −1.41445 −0.707224 0.706989i \(-0.750053\pi\)
−0.707224 + 0.706989i \(0.750053\pi\)
\(434\) −2280.62 −0.252242
\(435\) −4290.27 −0.472880
\(436\) −8132.50 −0.893293
\(437\) 214.269 0.0234551
\(438\) 2324.88 0.253624
\(439\) 6537.10 0.710703 0.355351 0.934733i \(-0.384361\pi\)
0.355351 + 0.934733i \(0.384361\pi\)
\(440\) 0 0
\(441\) −2775.44 −0.299691
\(442\) −580.067 −0.0624230
\(443\) −7378.24 −0.791311 −0.395655 0.918399i \(-0.629483\pi\)
−0.395655 + 0.918399i \(0.629483\pi\)
\(444\) 6538.37 0.698868
\(445\) −2313.16 −0.246415
\(446\) −4155.29 −0.441163
\(447\) −9833.97 −1.04056
\(448\) 1836.59 0.193685
\(449\) −5208.16 −0.547413 −0.273706 0.961813i \(-0.588250\pi\)
−0.273706 + 0.961813i \(0.588250\pi\)
\(450\) 2083.48 0.218258
\(451\) 0 0
\(452\) 1733.60 0.180402
\(453\) 5706.05 0.591818
\(454\) −1706.63 −0.176424
\(455\) −1010.54 −0.104120
\(456\) 349.486 0.0358907
\(457\) −3386.48 −0.346637 −0.173318 0.984866i \(-0.555449\pi\)
−0.173318 + 0.984866i \(0.555449\pi\)
\(458\) −3070.27 −0.313241
\(459\) 1532.32 0.155823
\(460\) −1831.20 −0.185609
\(461\) −16291.9 −1.64596 −0.822980 0.568070i \(-0.807690\pi\)
−0.822980 + 0.568070i \(0.807690\pi\)
\(462\) 0 0
\(463\) 9107.57 0.914179 0.457089 0.889421i \(-0.348892\pi\)
0.457089 + 0.889421i \(0.348892\pi\)
\(464\) −2506.91 −0.250820
\(465\) 3422.23 0.341295
\(466\) 1781.55 0.177100
\(467\) −11862.5 −1.17545 −0.587723 0.809063i \(-0.699975\pi\)
−0.587723 + 0.809063i \(0.699975\pi\)
\(468\) 1648.85 0.162859
\(469\) −6692.88 −0.658952
\(470\) 2531.88 0.248483
\(471\) −18871.8 −1.84621
\(472\) −14095.4 −1.37456
\(473\) 0 0
\(474\) 2775.29 0.268931
\(475\) −292.417 −0.0282463
\(476\) 1086.70 0.104640
\(477\) 9603.18 0.921802
\(478\) −3760.88 −0.359872
\(479\) −19704.9 −1.87962 −0.939812 0.341691i \(-0.889000\pi\)
−0.939812 + 0.341691i \(0.889000\pi\)
\(480\) −4726.76 −0.449471
\(481\) 4102.27 0.388872
\(482\) 4248.68 0.401498
\(483\) 5611.48 0.528636
\(484\) 0 0
\(485\) 4600.36 0.430704
\(486\) 4974.14 0.464262
\(487\) 16784.5 1.56176 0.780881 0.624680i \(-0.214771\pi\)
0.780881 + 0.624680i \(0.214771\pi\)
\(488\) −1496.07 −0.138778
\(489\) −6434.39 −0.595037
\(490\) 1316.76 0.121399
\(491\) 14282.0 1.31270 0.656351 0.754455i \(-0.272099\pi\)
0.656351 + 0.754455i \(0.272099\pi\)
\(492\) −6217.66 −0.569743
\(493\) 2894.66 0.264440
\(494\) 91.5338 0.00833664
\(495\) 0 0
\(496\) 1999.69 0.181026
\(497\) −10617.5 −0.958265
\(498\) −13457.7 −1.21095
\(499\) −20353.7 −1.82597 −0.912983 0.407997i \(-0.866227\pi\)
−0.912983 + 0.407997i \(0.866227\pi\)
\(500\) 5364.81 0.479843
\(501\) 9085.52 0.810202
\(502\) 4069.91 0.361851
\(503\) 4074.93 0.361217 0.180609 0.983555i \(-0.442193\pi\)
0.180609 + 0.983555i \(0.442193\pi\)
\(504\) 2926.86 0.258676
\(505\) 1588.35 0.139961
\(506\) 0 0
\(507\) −10606.6 −0.929104
\(508\) −2379.54 −0.207825
\(509\) 8484.72 0.738857 0.369429 0.929259i \(-0.379553\pi\)
0.369429 + 0.929259i \(0.379553\pi\)
\(510\) 644.990 0.0560013
\(511\) −2732.68 −0.236568
\(512\) −5197.53 −0.448634
\(513\) −241.798 −0.0208103
\(514\) 5071.71 0.435221
\(515\) −2506.95 −0.214503
\(516\) −7245.57 −0.618156
\(517\) 0 0
\(518\) 3039.78 0.257839
\(519\) −22923.7 −1.93880
\(520\) −1873.96 −0.158035
\(521\) −8623.25 −0.725128 −0.362564 0.931959i \(-0.618099\pi\)
−0.362564 + 0.931959i \(0.618099\pi\)
\(522\) 3254.51 0.272885
\(523\) −3442.52 −0.287822 −0.143911 0.989591i \(-0.545968\pi\)
−0.143911 + 0.989591i \(0.545968\pi\)
\(524\) −8231.32 −0.686234
\(525\) −7658.09 −0.636622
\(526\) 11444.5 0.948673
\(527\) −2308.99 −0.190856
\(528\) 0 0
\(529\) −5787.10 −0.475639
\(530\) −4556.08 −0.373402
\(531\) −8652.24 −0.707110
\(532\) −171.480 −0.0139748
\(533\) −3901.05 −0.317023
\(534\) 5487.23 0.444674
\(535\) −3368.39 −0.272202
\(536\) −12411.4 −1.00017
\(537\) 6886.41 0.553390
\(538\) −415.986 −0.0333354
\(539\) 0 0
\(540\) 2066.47 0.164679
\(541\) −16491.7 −1.31060 −0.655298 0.755371i \(-0.727457\pi\)
−0.655298 + 0.755371i \(0.727457\pi\)
\(542\) −2833.23 −0.224535
\(543\) −5124.88 −0.405027
\(544\) 3189.16 0.251349
\(545\) 5673.53 0.445922
\(546\) 2397.17 0.187893
\(547\) −8902.21 −0.695852 −0.347926 0.937522i \(-0.613114\pi\)
−0.347926 + 0.937522i \(0.613114\pi\)
\(548\) 5870.41 0.457612
\(549\) −918.338 −0.0713911
\(550\) 0 0
\(551\) −456.773 −0.0353161
\(552\) 10406.0 0.802372
\(553\) −3262.08 −0.250846
\(554\) −9347.50 −0.716854
\(555\) −4561.41 −0.348867
\(556\) 641.295 0.0489154
\(557\) 16074.9 1.22283 0.611415 0.791310i \(-0.290601\pi\)
0.611415 + 0.791310i \(0.290601\pi\)
\(558\) −2596.03 −0.196951
\(559\) −4545.98 −0.343961
\(560\) 656.571 0.0495449
\(561\) 0 0
\(562\) −10528.4 −0.790239
\(563\) 15287.1 1.14436 0.572181 0.820127i \(-0.306098\pi\)
0.572181 + 0.820127i \(0.306098\pi\)
\(564\) 15184.6 1.13367
\(565\) −1209.43 −0.0900548
\(566\) −4004.53 −0.297390
\(567\) −10154.1 −0.752082
\(568\) −19689.2 −1.45447
\(569\) 3.71723 0.000273874 0 0.000136937 1.00000i \(-0.499956\pi\)
0.000136937 1.00000i \(0.499956\pi\)
\(570\) −101.779 −0.00747901
\(571\) 4733.15 0.346893 0.173447 0.984843i \(-0.444510\pi\)
0.173447 + 0.984843i \(0.444510\pi\)
\(572\) 0 0
\(573\) 5662.26 0.412817
\(574\) −2890.68 −0.210200
\(575\) −8706.78 −0.631474
\(576\) 2090.60 0.151229
\(577\) −25103.3 −1.81120 −0.905602 0.424128i \(-0.860581\pi\)
−0.905602 + 0.424128i \(0.860581\pi\)
\(578\) −435.176 −0.0313165
\(579\) 693.430 0.0497720
\(580\) 3903.69 0.279469
\(581\) 15818.3 1.12952
\(582\) −10912.9 −0.777238
\(583\) 0 0
\(584\) −5067.51 −0.359067
\(585\) −1150.30 −0.0812974
\(586\) 9710.97 0.684567
\(587\) −10840.2 −0.762220 −0.381110 0.924530i \(-0.624458\pi\)
−0.381110 + 0.924530i \(0.624458\pi\)
\(588\) 7897.11 0.553863
\(589\) 364.355 0.0254889
\(590\) 4104.92 0.286435
\(591\) −27288.6 −1.89932
\(592\) −2665.34 −0.185042
\(593\) 20976.0 1.45258 0.726290 0.687389i \(-0.241243\pi\)
0.726290 + 0.687389i \(0.241243\pi\)
\(594\) 0 0
\(595\) −758.123 −0.0522353
\(596\) 8947.87 0.614965
\(597\) 7369.44 0.505211
\(598\) 2725.44 0.186374
\(599\) −18749.5 −1.27894 −0.639469 0.768817i \(-0.720846\pi\)
−0.639469 + 0.768817i \(0.720846\pi\)
\(600\) −14201.3 −0.966275
\(601\) −20116.2 −1.36532 −0.682660 0.730737i \(-0.739177\pi\)
−0.682660 + 0.730737i \(0.739177\pi\)
\(602\) −3368.57 −0.228061
\(603\) −7618.52 −0.514511
\(604\) −5191.90 −0.349761
\(605\) 0 0
\(606\) −3767.83 −0.252571
\(607\) 26832.4 1.79422 0.897112 0.441803i \(-0.145661\pi\)
0.897112 + 0.441803i \(0.145661\pi\)
\(608\) −503.245 −0.0335679
\(609\) −11962.4 −0.795962
\(610\) 435.691 0.0289190
\(611\) 9527.06 0.630808
\(612\) 1237.00 0.0817036
\(613\) −6053.43 −0.398851 −0.199425 0.979913i \(-0.563908\pi\)
−0.199425 + 0.979913i \(0.563908\pi\)
\(614\) 8399.24 0.552061
\(615\) 4337.67 0.284409
\(616\) 0 0
\(617\) 1053.63 0.0687483 0.0343741 0.999409i \(-0.489056\pi\)
0.0343741 + 0.999409i \(0.489056\pi\)
\(618\) 5946.92 0.387088
\(619\) −402.567 −0.0261398 −0.0130699 0.999915i \(-0.504160\pi\)
−0.0130699 + 0.999915i \(0.504160\pi\)
\(620\) −3113.87 −0.201703
\(621\) −7199.60 −0.465233
\(622\) 6258.72 0.403460
\(623\) −6449.71 −0.414771
\(624\) −2101.89 −0.134844
\(625\) 9883.06 0.632516
\(626\) 3572.06 0.228064
\(627\) 0 0
\(628\) 17171.3 1.09110
\(629\) 3077.60 0.195090
\(630\) −852.372 −0.0539036
\(631\) 13810.4 0.871290 0.435645 0.900119i \(-0.356520\pi\)
0.435645 + 0.900119i \(0.356520\pi\)
\(632\) −6049.25 −0.380738
\(633\) −12589.6 −0.790509
\(634\) 1368.70 0.0857385
\(635\) 1660.06 0.103744
\(636\) −27324.5 −1.70359
\(637\) 4954.76 0.308187
\(638\) 0 0
\(639\) −12085.9 −0.748216
\(640\) 5010.15 0.309443
\(641\) −6107.76 −0.376353 −0.188176 0.982135i \(-0.560258\pi\)
−0.188176 + 0.982135i \(0.560258\pi\)
\(642\) 7990.41 0.491209
\(643\) 18237.5 1.11853 0.559267 0.828988i \(-0.311083\pi\)
0.559267 + 0.828988i \(0.311083\pi\)
\(644\) −5105.85 −0.312420
\(645\) 5054.78 0.308576
\(646\) 68.6703 0.00418235
\(647\) −2257.88 −0.137197 −0.0685985 0.997644i \(-0.521853\pi\)
−0.0685985 + 0.997644i \(0.521853\pi\)
\(648\) −18829.8 −1.14152
\(649\) 0 0
\(650\) −3719.46 −0.224445
\(651\) 9542.07 0.574475
\(652\) 5854.62 0.351663
\(653\) 11855.0 0.710447 0.355224 0.934781i \(-0.384405\pi\)
0.355224 + 0.934781i \(0.384405\pi\)
\(654\) −13458.6 −0.804700
\(655\) 5742.48 0.342560
\(656\) 2534.61 0.150853
\(657\) −3110.62 −0.184713
\(658\) 7059.55 0.418252
\(659\) 23007.2 1.35999 0.679995 0.733217i \(-0.261982\pi\)
0.679995 + 0.733217i \(0.261982\pi\)
\(660\) 0 0
\(661\) 9957.76 0.585949 0.292974 0.956120i \(-0.405355\pi\)
0.292974 + 0.956120i \(0.405355\pi\)
\(662\) 11934.7 0.700686
\(663\) 2426.99 0.142167
\(664\) 29333.6 1.71441
\(665\) 119.631 0.00697607
\(666\) 3460.20 0.201321
\(667\) −13600.5 −0.789526
\(668\) −8266.86 −0.478824
\(669\) 17385.7 1.00474
\(670\) 3614.49 0.208418
\(671\) 0 0
\(672\) −13179.5 −0.756561
\(673\) 16409.4 0.939875 0.469937 0.882700i \(-0.344277\pi\)
0.469937 + 0.882700i \(0.344277\pi\)
\(674\) 6557.55 0.374759
\(675\) 9825.43 0.560268
\(676\) 9650.89 0.549095
\(677\) 1840.32 0.104475 0.0522374 0.998635i \(-0.483365\pi\)
0.0522374 + 0.998635i \(0.483365\pi\)
\(678\) 2868.97 0.162511
\(679\) 12827.0 0.724971
\(680\) −1405.88 −0.0792836
\(681\) 7140.54 0.401800
\(682\) 0 0
\(683\) 10437.7 0.584757 0.292378 0.956303i \(-0.405553\pi\)
0.292378 + 0.956303i \(0.405553\pi\)
\(684\) −195.196 −0.0109116
\(685\) −4095.42 −0.228435
\(686\) 9430.84 0.524885
\(687\) 12846.0 0.713398
\(688\) 2953.63 0.163672
\(689\) −17143.8 −0.947933
\(690\) −3030.48 −0.167200
\(691\) 28169.6 1.55083 0.775413 0.631454i \(-0.217542\pi\)
0.775413 + 0.631454i \(0.217542\pi\)
\(692\) 20858.1 1.14582
\(693\) 0 0
\(694\) 3937.62 0.215375
\(695\) −447.391 −0.0244180
\(696\) −22183.3 −1.20812
\(697\) −2926.64 −0.159045
\(698\) 10945.4 0.593535
\(699\) −7453.97 −0.403340
\(700\) 6968.06 0.376240
\(701\) 35428.2 1.90885 0.954425 0.298451i \(-0.0964699\pi\)
0.954425 + 0.298451i \(0.0964699\pi\)
\(702\) −3075.60 −0.165358
\(703\) −485.641 −0.0260545
\(704\) 0 0
\(705\) −10593.4 −0.565914
\(706\) −7130.04 −0.380088
\(707\) 4428.72 0.235586
\(708\) 24618.7 1.30682
\(709\) −1867.54 −0.0989235 −0.0494618 0.998776i \(-0.515751\pi\)
−0.0494618 + 0.998776i \(0.515751\pi\)
\(710\) 5733.96 0.303087
\(711\) −3713.24 −0.195861
\(712\) −11960.4 −0.629545
\(713\) 10848.7 0.569830
\(714\) 1798.40 0.0942626
\(715\) 0 0
\(716\) −6265.91 −0.327050
\(717\) 15735.5 0.819599
\(718\) −879.883 −0.0457339
\(719\) 4174.43 0.216523 0.108261 0.994122i \(-0.465472\pi\)
0.108261 + 0.994122i \(0.465472\pi\)
\(720\) 747.377 0.0386848
\(721\) −6990.02 −0.361057
\(722\) 10317.5 0.531822
\(723\) −17776.4 −0.914402
\(724\) 4663.10 0.239368
\(725\) 18560.9 0.950805
\(726\) 0 0
\(727\) −13141.5 −0.670414 −0.335207 0.942144i \(-0.608806\pi\)
−0.335207 + 0.942144i \(0.608806\pi\)
\(728\) −5225.08 −0.266009
\(729\) 3774.45 0.191762
\(730\) 1475.78 0.0748235
\(731\) −3410.47 −0.172559
\(732\) 2613.00 0.131939
\(733\) 13987.8 0.704842 0.352421 0.935842i \(-0.385358\pi\)
0.352421 + 0.935842i \(0.385358\pi\)
\(734\) −13788.9 −0.693403
\(735\) −5509.32 −0.276482
\(736\) −14984.2 −0.750443
\(737\) 0 0
\(738\) −3290.47 −0.164124
\(739\) −28875.4 −1.43735 −0.718674 0.695347i \(-0.755251\pi\)
−0.718674 + 0.695347i \(0.755251\pi\)
\(740\) 4150.40 0.206178
\(741\) −382.976 −0.0189865
\(742\) −12703.5 −0.628520
\(743\) −36283.9 −1.79156 −0.895778 0.444501i \(-0.853381\pi\)
−0.895778 + 0.444501i \(0.853381\pi\)
\(744\) 17695.0 0.871947
\(745\) −6242.37 −0.306984
\(746\) −6057.25 −0.297281
\(747\) 18006.0 0.881934
\(748\) 0 0
\(749\) −9391.95 −0.458177
\(750\) 8878.33 0.432254
\(751\) −4118.63 −0.200121 −0.100060 0.994981i \(-0.531904\pi\)
−0.100060 + 0.994981i \(0.531904\pi\)
\(752\) −6189.96 −0.300166
\(753\) −17028.5 −0.824106
\(754\) −5810.01 −0.280621
\(755\) 3622.06 0.174597
\(756\) 5761.85 0.277191
\(757\) −29532.3 −1.41792 −0.708962 0.705246i \(-0.750836\pi\)
−0.708962 + 0.705246i \(0.750836\pi\)
\(758\) −11436.8 −0.548028
\(759\) 0 0
\(760\) 221.845 0.0105884
\(761\) −12128.1 −0.577717 −0.288858 0.957372i \(-0.593276\pi\)
−0.288858 + 0.957372i \(0.593276\pi\)
\(762\) −3937.95 −0.187214
\(763\) 15819.3 0.750586
\(764\) −5152.06 −0.243972
\(765\) −862.975 −0.0407855
\(766\) −1199.79 −0.0565929
\(767\) 15446.1 0.727155
\(768\) −20186.3 −0.948450
\(769\) 30084.4 1.41076 0.705378 0.708831i \(-0.250777\pi\)
0.705378 + 0.708831i \(0.250777\pi\)
\(770\) 0 0
\(771\) −21220.0 −0.991205
\(772\) −630.948 −0.0294149
\(773\) −31795.7 −1.47945 −0.739724 0.672911i \(-0.765044\pi\)
−0.739724 + 0.672911i \(0.765044\pi\)
\(774\) −3834.45 −0.178071
\(775\) −14805.5 −0.686231
\(776\) 23786.6 1.10037
\(777\) −12718.4 −0.587221
\(778\) 18990.5 0.875120
\(779\) 461.820 0.0212406
\(780\) 3273.01 0.150247
\(781\) 0 0
\(782\) 2044.67 0.0935004
\(783\) 15347.9 0.700498
\(784\) −3219.23 −0.146649
\(785\) −11979.4 −0.544665
\(786\) −13622.2 −0.618176
\(787\) 9408.43 0.426143 0.213071 0.977037i \(-0.431653\pi\)
0.213071 + 0.977037i \(0.431653\pi\)
\(788\) 24829.7 1.12249
\(789\) −47883.5 −2.16058
\(790\) 1761.69 0.0793392
\(791\) −3372.20 −0.151582
\(792\) 0 0
\(793\) 1639.43 0.0734149
\(794\) −8708.91 −0.389254
\(795\) 19062.6 0.850415
\(796\) −6705.41 −0.298576
\(797\) 14202.5 0.631213 0.315606 0.948890i \(-0.397792\pi\)
0.315606 + 0.948890i \(0.397792\pi\)
\(798\) −283.785 −0.0125888
\(799\) 7147.37 0.316465
\(800\) 20449.3 0.903739
\(801\) −7341.73 −0.323854
\(802\) −7267.52 −0.319981
\(803\) 0 0
\(804\) 21677.4 0.950875
\(805\) 3562.03 0.155957
\(806\) 4634.49 0.202534
\(807\) 1740.48 0.0759205
\(808\) 8212.69 0.357576
\(809\) −22964.2 −0.997994 −0.498997 0.866604i \(-0.666298\pi\)
−0.498997 + 0.866604i \(0.666298\pi\)
\(810\) 5483.70 0.237873
\(811\) −20308.8 −0.879332 −0.439666 0.898161i \(-0.644903\pi\)
−0.439666 + 0.898161i \(0.644903\pi\)
\(812\) 10884.5 0.470409
\(813\) 11854.2 0.511372
\(814\) 0 0
\(815\) −4084.40 −0.175546
\(816\) −1576.88 −0.0676491
\(817\) 538.168 0.0230454
\(818\) 24204.2 1.03457
\(819\) −3207.33 −0.136842
\(820\) −3946.82 −0.168084
\(821\) −21937.1 −0.932536 −0.466268 0.884644i \(-0.654402\pi\)
−0.466268 + 0.884644i \(0.654402\pi\)
\(822\) 9715.05 0.412228
\(823\) −5914.24 −0.250495 −0.125247 0.992126i \(-0.539972\pi\)
−0.125247 + 0.992126i \(0.539972\pi\)
\(824\) −12962.4 −0.548018
\(825\) 0 0
\(826\) 11445.6 0.482134
\(827\) 31820.1 1.33796 0.668980 0.743281i \(-0.266731\pi\)
0.668980 + 0.743281i \(0.266731\pi\)
\(828\) −5812.01 −0.243939
\(829\) 11709.5 0.490577 0.245288 0.969450i \(-0.421117\pi\)
0.245288 + 0.969450i \(0.421117\pi\)
\(830\) −8542.65 −0.357253
\(831\) 39109.8 1.63262
\(832\) −3732.17 −0.155516
\(833\) 3717.15 0.154612
\(834\) 1061.29 0.0440641
\(835\) 5767.27 0.239024
\(836\) 0 0
\(837\) −12242.6 −0.505575
\(838\) 11233.2 0.463059
\(839\) 9060.54 0.372830 0.186415 0.982471i \(-0.440313\pi\)
0.186415 + 0.982471i \(0.440313\pi\)
\(840\) 5809.89 0.238643
\(841\) 4604.22 0.188782
\(842\) −17718.1 −0.725186
\(843\) 44050.8 1.79975
\(844\) 11455.2 0.467186
\(845\) −6732.82 −0.274102
\(846\) 8035.91 0.326573
\(847\) 0 0
\(848\) 11138.7 0.451067
\(849\) 16754.9 0.677299
\(850\) −2790.40 −0.112600
\(851\) −14460.0 −0.582473
\(852\) 34388.6 1.38279
\(853\) 22288.1 0.894641 0.447321 0.894374i \(-0.352378\pi\)
0.447321 + 0.894374i \(0.352378\pi\)
\(854\) 1214.82 0.0486772
\(855\) 136.176 0.00544694
\(856\) −17416.6 −0.695428
\(857\) 21176.9 0.844095 0.422048 0.906574i \(-0.361311\pi\)
0.422048 + 0.906574i \(0.361311\pi\)
\(858\) 0 0
\(859\) 46426.9 1.84408 0.922040 0.387094i \(-0.126521\pi\)
0.922040 + 0.387094i \(0.126521\pi\)
\(860\) −4599.31 −0.182367
\(861\) 12094.6 0.478724
\(862\) −19101.7 −0.754763
\(863\) 10335.0 0.407657 0.203828 0.979007i \(-0.434662\pi\)
0.203828 + 0.979007i \(0.434662\pi\)
\(864\) 16909.4 0.665822
\(865\) −14551.4 −0.571980
\(866\) 19190.5 0.753025
\(867\) 1820.77 0.0713226
\(868\) −8682.28 −0.339511
\(869\) 0 0
\(870\) 6460.29 0.251752
\(871\) 13600.7 0.529096
\(872\) 29335.5 1.13925
\(873\) 14601.0 0.566059
\(874\) −322.646 −0.0124870
\(875\) −10435.6 −0.403186
\(876\) 8850.80 0.341371
\(877\) −41945.5 −1.61505 −0.807526 0.589832i \(-0.799194\pi\)
−0.807526 + 0.589832i \(0.799194\pi\)
\(878\) −9843.56 −0.378365
\(879\) −40630.6 −1.55908
\(880\) 0 0
\(881\) 28124.0 1.07551 0.537753 0.843103i \(-0.319273\pi\)
0.537753 + 0.843103i \(0.319273\pi\)
\(882\) 4179.26 0.159550
\(883\) 23637.1 0.900852 0.450426 0.892814i \(-0.351272\pi\)
0.450426 + 0.892814i \(0.351272\pi\)
\(884\) −2208.31 −0.0840197
\(885\) −17174.9 −0.652349
\(886\) 11110.2 0.421279
\(887\) −11521.8 −0.436150 −0.218075 0.975932i \(-0.569978\pi\)
−0.218075 + 0.975932i \(0.569978\pi\)
\(888\) −23585.2 −0.891293
\(889\) 4628.68 0.174624
\(890\) 3483.16 0.131186
\(891\) 0 0
\(892\) −15819.1 −0.593793
\(893\) −1127.85 −0.0422642
\(894\) 14808.0 0.553975
\(895\) 4371.33 0.163260
\(896\) 13969.6 0.520862
\(897\) −11403.2 −0.424461
\(898\) 7842.45 0.291432
\(899\) −23127.1 −0.857988
\(900\) 7931.76 0.293769
\(901\) −12861.6 −0.475561
\(902\) 0 0
\(903\) 14094.0 0.519403
\(904\) −6253.45 −0.230074
\(905\) −3253.15 −0.119490
\(906\) −8592.17 −0.315073
\(907\) 44016.0 1.61139 0.805693 0.592334i \(-0.201793\pi\)
0.805693 + 0.592334i \(0.201793\pi\)
\(908\) −6497.13 −0.237461
\(909\) 5041.23 0.183946
\(910\) 1521.67 0.0554317
\(911\) −23513.9 −0.855159 −0.427579 0.903978i \(-0.640634\pi\)
−0.427579 + 0.903978i \(0.640634\pi\)
\(912\) 248.829 0.00903459
\(913\) 0 0
\(914\) 5099.37 0.184543
\(915\) −1822.93 −0.0658624
\(916\) −11688.5 −0.421614
\(917\) 16011.5 0.576606
\(918\) −2307.37 −0.0829571
\(919\) 37913.4 1.36088 0.680440 0.732804i \(-0.261789\pi\)
0.680440 + 0.732804i \(0.261789\pi\)
\(920\) 6605.49 0.236714
\(921\) −35142.3 −1.25731
\(922\) 24532.3 0.876278
\(923\) 21575.9 0.769426
\(924\) 0 0
\(925\) 19733.9 0.701456
\(926\) −13714.2 −0.486691
\(927\) −7956.77 −0.281914
\(928\) 31943.0 1.12994
\(929\) 4936.27 0.174331 0.0871657 0.996194i \(-0.472219\pi\)
0.0871657 + 0.996194i \(0.472219\pi\)
\(930\) −5153.20 −0.181699
\(931\) −586.562 −0.0206485
\(932\) 6782.32 0.238372
\(933\) −26186.4 −0.918869
\(934\) 17862.6 0.625785
\(935\) 0 0
\(936\) −5947.73 −0.207700
\(937\) 5470.99 0.190746 0.0953732 0.995442i \(-0.469596\pi\)
0.0953732 + 0.995442i \(0.469596\pi\)
\(938\) 10078.1 0.350813
\(939\) −14945.5 −0.519411
\(940\) 9638.84 0.334451
\(941\) −6841.46 −0.237009 −0.118504 0.992954i \(-0.537810\pi\)
−0.118504 + 0.992954i \(0.537810\pi\)
\(942\) 28417.2 0.982889
\(943\) 13750.8 0.474853
\(944\) −10035.7 −0.346012
\(945\) −4019.69 −0.138371
\(946\) 0 0
\(947\) 41759.2 1.43294 0.716469 0.697619i \(-0.245757\pi\)
0.716469 + 0.697619i \(0.245757\pi\)
\(948\) 10565.5 0.361973
\(949\) 5553.12 0.189949
\(950\) 440.322 0.0150378
\(951\) −5726.64 −0.195267
\(952\) −3919.95 −0.133452
\(953\) 9149.56 0.311000 0.155500 0.987836i \(-0.450301\pi\)
0.155500 + 0.987836i \(0.450301\pi\)
\(954\) −14460.5 −0.490750
\(955\) 3594.27 0.121788
\(956\) −14317.6 −0.484378
\(957\) 0 0
\(958\) 29671.7 1.00068
\(959\) −11419.1 −0.384507
\(960\) 4149.89 0.139518
\(961\) −11343.2 −0.380759
\(962\) −6177.20 −0.207028
\(963\) −10690.9 −0.357746
\(964\) 16174.7 0.540406
\(965\) 440.173 0.0146836
\(966\) −8449.77 −0.281436
\(967\) −6328.85 −0.210467 −0.105234 0.994448i \(-0.533559\pi\)
−0.105234 + 0.994448i \(0.533559\pi\)
\(968\) 0 0
\(969\) −287.316 −0.00952519
\(970\) −6927.22 −0.229299
\(971\) 35693.4 1.17967 0.589834 0.807525i \(-0.299193\pi\)
0.589834 + 0.807525i \(0.299193\pi\)
\(972\) 18936.5 0.624884
\(973\) −1247.44 −0.0411010
\(974\) −25274.1 −0.831452
\(975\) 15562.2 0.511167
\(976\) −1065.18 −0.0349340
\(977\) 48332.9 1.58271 0.791355 0.611357i \(-0.209376\pi\)
0.791355 + 0.611357i \(0.209376\pi\)
\(978\) 9688.91 0.316787
\(979\) 0 0
\(980\) 5012.90 0.163399
\(981\) 18007.2 0.586060
\(982\) −21505.8 −0.698858
\(983\) −471.913 −0.0153120 −0.00765599 0.999971i \(-0.502437\pi\)
−0.00765599 + 0.999971i \(0.502437\pi\)
\(984\) 22428.3 0.726615
\(985\) −17322.1 −0.560334
\(986\) −4358.78 −0.140783
\(987\) −29537.1 −0.952559
\(988\) 348.468 0.0112209
\(989\) 16024.1 0.515203
\(990\) 0 0
\(991\) 23467.5 0.752239 0.376119 0.926571i \(-0.377258\pi\)
0.376119 + 0.926571i \(0.377258\pi\)
\(992\) −25480.0 −0.815516
\(993\) −49934.5 −1.59579
\(994\) 15987.8 0.510162
\(995\) 4677.94 0.149046
\(996\) −51233.4 −1.62991
\(997\) −31933.7 −1.01440 −0.507198 0.861830i \(-0.669319\pi\)
−0.507198 + 0.861830i \(0.669319\pi\)
\(998\) 30648.6 0.972110
\(999\) 16317.9 0.516792
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2057.4.a.s.1.17 44
11.2 odd 10 187.4.g.a.103.8 yes 88
11.6 odd 10 187.4.g.a.69.8 88
11.10 odd 2 2057.4.a.t.1.28 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
187.4.g.a.69.8 88 11.6 odd 10
187.4.g.a.103.8 yes 88 11.2 odd 10
2057.4.a.s.1.17 44 1.1 even 1 trivial
2057.4.a.t.1.28 44 11.10 odd 2