Properties

Label 2057.4.a.s.1.16
Level $2057$
Weight $4$
Character 2057.1
Self dual yes
Analytic conductor $121.367$
Analytic rank $1$
Dimension $44$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2057,4,Mod(1,2057)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2057.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2057, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2057 = 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2057.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,-1,-28,139,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(121.366928882\)
Analytic rank: \(1\)
Dimension: \(44\)
Twist minimal: no (minimal twist has level 187)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Character \(\chi\) \(=\) 2057.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.63323 q^{2} -6.45520 q^{3} -5.33256 q^{4} +3.96216 q^{5} +10.5428 q^{6} +20.2168 q^{7} +21.7751 q^{8} +14.6696 q^{9} -6.47113 q^{10} +34.4227 q^{12} +14.7304 q^{13} -33.0188 q^{14} -25.5766 q^{15} +7.09659 q^{16} -17.0000 q^{17} -23.9589 q^{18} +62.5498 q^{19} -21.1285 q^{20} -130.504 q^{21} +140.512 q^{23} -140.563 q^{24} -109.301 q^{25} -24.0582 q^{26} +79.5951 q^{27} -107.807 q^{28} -149.067 q^{29} +41.7725 q^{30} -184.056 q^{31} -185.792 q^{32} +27.7649 q^{34} +80.1025 q^{35} -78.2265 q^{36} +168.441 q^{37} -102.158 q^{38} -95.0877 q^{39} +86.2767 q^{40} -301.281 q^{41} +213.143 q^{42} -200.110 q^{43} +58.1234 q^{45} -229.489 q^{46} +75.4054 q^{47} -45.8099 q^{48} +65.7209 q^{49} +178.514 q^{50} +109.738 q^{51} -78.5507 q^{52} -452.999 q^{53} -129.997 q^{54} +440.225 q^{56} -403.772 q^{57} +243.460 q^{58} -20.0854 q^{59} +136.388 q^{60} -36.5652 q^{61} +300.606 q^{62} +296.573 q^{63} +246.668 q^{64} +58.3643 q^{65} +239.105 q^{67} +90.6534 q^{68} -907.035 q^{69} -130.826 q^{70} +857.657 q^{71} +319.433 q^{72} -53.5367 q^{73} -275.103 q^{74} +705.561 q^{75} -333.550 q^{76} +155.300 q^{78} -259.291 q^{79} +28.1178 q^{80} -909.882 q^{81} +492.061 q^{82} +830.750 q^{83} +695.919 q^{84} -67.3568 q^{85} +326.826 q^{86} +962.255 q^{87} -50.0168 q^{89} -94.9290 q^{90} +297.802 q^{91} -749.289 q^{92} +1188.12 q^{93} -123.155 q^{94} +247.833 q^{95} +1199.32 q^{96} -522.527 q^{97} -107.337 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - q^{2} - 28 q^{3} + 139 q^{4} - 24 q^{5} + 24 q^{6} + 2 q^{7} + 63 q^{8} + 356 q^{9} + 65 q^{10} - 337 q^{12} - 12 q^{13} - 151 q^{14} - 320 q^{15} + 311 q^{16} - 748 q^{17} + 55 q^{18} + 36 q^{19}+ \cdots - 2302 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.63323 −0.577434 −0.288717 0.957414i \(-0.593229\pi\)
−0.288717 + 0.957414i \(0.593229\pi\)
\(3\) −6.45520 −1.24230 −0.621152 0.783690i \(-0.713335\pi\)
−0.621152 + 0.783690i \(0.713335\pi\)
\(4\) −5.33256 −0.666569
\(5\) 3.96216 0.354387 0.177193 0.984176i \(-0.443298\pi\)
0.177193 + 0.984176i \(0.443298\pi\)
\(6\) 10.5428 0.717349
\(7\) 20.2168 1.09161 0.545804 0.837913i \(-0.316224\pi\)
0.545804 + 0.837913i \(0.316224\pi\)
\(8\) 21.7751 0.962335
\(9\) 14.6696 0.543319
\(10\) −6.47113 −0.204635
\(11\) 0 0
\(12\) 34.4227 0.828082
\(13\) 14.7304 0.314268 0.157134 0.987577i \(-0.449775\pi\)
0.157134 + 0.987577i \(0.449775\pi\)
\(14\) −33.0188 −0.630332
\(15\) −25.5766 −0.440256
\(16\) 7.09659 0.110884
\(17\) −17.0000 −0.242536
\(18\) −23.9589 −0.313731
\(19\) 62.5498 0.755259 0.377629 0.925957i \(-0.376739\pi\)
0.377629 + 0.925957i \(0.376739\pi\)
\(20\) −21.1285 −0.236223
\(21\) −130.504 −1.35611
\(22\) 0 0
\(23\) 140.512 1.27386 0.636931 0.770921i \(-0.280204\pi\)
0.636931 + 0.770921i \(0.280204\pi\)
\(24\) −140.563 −1.19551
\(25\) −109.301 −0.874410
\(26\) −24.0582 −0.181469
\(27\) 79.5951 0.567337
\(28\) −107.807 −0.727632
\(29\) −149.067 −0.954516 −0.477258 0.878763i \(-0.658369\pi\)
−0.477258 + 0.878763i \(0.658369\pi\)
\(30\) 41.7725 0.254219
\(31\) −184.056 −1.06637 −0.533184 0.845999i \(-0.679005\pi\)
−0.533184 + 0.845999i \(0.679005\pi\)
\(32\) −185.792 −1.02636
\(33\) 0 0
\(34\) 27.7649 0.140048
\(35\) 80.1025 0.386851
\(36\) −78.2265 −0.362160
\(37\) 168.441 0.748420 0.374210 0.927344i \(-0.377914\pi\)
0.374210 + 0.927344i \(0.377914\pi\)
\(38\) −102.158 −0.436112
\(39\) −95.0877 −0.390416
\(40\) 86.2767 0.341039
\(41\) −301.281 −1.14761 −0.573807 0.818991i \(-0.694534\pi\)
−0.573807 + 0.818991i \(0.694534\pi\)
\(42\) 213.143 0.783063
\(43\) −200.110 −0.709685 −0.354843 0.934926i \(-0.615466\pi\)
−0.354843 + 0.934926i \(0.615466\pi\)
\(44\) 0 0
\(45\) 58.1234 0.192545
\(46\) −229.489 −0.735572
\(47\) 75.4054 0.234022 0.117011 0.993131i \(-0.462669\pi\)
0.117011 + 0.993131i \(0.462669\pi\)
\(48\) −45.8099 −0.137752
\(49\) 65.7209 0.191606
\(50\) 178.514 0.504914
\(51\) 109.738 0.301303
\(52\) −78.5507 −0.209481
\(53\) −452.999 −1.17404 −0.587021 0.809572i \(-0.699700\pi\)
−0.587021 + 0.809572i \(0.699700\pi\)
\(54\) −129.997 −0.327600
\(55\) 0 0
\(56\) 440.225 1.05049
\(57\) −403.772 −0.938261
\(58\) 243.460 0.551171
\(59\) −20.0854 −0.0443203 −0.0221601 0.999754i \(-0.507054\pi\)
−0.0221601 + 0.999754i \(0.507054\pi\)
\(60\) 136.388 0.293461
\(61\) −36.5652 −0.0767491 −0.0383746 0.999263i \(-0.512218\pi\)
−0.0383746 + 0.999263i \(0.512218\pi\)
\(62\) 300.606 0.615757
\(63\) 296.573 0.593091
\(64\) 246.668 0.481773
\(65\) 58.3643 0.111372
\(66\) 0 0
\(67\) 239.105 0.435990 0.217995 0.975950i \(-0.430048\pi\)
0.217995 + 0.975950i \(0.430048\pi\)
\(68\) 90.6534 0.161667
\(69\) −907.035 −1.58252
\(70\) −130.826 −0.223381
\(71\) 857.657 1.43359 0.716797 0.697282i \(-0.245608\pi\)
0.716797 + 0.697282i \(0.245608\pi\)
\(72\) 319.433 0.522855
\(73\) −53.5367 −0.0858355 −0.0429178 0.999079i \(-0.513665\pi\)
−0.0429178 + 0.999079i \(0.513665\pi\)
\(74\) −275.103 −0.432163
\(75\) 705.561 1.08628
\(76\) −333.550 −0.503432
\(77\) 0 0
\(78\) 155.300 0.225440
\(79\) −259.291 −0.369272 −0.184636 0.982807i \(-0.559111\pi\)
−0.184636 + 0.982807i \(0.559111\pi\)
\(80\) 28.1178 0.0392959
\(81\) −909.882 −1.24812
\(82\) 492.061 0.662672
\(83\) 830.750 1.09864 0.549318 0.835614i \(-0.314888\pi\)
0.549318 + 0.835614i \(0.314888\pi\)
\(84\) 695.919 0.903940
\(85\) −67.3568 −0.0859514
\(86\) 326.826 0.409797
\(87\) 962.255 1.18580
\(88\) 0 0
\(89\) −50.0168 −0.0595704 −0.0297852 0.999556i \(-0.509482\pi\)
−0.0297852 + 0.999556i \(0.509482\pi\)
\(90\) −94.9290 −0.111182
\(91\) 297.802 0.343057
\(92\) −749.289 −0.849117
\(93\) 1188.12 1.32475
\(94\) −123.155 −0.135132
\(95\) 247.833 0.267654
\(96\) 1199.32 1.27505
\(97\) −522.527 −0.546955 −0.273477 0.961878i \(-0.588174\pi\)
−0.273477 + 0.961878i \(0.588174\pi\)
\(98\) −107.337 −0.110640
\(99\) 0 0
\(100\) 582.855 0.582855
\(101\) −1546.56 −1.52365 −0.761825 0.647782i \(-0.775697\pi\)
−0.761825 + 0.647782i \(0.775697\pi\)
\(102\) −179.228 −0.173983
\(103\) 1692.32 1.61893 0.809465 0.587169i \(-0.199757\pi\)
0.809465 + 0.587169i \(0.199757\pi\)
\(104\) 320.757 0.302431
\(105\) −517.078 −0.480587
\(106\) 739.853 0.677933
\(107\) 682.580 0.616706 0.308353 0.951272i \(-0.400222\pi\)
0.308353 + 0.951272i \(0.400222\pi\)
\(108\) −424.445 −0.378169
\(109\) −313.666 −0.275631 −0.137815 0.990458i \(-0.544008\pi\)
−0.137815 + 0.990458i \(0.544008\pi\)
\(110\) 0 0
\(111\) −1087.32 −0.929765
\(112\) 143.471 0.121042
\(113\) 658.111 0.547875 0.273937 0.961748i \(-0.411674\pi\)
0.273937 + 0.961748i \(0.411674\pi\)
\(114\) 659.453 0.541784
\(115\) 556.733 0.451440
\(116\) 794.906 0.636251
\(117\) 216.089 0.170748
\(118\) 32.8041 0.0255921
\(119\) −343.686 −0.264754
\(120\) −556.934 −0.423674
\(121\) 0 0
\(122\) 59.7195 0.0443176
\(123\) 1944.83 1.42568
\(124\) 981.488 0.710808
\(125\) −928.340 −0.664266
\(126\) −484.373 −0.342471
\(127\) 1952.31 1.36409 0.682046 0.731309i \(-0.261090\pi\)
0.682046 + 0.731309i \(0.261090\pi\)
\(128\) 1083.47 0.748171
\(129\) 1291.75 0.881645
\(130\) −95.3224 −0.0643102
\(131\) −984.972 −0.656927 −0.328463 0.944517i \(-0.606531\pi\)
−0.328463 + 0.944517i \(0.606531\pi\)
\(132\) 0 0
\(133\) 1264.56 0.824446
\(134\) −390.513 −0.251755
\(135\) 315.369 0.201057
\(136\) −370.178 −0.233400
\(137\) 1558.12 0.971671 0.485836 0.874050i \(-0.338515\pi\)
0.485836 + 0.874050i \(0.338515\pi\)
\(138\) 1481.40 0.913804
\(139\) −2572.86 −1.56998 −0.784990 0.619509i \(-0.787332\pi\)
−0.784990 + 0.619509i \(0.787332\pi\)
\(140\) −427.151 −0.257863
\(141\) −486.757 −0.290726
\(142\) −1400.75 −0.827806
\(143\) 0 0
\(144\) 104.104 0.0602455
\(145\) −590.626 −0.338268
\(146\) 87.4378 0.0495644
\(147\) −424.241 −0.238033
\(148\) −898.221 −0.498874
\(149\) 2210.62 1.21544 0.607721 0.794150i \(-0.292084\pi\)
0.607721 + 0.794150i \(0.292084\pi\)
\(150\) −1152.35 −0.627257
\(151\) 1091.89 0.588455 0.294227 0.955735i \(-0.404938\pi\)
0.294227 + 0.955735i \(0.404938\pi\)
\(152\) 1362.03 0.726812
\(153\) −249.383 −0.131774
\(154\) 0 0
\(155\) −729.259 −0.377907
\(156\) 507.060 0.260239
\(157\) 652.687 0.331784 0.165892 0.986144i \(-0.446950\pi\)
0.165892 + 0.986144i \(0.446950\pi\)
\(158\) 423.482 0.213230
\(159\) 2924.20 1.45852
\(160\) −736.137 −0.363729
\(161\) 2840.71 1.39056
\(162\) 1486.05 0.720710
\(163\) −3305.43 −1.58835 −0.794175 0.607690i \(-0.792096\pi\)
−0.794175 + 0.607690i \(0.792096\pi\)
\(164\) 1606.60 0.764964
\(165\) 0 0
\(166\) −1356.81 −0.634390
\(167\) 2908.14 1.34754 0.673768 0.738943i \(-0.264675\pi\)
0.673768 + 0.738943i \(0.264675\pi\)
\(168\) −2841.74 −1.30503
\(169\) −1980.02 −0.901236
\(170\) 110.009 0.0496313
\(171\) 917.582 0.410346
\(172\) 1067.10 0.473054
\(173\) 2862.82 1.25813 0.629064 0.777354i \(-0.283438\pi\)
0.629064 + 0.777354i \(0.283438\pi\)
\(174\) −1571.58 −0.684721
\(175\) −2209.73 −0.954512
\(176\) 0 0
\(177\) 129.655 0.0550593
\(178\) 81.6890 0.0343980
\(179\) −4354.95 −1.81846 −0.909229 0.416295i \(-0.863328\pi\)
−0.909229 + 0.416295i \(0.863328\pi\)
\(180\) −309.946 −0.128345
\(181\) 3612.74 1.48361 0.741803 0.670617i \(-0.233971\pi\)
0.741803 + 0.670617i \(0.233971\pi\)
\(182\) −486.380 −0.198093
\(183\) 236.036 0.0953458
\(184\) 3059.67 1.22588
\(185\) 667.391 0.265230
\(186\) −1940.47 −0.764958
\(187\) 0 0
\(188\) −402.104 −0.155992
\(189\) 1609.16 0.619309
\(190\) −404.768 −0.154552
\(191\) −3637.41 −1.37798 −0.688989 0.724772i \(-0.741945\pi\)
−0.688989 + 0.724772i \(0.741945\pi\)
\(192\) −1592.29 −0.598509
\(193\) −2249.32 −0.838911 −0.419455 0.907776i \(-0.637779\pi\)
−0.419455 + 0.907776i \(0.637779\pi\)
\(194\) 853.408 0.315831
\(195\) −376.753 −0.138358
\(196\) −350.460 −0.127719
\(197\) −3735.32 −1.35092 −0.675459 0.737398i \(-0.736054\pi\)
−0.675459 + 0.737398i \(0.736054\pi\)
\(198\) 0 0
\(199\) −4554.27 −1.62233 −0.811166 0.584817i \(-0.801166\pi\)
−0.811166 + 0.584817i \(0.801166\pi\)
\(200\) −2380.05 −0.841475
\(201\) −1543.47 −0.541631
\(202\) 2525.89 0.879809
\(203\) −3013.66 −1.04196
\(204\) −585.186 −0.200839
\(205\) −1193.72 −0.406699
\(206\) −2763.96 −0.934826
\(207\) 2061.26 0.692113
\(208\) 104.536 0.0348473
\(209\) 0 0
\(210\) 844.507 0.277507
\(211\) 4006.02 1.30704 0.653521 0.756909i \(-0.273291\pi\)
0.653521 + 0.756909i \(0.273291\pi\)
\(212\) 2415.64 0.782581
\(213\) −5536.35 −1.78096
\(214\) −1114.81 −0.356107
\(215\) −792.868 −0.251503
\(216\) 1733.20 0.545968
\(217\) −3721.03 −1.16405
\(218\) 512.289 0.159159
\(219\) 345.590 0.106634
\(220\) 0 0
\(221\) −250.417 −0.0762211
\(222\) 1775.85 0.536878
\(223\) −4099.86 −1.23115 −0.615576 0.788077i \(-0.711077\pi\)
−0.615576 + 0.788077i \(0.711077\pi\)
\(224\) −3756.12 −1.12039
\(225\) −1603.41 −0.475084
\(226\) −1074.85 −0.316362
\(227\) 1406.95 0.411376 0.205688 0.978618i \(-0.434057\pi\)
0.205688 + 0.978618i \(0.434057\pi\)
\(228\) 2153.13 0.625416
\(229\) 4448.47 1.28368 0.641842 0.766837i \(-0.278171\pi\)
0.641842 + 0.766837i \(0.278171\pi\)
\(230\) −909.273 −0.260677
\(231\) 0 0
\(232\) −3245.95 −0.918564
\(233\) −2878.32 −0.809293 −0.404646 0.914473i \(-0.632605\pi\)
−0.404646 + 0.914473i \(0.632605\pi\)
\(234\) −352.924 −0.0985955
\(235\) 298.769 0.0829341
\(236\) 107.107 0.0295425
\(237\) 1673.77 0.458748
\(238\) 561.319 0.152878
\(239\) −6694.22 −1.81177 −0.905886 0.423522i \(-0.860794\pi\)
−0.905886 + 0.423522i \(0.860794\pi\)
\(240\) −181.506 −0.0488174
\(241\) 3014.76 0.805801 0.402900 0.915244i \(-0.368002\pi\)
0.402900 + 0.915244i \(0.368002\pi\)
\(242\) 0 0
\(243\) 3724.40 0.983212
\(244\) 194.986 0.0511586
\(245\) 260.397 0.0679026
\(246\) −3176.35 −0.823240
\(247\) 921.384 0.237353
\(248\) −4007.84 −1.02620
\(249\) −5362.66 −1.36484
\(250\) 1516.19 0.383570
\(251\) 2551.37 0.641597 0.320799 0.947147i \(-0.396049\pi\)
0.320799 + 0.947147i \(0.396049\pi\)
\(252\) −1581.49 −0.395336
\(253\) 0 0
\(254\) −3188.58 −0.787674
\(255\) 434.802 0.106778
\(256\) −3742.89 −0.913793
\(257\) −64.1421 −0.0155684 −0.00778419 0.999970i \(-0.502478\pi\)
−0.00778419 + 0.999970i \(0.502478\pi\)
\(258\) −2109.72 −0.509092
\(259\) 3405.35 0.816980
\(260\) −311.231 −0.0742373
\(261\) −2186.75 −0.518607
\(262\) 1608.69 0.379332
\(263\) 1854.53 0.434810 0.217405 0.976081i \(-0.430241\pi\)
0.217405 + 0.976081i \(0.430241\pi\)
\(264\) 0 0
\(265\) −1794.86 −0.416065
\(266\) −2065.32 −0.476063
\(267\) 322.868 0.0740046
\(268\) −1275.04 −0.290617
\(269\) −4874.36 −1.10481 −0.552407 0.833575i \(-0.686290\pi\)
−0.552407 + 0.833575i \(0.686290\pi\)
\(270\) −515.070 −0.116097
\(271\) −4465.51 −1.00096 −0.500481 0.865748i \(-0.666843\pi\)
−0.500481 + 0.865748i \(0.666843\pi\)
\(272\) −120.642 −0.0268934
\(273\) −1922.37 −0.426181
\(274\) −2544.77 −0.561077
\(275\) 0 0
\(276\) 4836.81 1.05486
\(277\) −2572.24 −0.557945 −0.278973 0.960299i \(-0.589994\pi\)
−0.278973 + 0.960299i \(0.589994\pi\)
\(278\) 4202.08 0.906560
\(279\) −2700.03 −0.579378
\(280\) 1744.24 0.372280
\(281\) −1628.09 −0.345635 −0.172818 0.984954i \(-0.555287\pi\)
−0.172818 + 0.984954i \(0.555287\pi\)
\(282\) 794.987 0.167875
\(283\) 765.047 0.160697 0.0803487 0.996767i \(-0.474397\pi\)
0.0803487 + 0.996767i \(0.474397\pi\)
\(284\) −4573.50 −0.955589
\(285\) −1599.81 −0.332507
\(286\) 0 0
\(287\) −6090.95 −1.25274
\(288\) −2725.49 −0.557643
\(289\) 289.000 0.0588235
\(290\) 964.630 0.195328
\(291\) 3373.02 0.679484
\(292\) 285.487 0.0572153
\(293\) −2402.10 −0.478950 −0.239475 0.970903i \(-0.576975\pi\)
−0.239475 + 0.970903i \(0.576975\pi\)
\(294\) 692.884 0.137448
\(295\) −79.5817 −0.0157065
\(296\) 3667.83 0.720230
\(297\) 0 0
\(298\) −3610.45 −0.701838
\(299\) 2069.80 0.400334
\(300\) −3762.45 −0.724083
\(301\) −4045.59 −0.774697
\(302\) −1783.31 −0.339794
\(303\) 9983.37 1.89284
\(304\) 443.890 0.0837462
\(305\) −144.877 −0.0271989
\(306\) 407.301 0.0760910
\(307\) −3321.67 −0.617516 −0.308758 0.951141i \(-0.599913\pi\)
−0.308758 + 0.951141i \(0.599913\pi\)
\(308\) 0 0
\(309\) −10924.3 −2.01120
\(310\) 1191.05 0.218216
\(311\) −4927.94 −0.898514 −0.449257 0.893403i \(-0.648311\pi\)
−0.449257 + 0.893403i \(0.648311\pi\)
\(312\) −2070.55 −0.375711
\(313\) 1299.21 0.234619 0.117309 0.993095i \(-0.462573\pi\)
0.117309 + 0.993095i \(0.462573\pi\)
\(314\) −1065.99 −0.191584
\(315\) 1175.07 0.210184
\(316\) 1382.68 0.246145
\(317\) 6071.82 1.07580 0.537898 0.843010i \(-0.319219\pi\)
0.537898 + 0.843010i \(0.319219\pi\)
\(318\) −4775.90 −0.842198
\(319\) 0 0
\(320\) 977.339 0.170734
\(321\) −4406.19 −0.766136
\(322\) −4639.54 −0.802955
\(323\) −1063.35 −0.183177
\(324\) 4852.00 0.831961
\(325\) −1610.05 −0.274799
\(326\) 5398.52 0.917168
\(327\) 2024.78 0.342417
\(328\) −6560.43 −1.10439
\(329\) 1524.46 0.255460
\(330\) 0 0
\(331\) −4153.62 −0.689739 −0.344870 0.938651i \(-0.612077\pi\)
−0.344870 + 0.938651i \(0.612077\pi\)
\(332\) −4430.02 −0.732316
\(333\) 2470.96 0.406631
\(334\) −4749.66 −0.778114
\(335\) 947.373 0.154509
\(336\) −926.132 −0.150371
\(337\) −5608.52 −0.906574 −0.453287 0.891365i \(-0.649749\pi\)
−0.453287 + 0.891365i \(0.649749\pi\)
\(338\) 3233.82 0.520405
\(339\) −4248.24 −0.680627
\(340\) 359.184 0.0572926
\(341\) 0 0
\(342\) −1498.62 −0.236948
\(343\) −5605.71 −0.882449
\(344\) −4357.42 −0.682955
\(345\) −3593.82 −0.560826
\(346\) −4675.64 −0.726486
\(347\) 11018.2 1.70457 0.852287 0.523075i \(-0.175215\pi\)
0.852287 + 0.523075i \(0.175215\pi\)
\(348\) −5131.28 −0.790418
\(349\) 501.129 0.0768620 0.0384310 0.999261i \(-0.487764\pi\)
0.0384310 + 0.999261i \(0.487764\pi\)
\(350\) 3608.99 0.551168
\(351\) 1172.47 0.178295
\(352\) 0 0
\(353\) 773.750 0.116664 0.0583322 0.998297i \(-0.481422\pi\)
0.0583322 + 0.998297i \(0.481422\pi\)
\(354\) −211.757 −0.0317931
\(355\) 3398.18 0.508047
\(356\) 266.717 0.0397078
\(357\) 2218.56 0.328904
\(358\) 7112.64 1.05004
\(359\) 4961.29 0.729379 0.364689 0.931129i \(-0.381175\pi\)
0.364689 + 0.931129i \(0.381175\pi\)
\(360\) 1265.65 0.185293
\(361\) −2946.52 −0.429584
\(362\) −5900.44 −0.856686
\(363\) 0 0
\(364\) −1588.05 −0.228671
\(365\) −212.121 −0.0304190
\(366\) −385.501 −0.0550559
\(367\) 2866.12 0.407657 0.203828 0.979007i \(-0.434662\pi\)
0.203828 + 0.979007i \(0.434662\pi\)
\(368\) 997.157 0.141251
\(369\) −4419.67 −0.623520
\(370\) −1090.00 −0.153153
\(371\) −9158.22 −1.28159
\(372\) −6335.70 −0.883040
\(373\) 7998.80 1.11035 0.555177 0.831732i \(-0.312650\pi\)
0.555177 + 0.831732i \(0.312650\pi\)
\(374\) 0 0
\(375\) 5992.62 0.825220
\(376\) 1641.96 0.225207
\(377\) −2195.81 −0.299974
\(378\) −2628.13 −0.357610
\(379\) −10507.9 −1.42415 −0.712077 0.702101i \(-0.752245\pi\)
−0.712077 + 0.702101i \(0.752245\pi\)
\(380\) −1321.58 −0.178410
\(381\) −12602.6 −1.69462
\(382\) 5940.74 0.795692
\(383\) 4419.84 0.589669 0.294834 0.955548i \(-0.404736\pi\)
0.294834 + 0.955548i \(0.404736\pi\)
\(384\) −6993.99 −0.929455
\(385\) 0 0
\(386\) 3673.66 0.484416
\(387\) −2935.53 −0.385585
\(388\) 2786.41 0.364583
\(389\) −3633.81 −0.473628 −0.236814 0.971555i \(-0.576103\pi\)
−0.236814 + 0.971555i \(0.576103\pi\)
\(390\) 615.325 0.0798928
\(391\) −2388.71 −0.308957
\(392\) 1431.08 0.184389
\(393\) 6358.19 0.816102
\(394\) 6100.65 0.780066
\(395\) −1027.35 −0.130865
\(396\) 0 0
\(397\) −8527.26 −1.07801 −0.539006 0.842302i \(-0.681200\pi\)
−0.539006 + 0.842302i \(0.681200\pi\)
\(398\) 7438.18 0.936790
\(399\) −8162.99 −1.02421
\(400\) −775.666 −0.0969582
\(401\) −3113.23 −0.387699 −0.193850 0.981031i \(-0.562097\pi\)
−0.193850 + 0.981031i \(0.562097\pi\)
\(402\) 2520.84 0.312757
\(403\) −2711.22 −0.335125
\(404\) 8247.13 1.01562
\(405\) −3605.10 −0.442318
\(406\) 4922.00 0.601662
\(407\) 0 0
\(408\) 2389.57 0.289954
\(409\) −2211.85 −0.267406 −0.133703 0.991021i \(-0.542687\pi\)
−0.133703 + 0.991021i \(0.542687\pi\)
\(410\) 1949.63 0.234842
\(411\) −10058.0 −1.20711
\(412\) −9024.42 −1.07913
\(413\) −406.064 −0.0483803
\(414\) −3366.51 −0.399650
\(415\) 3291.57 0.389342
\(416\) −2736.78 −0.322553
\(417\) 16608.3 1.95039
\(418\) 0 0
\(419\) −2522.36 −0.294094 −0.147047 0.989129i \(-0.546977\pi\)
−0.147047 + 0.989129i \(0.546977\pi\)
\(420\) 2757.34 0.320344
\(421\) 2247.17 0.260143 0.130072 0.991505i \(-0.458479\pi\)
0.130072 + 0.991505i \(0.458479\pi\)
\(422\) −6542.76 −0.754731
\(423\) 1106.17 0.127148
\(424\) −9864.13 −1.12982
\(425\) 1858.12 0.212076
\(426\) 9042.13 1.02839
\(427\) −739.234 −0.0837799
\(428\) −3639.90 −0.411077
\(429\) 0 0
\(430\) 1294.94 0.145227
\(431\) 6710.81 0.749996 0.374998 0.927026i \(-0.377643\pi\)
0.374998 + 0.927026i \(0.377643\pi\)
\(432\) 564.854 0.0629086
\(433\) 12697.2 1.40921 0.704603 0.709601i \(-0.251125\pi\)
0.704603 + 0.709601i \(0.251125\pi\)
\(434\) 6077.30 0.672165
\(435\) 3812.61 0.420232
\(436\) 1672.64 0.183727
\(437\) 8789.02 0.962095
\(438\) −564.428 −0.0615740
\(439\) 10145.5 1.10300 0.551502 0.834174i \(-0.314055\pi\)
0.551502 + 0.834174i \(0.314055\pi\)
\(440\) 0 0
\(441\) 964.100 0.104103
\(442\) 408.989 0.0440127
\(443\) 11378.8 1.22037 0.610186 0.792258i \(-0.291095\pi\)
0.610186 + 0.792258i \(0.291095\pi\)
\(444\) 5798.20 0.619753
\(445\) −198.175 −0.0211110
\(446\) 6696.02 0.710910
\(447\) −14270.0 −1.50995
\(448\) 4986.85 0.525907
\(449\) −3367.48 −0.353945 −0.176972 0.984216i \(-0.556630\pi\)
−0.176972 + 0.984216i \(0.556630\pi\)
\(450\) 2618.73 0.274330
\(451\) 0 0
\(452\) −3509.41 −0.365196
\(453\) −7048.36 −0.731040
\(454\) −2297.87 −0.237543
\(455\) 1179.94 0.121575
\(456\) −8792.19 −0.902921
\(457\) 11422.8 1.16923 0.584615 0.811311i \(-0.301246\pi\)
0.584615 + 0.811311i \(0.301246\pi\)
\(458\) −7265.39 −0.741243
\(459\) −1353.12 −0.137599
\(460\) −2968.81 −0.300916
\(461\) −19405.4 −1.96052 −0.980262 0.197705i \(-0.936651\pi\)
−0.980262 + 0.197705i \(0.936651\pi\)
\(462\) 0 0
\(463\) 5450.90 0.547138 0.273569 0.961852i \(-0.411796\pi\)
0.273569 + 0.961852i \(0.411796\pi\)
\(464\) −1057.86 −0.105841
\(465\) 4707.52 0.469475
\(466\) 4700.97 0.467313
\(467\) −16269.6 −1.61213 −0.806066 0.591826i \(-0.798407\pi\)
−0.806066 + 0.591826i \(0.798407\pi\)
\(468\) −1152.31 −0.113815
\(469\) 4833.94 0.475929
\(470\) −487.959 −0.0478890
\(471\) −4213.23 −0.412177
\(472\) −437.363 −0.0426509
\(473\) 0 0
\(474\) −2733.66 −0.264897
\(475\) −6836.77 −0.660406
\(476\) 1832.73 0.176477
\(477\) −6645.33 −0.637880
\(478\) 10933.2 1.04618
\(479\) −1924.61 −0.183586 −0.0917932 0.995778i \(-0.529260\pi\)
−0.0917932 + 0.995778i \(0.529260\pi\)
\(480\) 4751.91 0.451863
\(481\) 2481.20 0.235204
\(482\) −4923.80 −0.465297
\(483\) −18337.4 −1.72749
\(484\) 0 0
\(485\) −2070.34 −0.193834
\(486\) −6082.81 −0.567741
\(487\) 14878.5 1.38442 0.692208 0.721698i \(-0.256638\pi\)
0.692208 + 0.721698i \(0.256638\pi\)
\(488\) −796.213 −0.0738584
\(489\) 21337.2 1.97321
\(490\) −425.288 −0.0392093
\(491\) 4998.60 0.459437 0.229718 0.973257i \(-0.426219\pi\)
0.229718 + 0.973257i \(0.426219\pi\)
\(492\) −10370.9 −0.950318
\(493\) 2534.13 0.231504
\(494\) −1504.83 −0.137056
\(495\) 0 0
\(496\) −1306.17 −0.118243
\(497\) 17339.1 1.56492
\(498\) 8758.47 0.788105
\(499\) 12802.9 1.14857 0.574285 0.818655i \(-0.305280\pi\)
0.574285 + 0.818655i \(0.305280\pi\)
\(500\) 4950.43 0.442779
\(501\) −18772.6 −1.67405
\(502\) −4166.97 −0.370480
\(503\) 6743.55 0.597773 0.298887 0.954289i \(-0.403385\pi\)
0.298887 + 0.954289i \(0.403385\pi\)
\(504\) 6457.93 0.570752
\(505\) −6127.74 −0.539962
\(506\) 0 0
\(507\) 12781.4 1.11961
\(508\) −10410.8 −0.909262
\(509\) −18949.4 −1.65014 −0.825068 0.565033i \(-0.808863\pi\)
−0.825068 + 0.565033i \(0.808863\pi\)
\(510\) −710.132 −0.0616572
\(511\) −1082.34 −0.0936987
\(512\) −2554.72 −0.220515
\(513\) 4978.66 0.428486
\(514\) 104.759 0.00898972
\(515\) 6705.27 0.573727
\(516\) −6888.32 −0.587677
\(517\) 0 0
\(518\) −5561.72 −0.471752
\(519\) −18480.1 −1.56298
\(520\) 1270.89 0.107177
\(521\) −3002.35 −0.252467 −0.126234 0.992001i \(-0.540289\pi\)
−0.126234 + 0.992001i \(0.540289\pi\)
\(522\) 3571.47 0.299462
\(523\) 4701.84 0.393111 0.196556 0.980493i \(-0.437024\pi\)
0.196556 + 0.980493i \(0.437024\pi\)
\(524\) 5252.42 0.437887
\(525\) 14264.2 1.18579
\(526\) −3028.87 −0.251074
\(527\) 3128.95 0.258632
\(528\) 0 0
\(529\) 7576.69 0.622724
\(530\) 2931.42 0.240250
\(531\) −294.645 −0.0240801
\(532\) −6743.34 −0.549550
\(533\) −4437.99 −0.360658
\(534\) −527.319 −0.0427328
\(535\) 2704.49 0.218552
\(536\) 5206.54 0.419568
\(537\) 28112.1 2.25908
\(538\) 7960.95 0.637957
\(539\) 0 0
\(540\) −1681.72 −0.134018
\(541\) −3668.08 −0.291503 −0.145751 0.989321i \(-0.546560\pi\)
−0.145751 + 0.989321i \(0.546560\pi\)
\(542\) 7293.22 0.577990
\(543\) −23321.0 −1.84309
\(544\) 3158.46 0.248930
\(545\) −1242.80 −0.0976799
\(546\) 3139.68 0.246091
\(547\) −11481.5 −0.897463 −0.448731 0.893667i \(-0.648124\pi\)
−0.448731 + 0.893667i \(0.648124\pi\)
\(548\) −8308.75 −0.647686
\(549\) −536.398 −0.0416993
\(550\) 0 0
\(551\) −9324.09 −0.720907
\(552\) −19750.8 −1.52292
\(553\) −5242.04 −0.403100
\(554\) 4201.06 0.322177
\(555\) −4308.14 −0.329496
\(556\) 13719.9 1.04650
\(557\) 13622.3 1.03626 0.518130 0.855302i \(-0.326628\pi\)
0.518130 + 0.855302i \(0.326628\pi\)
\(558\) 4409.77 0.334553
\(559\) −2947.70 −0.223031
\(560\) 568.454 0.0428957
\(561\) 0 0
\(562\) 2659.04 0.199582
\(563\) −2660.51 −0.199160 −0.0995799 0.995030i \(-0.531750\pi\)
−0.0995799 + 0.995030i \(0.531750\pi\)
\(564\) 2595.66 0.193789
\(565\) 2607.54 0.194160
\(566\) −1249.50 −0.0927922
\(567\) −18394.9 −1.36246
\(568\) 18675.6 1.37960
\(569\) −23294.5 −1.71627 −0.858134 0.513427i \(-0.828376\pi\)
−0.858134 + 0.513427i \(0.828376\pi\)
\(570\) 2612.86 0.192001
\(571\) −15661.2 −1.14781 −0.573907 0.818920i \(-0.694573\pi\)
−0.573907 + 0.818920i \(0.694573\pi\)
\(572\) 0 0
\(573\) 23480.2 1.71187
\(574\) 9947.93 0.723377
\(575\) −15358.2 −1.11388
\(576\) 3618.52 0.261757
\(577\) 5242.38 0.378238 0.189119 0.981954i \(-0.439437\pi\)
0.189119 + 0.981954i \(0.439437\pi\)
\(578\) −472.004 −0.0339667
\(579\) 14519.8 1.04218
\(580\) 3149.55 0.225479
\(581\) 16795.2 1.19928
\(582\) −5508.92 −0.392358
\(583\) 0 0
\(584\) −1165.77 −0.0826025
\(585\) 856.181 0.0605107
\(586\) 3923.19 0.276562
\(587\) 16225.8 1.14090 0.570451 0.821332i \(-0.306768\pi\)
0.570451 + 0.821332i \(0.306768\pi\)
\(588\) 2262.29 0.158665
\(589\) −11512.7 −0.805383
\(590\) 129.975 0.00906949
\(591\) 24112.3 1.67825
\(592\) 1195.36 0.0829879
\(593\) 3155.64 0.218527 0.109263 0.994013i \(-0.465151\pi\)
0.109263 + 0.994013i \(0.465151\pi\)
\(594\) 0 0
\(595\) −1361.74 −0.0938252
\(596\) −11788.2 −0.810177
\(597\) 29398.7 2.01543
\(598\) −3380.46 −0.231166
\(599\) 15082.2 1.02879 0.514393 0.857554i \(-0.328017\pi\)
0.514393 + 0.857554i \(0.328017\pi\)
\(600\) 15363.7 1.04537
\(601\) −17491.9 −1.18720 −0.593601 0.804760i \(-0.702294\pi\)
−0.593601 + 0.804760i \(0.702294\pi\)
\(602\) 6607.38 0.447337
\(603\) 3507.57 0.236881
\(604\) −5822.56 −0.392246
\(605\) 0 0
\(606\) −16305.2 −1.09299
\(607\) −29157.1 −1.94967 −0.974835 0.222926i \(-0.928439\pi\)
−0.974835 + 0.222926i \(0.928439\pi\)
\(608\) −11621.2 −0.775170
\(609\) 19453.8 1.29443
\(610\) 236.618 0.0157056
\(611\) 1110.75 0.0735454
\(612\) 1329.85 0.0878367
\(613\) −29441.8 −1.93987 −0.969937 0.243357i \(-0.921751\pi\)
−0.969937 + 0.243357i \(0.921751\pi\)
\(614\) 5425.05 0.356575
\(615\) 7705.73 0.505244
\(616\) 0 0
\(617\) −2096.27 −0.136779 −0.0683894 0.997659i \(-0.521786\pi\)
−0.0683894 + 0.997659i \(0.521786\pi\)
\(618\) 17841.9 1.16134
\(619\) −16773.6 −1.08916 −0.544579 0.838709i \(-0.683311\pi\)
−0.544579 + 0.838709i \(0.683311\pi\)
\(620\) 3888.82 0.251901
\(621\) 11184.1 0.722709
\(622\) 8048.46 0.518833
\(623\) −1011.18 −0.0650275
\(624\) −674.798 −0.0432909
\(625\) 9984.42 0.639003
\(626\) −2121.91 −0.135477
\(627\) 0 0
\(628\) −3480.49 −0.221157
\(629\) −2863.50 −0.181518
\(630\) −1919.17 −0.121367
\(631\) 17285.8 1.09055 0.545275 0.838257i \(-0.316425\pi\)
0.545275 + 0.838257i \(0.316425\pi\)
\(632\) −5646.10 −0.355363
\(633\) −25859.7 −1.62374
\(634\) −9916.68 −0.621202
\(635\) 7735.38 0.483416
\(636\) −15593.5 −0.972203
\(637\) 968.095 0.0602155
\(638\) 0 0
\(639\) 12581.5 0.778899
\(640\) 4292.87 0.265142
\(641\) −23271.6 −1.43397 −0.716984 0.697089i \(-0.754478\pi\)
−0.716984 + 0.697089i \(0.754478\pi\)
\(642\) 7196.33 0.442393
\(643\) −3987.59 −0.244565 −0.122282 0.992495i \(-0.539021\pi\)
−0.122282 + 0.992495i \(0.539021\pi\)
\(644\) −15148.3 −0.926903
\(645\) 5118.12 0.312443
\(646\) 1736.69 0.105773
\(647\) −26371.7 −1.60244 −0.801219 0.598371i \(-0.795815\pi\)
−0.801219 + 0.598371i \(0.795815\pi\)
\(648\) −19812.8 −1.20111
\(649\) 0 0
\(650\) 2629.59 0.158678
\(651\) 24020.0 1.44611
\(652\) 17626.4 1.05874
\(653\) 5739.92 0.343982 0.171991 0.985098i \(-0.444980\pi\)
0.171991 + 0.985098i \(0.444980\pi\)
\(654\) −3306.93 −0.197724
\(655\) −3902.62 −0.232806
\(656\) −2138.07 −0.127252
\(657\) −785.362 −0.0466361
\(658\) −2489.80 −0.147511
\(659\) 7895.02 0.466687 0.233343 0.972394i \(-0.425033\pi\)
0.233343 + 0.972394i \(0.425033\pi\)
\(660\) 0 0
\(661\) 8605.00 0.506347 0.253174 0.967421i \(-0.418526\pi\)
0.253174 + 0.967421i \(0.418526\pi\)
\(662\) 6783.83 0.398279
\(663\) 1616.49 0.0946897
\(664\) 18089.7 1.05725
\(665\) 5010.40 0.292173
\(666\) −4035.66 −0.234803
\(667\) −20945.7 −1.21592
\(668\) −15507.8 −0.898226
\(669\) 26465.4 1.52947
\(670\) −1547.28 −0.0892188
\(671\) 0 0
\(672\) 24246.5 1.39186
\(673\) 488.042 0.0279534 0.0139767 0.999902i \(-0.495551\pi\)
0.0139767 + 0.999902i \(0.495551\pi\)
\(674\) 9160.01 0.523487
\(675\) −8699.85 −0.496085
\(676\) 10558.5 0.600736
\(677\) −2967.47 −0.168462 −0.0842312 0.996446i \(-0.526843\pi\)
−0.0842312 + 0.996446i \(0.526843\pi\)
\(678\) 6938.35 0.393017
\(679\) −10563.9 −0.597060
\(680\) −1466.70 −0.0827140
\(681\) −9082.12 −0.511054
\(682\) 0 0
\(683\) −29110.8 −1.63088 −0.815442 0.578838i \(-0.803506\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(684\) −4893.06 −0.273524
\(685\) 6173.52 0.344347
\(686\) 9155.42 0.509556
\(687\) −28715.8 −1.59472
\(688\) −1420.10 −0.0786929
\(689\) −6672.86 −0.368963
\(690\) 5869.54 0.323840
\(691\) −32097.0 −1.76705 −0.883523 0.468388i \(-0.844835\pi\)
−0.883523 + 0.468388i \(0.844835\pi\)
\(692\) −15266.1 −0.838629
\(693\) 0 0
\(694\) −17995.2 −0.984280
\(695\) −10194.1 −0.556380
\(696\) 20953.2 1.14114
\(697\) 5121.77 0.278337
\(698\) −818.460 −0.0443828
\(699\) 18580.1 1.00539
\(700\) 11783.5 0.636249
\(701\) −23483.6 −1.26528 −0.632642 0.774444i \(-0.718030\pi\)
−0.632642 + 0.774444i \(0.718030\pi\)
\(702\) −1914.91 −0.102954
\(703\) 10536.0 0.565250
\(704\) 0 0
\(705\) −1928.61 −0.103029
\(706\) −1263.71 −0.0673661
\(707\) −31266.6 −1.66323
\(708\) −691.394 −0.0367008
\(709\) 32605.5 1.72711 0.863557 0.504251i \(-0.168231\pi\)
0.863557 + 0.504251i \(0.168231\pi\)
\(710\) −5550.01 −0.293364
\(711\) −3803.70 −0.200633
\(712\) −1089.12 −0.0573267
\(713\) −25862.1 −1.35841
\(714\) −3623.43 −0.189921
\(715\) 0 0
\(716\) 23223.0 1.21213
\(717\) 43212.6 2.25077
\(718\) −8102.94 −0.421168
\(719\) 3240.34 0.168073 0.0840363 0.996463i \(-0.473219\pi\)
0.0840363 + 0.996463i \(0.473219\pi\)
\(720\) 412.478 0.0213502
\(721\) 34213.5 1.76723
\(722\) 4812.35 0.248057
\(723\) −19460.9 −1.00105
\(724\) −19265.1 −0.988927
\(725\) 16293.2 0.834639
\(726\) 0 0
\(727\) −1573.82 −0.0802883 −0.0401441 0.999194i \(-0.512782\pi\)
−0.0401441 + 0.999194i \(0.512782\pi\)
\(728\) 6484.69 0.330135
\(729\) 525.048 0.0266752
\(730\) 346.443 0.0175650
\(731\) 3401.87 0.172124
\(732\) −1258.67 −0.0635546
\(733\) 15795.1 0.795916 0.397958 0.917404i \(-0.369719\pi\)
0.397958 + 0.917404i \(0.369719\pi\)
\(734\) −4681.03 −0.235395
\(735\) −1680.91 −0.0843557
\(736\) −26106.0 −1.30744
\(737\) 0 0
\(738\) 7218.35 0.360042
\(739\) −4117.06 −0.204937 −0.102469 0.994736i \(-0.532674\pi\)
−0.102469 + 0.994736i \(0.532674\pi\)
\(740\) −3558.90 −0.176794
\(741\) −5947.72 −0.294865
\(742\) 14957.5 0.740036
\(743\) 18382.1 0.907635 0.453818 0.891095i \(-0.350062\pi\)
0.453818 + 0.891095i \(0.350062\pi\)
\(744\) 25871.4 1.27486
\(745\) 8758.83 0.430737
\(746\) −13063.9 −0.641157
\(747\) 12186.8 0.596909
\(748\) 0 0
\(749\) 13799.6 0.673200
\(750\) −9787.34 −0.476511
\(751\) −17310.0 −0.841078 −0.420539 0.907275i \(-0.638159\pi\)
−0.420539 + 0.907275i \(0.638159\pi\)
\(752\) 535.121 0.0259493
\(753\) −16469.6 −0.797059
\(754\) 3586.27 0.173215
\(755\) 4326.24 0.208541
\(756\) −8580.95 −0.412812
\(757\) 22413.0 1.07611 0.538053 0.842911i \(-0.319160\pi\)
0.538053 + 0.842911i \(0.319160\pi\)
\(758\) 17161.8 0.822356
\(759\) 0 0
\(760\) 5396.59 0.257572
\(761\) −886.688 −0.0422371 −0.0211185 0.999777i \(-0.506723\pi\)
−0.0211185 + 0.999777i \(0.506723\pi\)
\(762\) 20582.9 0.978530
\(763\) −6341.34 −0.300881
\(764\) 19396.7 0.918518
\(765\) −988.098 −0.0466990
\(766\) −7218.62 −0.340495
\(767\) −295.866 −0.0139284
\(768\) 24161.1 1.13521
\(769\) 23045.9 1.08070 0.540350 0.841440i \(-0.318292\pi\)
0.540350 + 0.841440i \(0.318292\pi\)
\(770\) 0 0
\(771\) 414.050 0.0193407
\(772\) 11994.6 0.559192
\(773\) 7737.97 0.360046 0.180023 0.983662i \(-0.442383\pi\)
0.180023 + 0.983662i \(0.442383\pi\)
\(774\) 4794.41 0.222650
\(775\) 20117.5 0.932442
\(776\) −11378.1 −0.526354
\(777\) −21982.2 −1.01494
\(778\) 5934.85 0.273489
\(779\) −18845.1 −0.866745
\(780\) 2009.06 0.0922253
\(781\) 0 0
\(782\) 3901.31 0.178402
\(783\) −11865.0 −0.541532
\(784\) 466.394 0.0212461
\(785\) 2586.05 0.117580
\(786\) −10384.4 −0.471246
\(787\) −13686.0 −0.619890 −0.309945 0.950754i \(-0.600311\pi\)
−0.309945 + 0.950754i \(0.600311\pi\)
\(788\) 19918.8 0.900480
\(789\) −11971.3 −0.540166
\(790\) 1677.90 0.0755660
\(791\) 13304.9 0.598064
\(792\) 0 0
\(793\) −538.620 −0.0241198
\(794\) 13927.0 0.622482
\(795\) 11586.2 0.516879
\(796\) 24285.9 1.08140
\(797\) −19058.8 −0.847049 −0.423525 0.905885i \(-0.639207\pi\)
−0.423525 + 0.905885i \(0.639207\pi\)
\(798\) 13332.1 0.591415
\(799\) −1281.89 −0.0567586
\(800\) 20307.2 0.897462
\(801\) −733.727 −0.0323657
\(802\) 5084.63 0.223871
\(803\) 0 0
\(804\) 8230.64 0.361035
\(805\) 11255.4 0.492795
\(806\) 4428.04 0.193513
\(807\) 31464.9 1.37251
\(808\) −33676.6 −1.46626
\(809\) −27381.8 −1.18998 −0.594989 0.803734i \(-0.702844\pi\)
−0.594989 + 0.803734i \(0.702844\pi\)
\(810\) 5887.97 0.255410
\(811\) −37341.9 −1.61683 −0.808416 0.588611i \(-0.799675\pi\)
−0.808416 + 0.588611i \(0.799675\pi\)
\(812\) 16070.5 0.694537
\(813\) 28825.8 1.24350
\(814\) 0 0
\(815\) −13096.6 −0.562890
\(816\) 778.768 0.0334097
\(817\) −12516.8 −0.535996
\(818\) 3612.46 0.154409
\(819\) 4368.64 0.186389
\(820\) 6365.60 0.271093
\(821\) 2414.41 0.102635 0.0513176 0.998682i \(-0.483658\pi\)
0.0513176 + 0.998682i \(0.483658\pi\)
\(822\) 16427.0 0.697028
\(823\) −7042.05 −0.298263 −0.149131 0.988817i \(-0.547648\pi\)
−0.149131 + 0.988817i \(0.547648\pi\)
\(824\) 36850.6 1.55795
\(825\) 0 0
\(826\) 663.196 0.0279365
\(827\) 34455.2 1.44876 0.724380 0.689401i \(-0.242126\pi\)
0.724380 + 0.689401i \(0.242126\pi\)
\(828\) −10991.8 −0.461342
\(829\) −36349.3 −1.52288 −0.761438 0.648238i \(-0.775506\pi\)
−0.761438 + 0.648238i \(0.775506\pi\)
\(830\) −5375.90 −0.224819
\(831\) 16604.3 0.693138
\(832\) 3633.52 0.151406
\(833\) −1117.25 −0.0464713
\(834\) −27125.2 −1.12622
\(835\) 11522.5 0.477549
\(836\) 0 0
\(837\) −14649.9 −0.604989
\(838\) 4119.60 0.169820
\(839\) 22196.0 0.913340 0.456670 0.889636i \(-0.349042\pi\)
0.456670 + 0.889636i \(0.349042\pi\)
\(840\) −11259.4 −0.462485
\(841\) −2168.15 −0.0888985
\(842\) −3670.15 −0.150216
\(843\) 10509.6 0.429384
\(844\) −21362.3 −0.871234
\(845\) −7845.15 −0.319386
\(846\) −1806.63 −0.0734199
\(847\) 0 0
\(848\) −3214.75 −0.130183
\(849\) −4938.53 −0.199635
\(850\) −3034.74 −0.122460
\(851\) 23668.0 0.953383
\(852\) 29522.9 1.18713
\(853\) 1277.35 0.0512727 0.0256363 0.999671i \(-0.491839\pi\)
0.0256363 + 0.999671i \(0.491839\pi\)
\(854\) 1207.34 0.0483774
\(855\) 3635.61 0.145421
\(856\) 14863.3 0.593477
\(857\) 17995.1 0.717271 0.358635 0.933478i \(-0.383242\pi\)
0.358635 + 0.933478i \(0.383242\pi\)
\(858\) 0 0
\(859\) −11261.4 −0.447303 −0.223652 0.974669i \(-0.571798\pi\)
−0.223652 + 0.974669i \(0.571798\pi\)
\(860\) 4228.01 0.167644
\(861\) 39318.3 1.55629
\(862\) −10960.3 −0.433074
\(863\) −29202.3 −1.15186 −0.575932 0.817497i \(-0.695361\pi\)
−0.575932 + 0.817497i \(0.695361\pi\)
\(864\) −14788.1 −0.582293
\(865\) 11343.0 0.445864
\(866\) −20737.4 −0.813725
\(867\) −1865.55 −0.0730767
\(868\) 19842.6 0.775923
\(869\) 0 0
\(870\) −6226.88 −0.242656
\(871\) 3522.11 0.137017
\(872\) −6830.13 −0.265249
\(873\) −7665.28 −0.297171
\(874\) −14354.5 −0.555547
\(875\) −18768.1 −0.725118
\(876\) −1842.88 −0.0710788
\(877\) 3815.52 0.146911 0.0734554 0.997299i \(-0.476597\pi\)
0.0734554 + 0.997299i \(0.476597\pi\)
\(878\) −16570.0 −0.636913
\(879\) 15506.1 0.595001
\(880\) 0 0
\(881\) 47895.5 1.83160 0.915800 0.401636i \(-0.131558\pi\)
0.915800 + 0.401636i \(0.131558\pi\)
\(882\) −1574.60 −0.0601128
\(883\) −31981.4 −1.21887 −0.609433 0.792838i \(-0.708603\pi\)
−0.609433 + 0.792838i \(0.708603\pi\)
\(884\) 1335.36 0.0508066
\(885\) 513.716 0.0195123
\(886\) −18584.3 −0.704685
\(887\) −50162.7 −1.89887 −0.949436 0.313961i \(-0.898344\pi\)
−0.949436 + 0.313961i \(0.898344\pi\)
\(888\) −23676.6 −0.894745
\(889\) 39469.6 1.48905
\(890\) 323.665 0.0121902
\(891\) 0 0
\(892\) 21862.7 0.820648
\(893\) 4716.60 0.176747
\(894\) 23306.2 0.871896
\(895\) −17255.0 −0.644438
\(896\) 21904.3 0.816708
\(897\) −13361.0 −0.497336
\(898\) 5499.87 0.204380
\(899\) 27436.6 1.01787
\(900\) 8550.26 0.316676
\(901\) 7700.99 0.284747
\(902\) 0 0
\(903\) 26115.1 0.962410
\(904\) 14330.5 0.527239
\(905\) 14314.3 0.525771
\(906\) 11511.6 0.422128
\(907\) −22728.3 −0.832063 −0.416032 0.909350i \(-0.636579\pi\)
−0.416032 + 0.909350i \(0.636579\pi\)
\(908\) −7502.62 −0.274210
\(909\) −22687.5 −0.827829
\(910\) −1927.12 −0.0702015
\(911\) −27347.1 −0.994566 −0.497283 0.867588i \(-0.665669\pi\)
−0.497283 + 0.867588i \(0.665669\pi\)
\(912\) −2865.40 −0.104038
\(913\) 0 0
\(914\) −18656.1 −0.675153
\(915\) 935.213 0.0337893
\(916\) −23721.7 −0.855664
\(917\) −19913.0 −0.717106
\(918\) 2209.95 0.0794546
\(919\) 4106.32 0.147394 0.0736969 0.997281i \(-0.476520\pi\)
0.0736969 + 0.997281i \(0.476520\pi\)
\(920\) 12122.9 0.434436
\(921\) 21442.0 0.767143
\(922\) 31693.6 1.13207
\(923\) 12633.6 0.450532
\(924\) 0 0
\(925\) −18410.8 −0.654426
\(926\) −8902.58 −0.315936
\(927\) 24825.8 0.879595
\(928\) 27695.3 0.979680
\(929\) −13485.7 −0.476265 −0.238132 0.971233i \(-0.576535\pi\)
−0.238132 + 0.971233i \(0.576535\pi\)
\(930\) −7688.46 −0.271091
\(931\) 4110.83 0.144712
\(932\) 15348.8 0.539450
\(933\) 31810.8 1.11623
\(934\) 26572.0 0.930900
\(935\) 0 0
\(936\) 4705.38 0.164316
\(937\) 3169.10 0.110491 0.0552455 0.998473i \(-0.482406\pi\)
0.0552455 + 0.998473i \(0.482406\pi\)
\(938\) −7894.95 −0.274818
\(939\) −8386.66 −0.291468
\(940\) −1593.20 −0.0552814
\(941\) 7635.79 0.264527 0.132263 0.991215i \(-0.457776\pi\)
0.132263 + 0.991215i \(0.457776\pi\)
\(942\) 6881.18 0.238005
\(943\) −42333.6 −1.46190
\(944\) −142.538 −0.00491442
\(945\) 6375.77 0.219475
\(946\) 0 0
\(947\) 15567.9 0.534201 0.267101 0.963669i \(-0.413934\pi\)
0.267101 + 0.963669i \(0.413934\pi\)
\(948\) −8925.49 −0.305787
\(949\) −788.617 −0.0269753
\(950\) 11166.0 0.381341
\(951\) −39194.8 −1.33647
\(952\) −7483.82 −0.254782
\(953\) 4639.24 0.157691 0.0788456 0.996887i \(-0.474877\pi\)
0.0788456 + 0.996887i \(0.474877\pi\)
\(954\) 10853.4 0.368334
\(955\) −14412.0 −0.488337
\(956\) 35697.3 1.20767
\(957\) 0 0
\(958\) 3143.34 0.106009
\(959\) 31500.2 1.06068
\(960\) −6308.92 −0.212104
\(961\) 4085.53 0.137140
\(962\) −4052.38 −0.135815
\(963\) 10013.2 0.335068
\(964\) −16076.4 −0.537122
\(965\) −8912.19 −0.297299
\(966\) 29949.2 0.997515
\(967\) −19550.7 −0.650165 −0.325082 0.945686i \(-0.605392\pi\)
−0.325082 + 0.945686i \(0.605392\pi\)
\(968\) 0 0
\(969\) 6864.12 0.227562
\(970\) 3381.34 0.111926
\(971\) 52636.2 1.73963 0.869813 0.493381i \(-0.164239\pi\)
0.869813 + 0.493381i \(0.164239\pi\)
\(972\) −19860.6 −0.655379
\(973\) −52015.1 −1.71380
\(974\) −24300.1 −0.799410
\(975\) 10393.2 0.341383
\(976\) −259.488 −0.00851027
\(977\) −31333.4 −1.02604 −0.513022 0.858376i \(-0.671474\pi\)
−0.513022 + 0.858376i \(0.671474\pi\)
\(978\) −34848.6 −1.13940
\(979\) 0 0
\(980\) −1388.58 −0.0452618
\(981\) −4601.36 −0.149755
\(982\) −8163.87 −0.265295
\(983\) −18830.2 −0.610977 −0.305488 0.952196i \(-0.598820\pi\)
−0.305488 + 0.952196i \(0.598820\pi\)
\(984\) 42348.9 1.37199
\(985\) −14800.0 −0.478747
\(986\) −4138.82 −0.133679
\(987\) −9840.70 −0.317358
\(988\) −4913.33 −0.158212
\(989\) −28117.9 −0.904041
\(990\) 0 0
\(991\) −28111.1 −0.901089 −0.450544 0.892754i \(-0.648770\pi\)
−0.450544 + 0.892754i \(0.648770\pi\)
\(992\) 34196.0 1.09448
\(993\) 26812.5 0.856866
\(994\) −28318.8 −0.903639
\(995\) −18044.8 −0.574933
\(996\) 28596.7 0.909760
\(997\) −5443.48 −0.172915 −0.0864577 0.996256i \(-0.527555\pi\)
−0.0864577 + 0.996256i \(0.527555\pi\)
\(998\) −20910.1 −0.663224
\(999\) 13407.1 0.424606
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2057.4.a.s.1.16 44
11.2 odd 10 187.4.g.a.103.7 yes 88
11.6 odd 10 187.4.g.a.69.7 88
11.10 odd 2 2057.4.a.t.1.29 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
187.4.g.a.69.7 88 11.6 odd 10
187.4.g.a.103.7 yes 88 11.2 odd 10
2057.4.a.s.1.16 44 1.1 even 1 trivial
2057.4.a.t.1.29 44 11.10 odd 2