Properties

Label 2057.4.a.h.1.8
Level $2057$
Weight $4$
Character 2057.1
Self dual yes
Analytic conductor $121.367$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2057,4,Mod(1,2057)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2057.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2057, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2057 = 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2057.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-4,11,40,47] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(121.366928882\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4 x^{9} - 52 x^{8} + 180 x^{7} + 933 x^{6} - 2524 x^{5} - 6654 x^{4} + 11196 x^{3} + 16044 x^{2} + \cdots - 88 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 187)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-2.62662\) of defining polynomial
Character \(\chi\) \(=\) 2057.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.62662 q^{2} +0.447567 q^{3} -1.10085 q^{4} +9.81562 q^{5} +1.17559 q^{6} -21.1571 q^{7} -23.9045 q^{8} -26.7997 q^{9} +25.7819 q^{10} -0.492704 q^{12} +31.4725 q^{13} -55.5718 q^{14} +4.39315 q^{15} -53.9813 q^{16} +17.0000 q^{17} -70.3927 q^{18} -164.426 q^{19} -10.8055 q^{20} -9.46923 q^{21} +118.597 q^{23} -10.6989 q^{24} -28.6536 q^{25} +82.6665 q^{26} -24.0790 q^{27} +23.2908 q^{28} -40.9982 q^{29} +11.5391 q^{30} +229.807 q^{31} +49.4474 q^{32} +44.6526 q^{34} -207.670 q^{35} +29.5024 q^{36} +196.941 q^{37} -431.885 q^{38} +14.0861 q^{39} -234.637 q^{40} -328.840 q^{41} -24.8721 q^{42} +34.5048 q^{43} -263.055 q^{45} +311.509 q^{46} +281.576 q^{47} -24.1603 q^{48} +104.623 q^{49} -75.2623 q^{50} +7.60864 q^{51} -34.6465 q^{52} +89.1184 q^{53} -63.2464 q^{54} +505.750 q^{56} -73.5916 q^{57} -107.687 q^{58} +218.326 q^{59} -4.83619 q^{60} -113.552 q^{61} +603.618 q^{62} +567.004 q^{63} +561.730 q^{64} +308.922 q^{65} +38.6827 q^{67} -18.7144 q^{68} +53.0800 q^{69} -545.471 q^{70} -242.093 q^{71} +640.633 q^{72} +345.226 q^{73} +517.290 q^{74} -12.8244 q^{75} +181.008 q^{76} +36.9988 q^{78} +959.412 q^{79} -529.860 q^{80} +712.814 q^{81} -863.739 q^{82} -109.109 q^{83} +10.4242 q^{84} +166.866 q^{85} +90.6312 q^{86} -18.3495 q^{87} +1343.72 q^{89} -690.948 q^{90} -665.868 q^{91} -130.557 q^{92} +102.854 q^{93} +739.594 q^{94} -1613.94 q^{95} +22.1310 q^{96} -1248.68 q^{97} +274.806 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 4 q^{2} + 11 q^{3} + 40 q^{4} + 47 q^{5} - 105 q^{6} + 17 q^{7} - 84 q^{8} + 107 q^{9} + 7 q^{10} + 101 q^{12} - 15 q^{13} + 45 q^{14} + 224 q^{15} + 140 q^{16} + 170 q^{17} - 81 q^{18} - q^{19}+ \cdots - 3281 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.62662 0.928652 0.464326 0.885664i \(-0.346297\pi\)
0.464326 + 0.885664i \(0.346297\pi\)
\(3\) 0.447567 0.0861344 0.0430672 0.999072i \(-0.486287\pi\)
0.0430672 + 0.999072i \(0.486287\pi\)
\(4\) −1.10085 −0.137606
\(5\) 9.81562 0.877936 0.438968 0.898503i \(-0.355344\pi\)
0.438968 + 0.898503i \(0.355344\pi\)
\(6\) 1.17559 0.0799888
\(7\) −21.1571 −1.14238 −0.571188 0.820819i \(-0.693517\pi\)
−0.571188 + 0.820819i \(0.693517\pi\)
\(8\) −23.9045 −1.05644
\(9\) −26.7997 −0.992581
\(10\) 25.7819 0.815296
\(11\) 0 0
\(12\) −0.492704 −0.0118526
\(13\) 31.4725 0.671455 0.335727 0.941959i \(-0.391018\pi\)
0.335727 + 0.941959i \(0.391018\pi\)
\(14\) −55.5718 −1.06087
\(15\) 4.39315 0.0756204
\(16\) −53.9813 −0.843458
\(17\) 17.0000 0.242536
\(18\) −70.3927 −0.921762
\(19\) −164.426 −1.98536 −0.992681 0.120769i \(-0.961464\pi\)
−0.992681 + 0.120769i \(0.961464\pi\)
\(20\) −10.8055 −0.120809
\(21\) −9.46923 −0.0983979
\(22\) 0 0
\(23\) 118.597 1.07518 0.537589 0.843207i \(-0.319335\pi\)
0.537589 + 0.843207i \(0.319335\pi\)
\(24\) −10.6989 −0.0909958
\(25\) −28.6536 −0.229229
\(26\) 82.6665 0.623547
\(27\) −24.0790 −0.171630
\(28\) 23.2908 0.157198
\(29\) −40.9982 −0.262523 −0.131262 0.991348i \(-0.541903\pi\)
−0.131262 + 0.991348i \(0.541903\pi\)
\(30\) 11.5391 0.0702250
\(31\) 229.807 1.33144 0.665720 0.746202i \(-0.268125\pi\)
0.665720 + 0.746202i \(0.268125\pi\)
\(32\) 49.4474 0.273161
\(33\) 0 0
\(34\) 44.6526 0.225231
\(35\) −207.670 −1.00293
\(36\) 29.5024 0.136585
\(37\) 196.941 0.875051 0.437526 0.899206i \(-0.355855\pi\)
0.437526 + 0.899206i \(0.355855\pi\)
\(38\) −431.885 −1.84371
\(39\) 14.0861 0.0578353
\(40\) −234.637 −0.927486
\(41\) −328.840 −1.25259 −0.626295 0.779586i \(-0.715429\pi\)
−0.626295 + 0.779586i \(0.715429\pi\)
\(42\) −24.8721 −0.0913773
\(43\) 34.5048 0.122371 0.0611853 0.998126i \(-0.480512\pi\)
0.0611853 + 0.998126i \(0.480512\pi\)
\(44\) 0 0
\(45\) −263.055 −0.871422
\(46\) 311.509 0.998466
\(47\) 281.576 0.873874 0.436937 0.899492i \(-0.356063\pi\)
0.436937 + 0.899492i \(0.356063\pi\)
\(48\) −24.1603 −0.0726507
\(49\) 104.623 0.305024
\(50\) −75.2623 −0.212874
\(51\) 7.60864 0.0208906
\(52\) −34.6465 −0.0923963
\(53\) 89.1184 0.230969 0.115484 0.993309i \(-0.463158\pi\)
0.115484 + 0.993309i \(0.463158\pi\)
\(54\) −63.2464 −0.159384
\(55\) 0 0
\(56\) 505.750 1.20685
\(57\) −73.5916 −0.171008
\(58\) −107.687 −0.243793
\(59\) 218.326 0.481757 0.240879 0.970555i \(-0.422564\pi\)
0.240879 + 0.970555i \(0.422564\pi\)
\(60\) −4.83619 −0.0104058
\(61\) −113.552 −0.238342 −0.119171 0.992874i \(-0.538024\pi\)
−0.119171 + 0.992874i \(0.538024\pi\)
\(62\) 603.618 1.23644
\(63\) 567.004 1.13390
\(64\) 561.730 1.09713
\(65\) 308.922 0.589494
\(66\) 0 0
\(67\) 38.6827 0.0705351 0.0352675 0.999378i \(-0.488772\pi\)
0.0352675 + 0.999378i \(0.488772\pi\)
\(68\) −18.7144 −0.0333744
\(69\) 53.0800 0.0926098
\(70\) −545.471 −0.931375
\(71\) −242.093 −0.404664 −0.202332 0.979317i \(-0.564852\pi\)
−0.202332 + 0.979317i \(0.564852\pi\)
\(72\) 640.633 1.04860
\(73\) 345.226 0.553503 0.276751 0.960942i \(-0.410742\pi\)
0.276751 + 0.960942i \(0.410742\pi\)
\(74\) 517.290 0.812618
\(75\) −12.8244 −0.0197445
\(76\) 181.008 0.273198
\(77\) 0 0
\(78\) 36.9988 0.0537089
\(79\) 959.412 1.36636 0.683179 0.730251i \(-0.260597\pi\)
0.683179 + 0.730251i \(0.260597\pi\)
\(80\) −529.860 −0.740502
\(81\) 712.814 0.977798
\(82\) −863.739 −1.16322
\(83\) −109.109 −0.144292 −0.0721460 0.997394i \(-0.522985\pi\)
−0.0721460 + 0.997394i \(0.522985\pi\)
\(84\) 10.4242 0.0135401
\(85\) 166.866 0.212931
\(86\) 90.6312 0.113640
\(87\) −18.3495 −0.0226123
\(88\) 0 0
\(89\) 1343.72 1.60039 0.800193 0.599742i \(-0.204730\pi\)
0.800193 + 0.599742i \(0.204730\pi\)
\(90\) −690.948 −0.809248
\(91\) −665.868 −0.767054
\(92\) −130.557 −0.147951
\(93\) 102.854 0.114683
\(94\) 739.594 0.811525
\(95\) −1613.94 −1.74302
\(96\) 22.1310 0.0235285
\(97\) −1248.68 −1.30705 −0.653527 0.756903i \(-0.726711\pi\)
−0.653527 + 0.756903i \(0.726711\pi\)
\(98\) 274.806 0.283261
\(99\) 0 0
\(100\) 31.5433 0.0315433
\(101\) −195.533 −0.192637 −0.0963184 0.995351i \(-0.530707\pi\)
−0.0963184 + 0.995351i \(0.530707\pi\)
\(102\) 19.9850 0.0194001
\(103\) −158.938 −0.152045 −0.0760224 0.997106i \(-0.524222\pi\)
−0.0760224 + 0.997106i \(0.524222\pi\)
\(104\) −752.335 −0.709351
\(105\) −92.9463 −0.0863870
\(106\) 234.080 0.214490
\(107\) 1120.03 1.01194 0.505971 0.862550i \(-0.331134\pi\)
0.505971 + 0.862550i \(0.331134\pi\)
\(108\) 26.5073 0.0236173
\(109\) 896.710 0.787975 0.393987 0.919116i \(-0.371095\pi\)
0.393987 + 0.919116i \(0.371095\pi\)
\(110\) 0 0
\(111\) 88.1443 0.0753720
\(112\) 1142.09 0.963547
\(113\) 1157.69 0.963777 0.481888 0.876233i \(-0.339951\pi\)
0.481888 + 0.876233i \(0.339951\pi\)
\(114\) −193.297 −0.158807
\(115\) 1164.10 0.943938
\(116\) 45.1328 0.0361248
\(117\) −843.454 −0.666473
\(118\) 573.461 0.447385
\(119\) −359.671 −0.277067
\(120\) −105.016 −0.0798884
\(121\) 0 0
\(122\) −298.258 −0.221336
\(123\) −147.178 −0.107891
\(124\) −252.983 −0.183214
\(125\) −1508.21 −1.07918
\(126\) 1489.31 1.05300
\(127\) 486.552 0.339957 0.169978 0.985448i \(-0.445630\pi\)
0.169978 + 0.985448i \(0.445630\pi\)
\(128\) 1079.88 0.745690
\(129\) 15.4432 0.0105403
\(130\) 811.423 0.547434
\(131\) −1906.32 −1.27142 −0.635711 0.771927i \(-0.719293\pi\)
−0.635711 + 0.771927i \(0.719293\pi\)
\(132\) 0 0
\(133\) 3478.77 2.26803
\(134\) 101.605 0.0655025
\(135\) −236.350 −0.150680
\(136\) −406.377 −0.256224
\(137\) 2128.27 1.32723 0.663613 0.748076i \(-0.269022\pi\)
0.663613 + 0.748076i \(0.269022\pi\)
\(138\) 139.421 0.0860023
\(139\) 286.684 0.174937 0.0874683 0.996167i \(-0.472122\pi\)
0.0874683 + 0.996167i \(0.472122\pi\)
\(140\) 228.613 0.138010
\(141\) 126.024 0.0752706
\(142\) −635.886 −0.375792
\(143\) 0 0
\(144\) 1446.68 0.837201
\(145\) −402.423 −0.230479
\(146\) 906.780 0.514011
\(147\) 46.8259 0.0262730
\(148\) −216.802 −0.120412
\(149\) 2026.95 1.11446 0.557229 0.830359i \(-0.311865\pi\)
0.557229 + 0.830359i \(0.311865\pi\)
\(150\) −33.6849 −0.0183358
\(151\) 584.797 0.315166 0.157583 0.987506i \(-0.449630\pi\)
0.157583 + 0.987506i \(0.449630\pi\)
\(152\) 3930.52 2.09741
\(153\) −455.595 −0.240736
\(154\) 0 0
\(155\) 2255.70 1.16892
\(156\) −15.5066 −0.00795849
\(157\) 2654.42 1.34934 0.674668 0.738121i \(-0.264287\pi\)
0.674668 + 0.738121i \(0.264287\pi\)
\(158\) 2520.01 1.26887
\(159\) 39.8865 0.0198943
\(160\) 485.357 0.239818
\(161\) −2509.16 −1.22826
\(162\) 1872.30 0.908033
\(163\) −1359.91 −0.653474 −0.326737 0.945115i \(-0.605949\pi\)
−0.326737 + 0.945115i \(0.605949\pi\)
\(164\) 362.003 0.172364
\(165\) 0 0
\(166\) −286.588 −0.133997
\(167\) −323.366 −0.149837 −0.0749186 0.997190i \(-0.523870\pi\)
−0.0749186 + 0.997190i \(0.523870\pi\)
\(168\) 226.357 0.103951
\(169\) −1206.48 −0.549149
\(170\) 438.293 0.197738
\(171\) 4406.56 1.97063
\(172\) −37.9846 −0.0168389
\(173\) 1975.51 0.868180 0.434090 0.900870i \(-0.357070\pi\)
0.434090 + 0.900870i \(0.357070\pi\)
\(174\) −48.1971 −0.0209989
\(175\) 606.228 0.261866
\(176\) 0 0
\(177\) 97.7157 0.0414958
\(178\) 3529.46 1.48620
\(179\) −3282.28 −1.37055 −0.685276 0.728283i \(-0.740318\pi\)
−0.685276 + 0.728283i \(0.740318\pi\)
\(180\) 289.584 0.119913
\(181\) −2541.60 −1.04373 −0.521867 0.853027i \(-0.674764\pi\)
−0.521867 + 0.853027i \(0.674764\pi\)
\(182\) −1748.98 −0.712326
\(183\) −50.8222 −0.0205294
\(184\) −2834.99 −1.13586
\(185\) 1933.10 0.768239
\(186\) 270.159 0.106500
\(187\) 0 0
\(188\) −309.973 −0.120250
\(189\) 509.441 0.196066
\(190\) −4239.22 −1.61866
\(191\) 3316.38 1.25636 0.628180 0.778068i \(-0.283800\pi\)
0.628180 + 0.778068i \(0.283800\pi\)
\(192\) 251.412 0.0945006
\(193\) 2669.74 0.995710 0.497855 0.867260i \(-0.334121\pi\)
0.497855 + 0.867260i \(0.334121\pi\)
\(194\) −3279.81 −1.21380
\(195\) 138.264 0.0507757
\(196\) −115.174 −0.0419732
\(197\) −2301.09 −0.832213 −0.416107 0.909316i \(-0.636606\pi\)
−0.416107 + 0.909316i \(0.636606\pi\)
\(198\) 0 0
\(199\) −462.619 −0.164795 −0.0823975 0.996600i \(-0.526258\pi\)
−0.0823975 + 0.996600i \(0.526258\pi\)
\(200\) 684.951 0.242167
\(201\) 17.3131 0.00607549
\(202\) −513.593 −0.178892
\(203\) 867.403 0.299900
\(204\) −8.37597 −0.00287468
\(205\) −3227.77 −1.09969
\(206\) −417.470 −0.141197
\(207\) −3178.35 −1.06720
\(208\) −1698.93 −0.566344
\(209\) 0 0
\(210\) −244.135 −0.0802234
\(211\) 5307.17 1.73157 0.865784 0.500418i \(-0.166820\pi\)
0.865784 + 0.500418i \(0.166820\pi\)
\(212\) −98.1059 −0.0317827
\(213\) −108.353 −0.0348554
\(214\) 2941.91 0.939742
\(215\) 338.686 0.107434
\(216\) 575.596 0.181316
\(217\) −4862.06 −1.52101
\(218\) 2355.32 0.731754
\(219\) 154.512 0.0476756
\(220\) 0 0
\(221\) 535.033 0.162852
\(222\) 231.522 0.0699943
\(223\) −4061.80 −1.21972 −0.609861 0.792508i \(-0.708775\pi\)
−0.609861 + 0.792508i \(0.708775\pi\)
\(224\) −1046.16 −0.312052
\(225\) 767.908 0.227528
\(226\) 3040.83 0.895013
\(227\) −5650.97 −1.65228 −0.826141 0.563463i \(-0.809469\pi\)
−0.826141 + 0.563463i \(0.809469\pi\)
\(228\) 81.0133 0.0235317
\(229\) −3414.75 −0.985385 −0.492692 0.870204i \(-0.663987\pi\)
−0.492692 + 0.870204i \(0.663987\pi\)
\(230\) 3057.65 0.876589
\(231\) 0 0
\(232\) 980.042 0.277340
\(233\) 1890.81 0.531635 0.265818 0.964023i \(-0.414358\pi\)
0.265818 + 0.964023i \(0.414358\pi\)
\(234\) −2215.44 −0.618921
\(235\) 2763.84 0.767205
\(236\) −240.344 −0.0662927
\(237\) 429.401 0.117690
\(238\) −944.720 −0.257299
\(239\) 3871.28 1.04775 0.523875 0.851795i \(-0.324486\pi\)
0.523875 + 0.851795i \(0.324486\pi\)
\(240\) −237.148 −0.0637827
\(241\) −2530.30 −0.676312 −0.338156 0.941090i \(-0.609803\pi\)
−0.338156 + 0.941090i \(0.609803\pi\)
\(242\) 0 0
\(243\) 969.165 0.255852
\(244\) 125.004 0.0327973
\(245\) 1026.94 0.267791
\(246\) −386.581 −0.100193
\(247\) −5174.90 −1.33308
\(248\) −5493.43 −1.40659
\(249\) −48.8335 −0.0124285
\(250\) −3961.49 −1.00219
\(251\) 5750.99 1.44621 0.723106 0.690737i \(-0.242714\pi\)
0.723106 + 0.690737i \(0.242714\pi\)
\(252\) −624.186 −0.156032
\(253\) 0 0
\(254\) 1277.99 0.315702
\(255\) 74.6835 0.0183406
\(256\) −1657.42 −0.404643
\(257\) −611.131 −0.148332 −0.0741659 0.997246i \(-0.523629\pi\)
−0.0741659 + 0.997246i \(0.523629\pi\)
\(258\) 40.5635 0.00978828
\(259\) −4166.70 −0.999638
\(260\) −340.077 −0.0811180
\(261\) 1098.74 0.260576
\(262\) −5007.20 −1.18071
\(263\) 3314.85 0.777195 0.388597 0.921408i \(-0.372960\pi\)
0.388597 + 0.921408i \(0.372960\pi\)
\(264\) 0 0
\(265\) 874.752 0.202776
\(266\) 9137.43 2.10621
\(267\) 601.407 0.137848
\(268\) −42.5839 −0.00970606
\(269\) −5055.32 −1.14583 −0.572915 0.819615i \(-0.694188\pi\)
−0.572915 + 0.819615i \(0.694188\pi\)
\(270\) −620.803 −0.139929
\(271\) 4359.84 0.977275 0.488637 0.872487i \(-0.337494\pi\)
0.488637 + 0.872487i \(0.337494\pi\)
\(272\) −917.683 −0.204569
\(273\) −298.021 −0.0660697
\(274\) 5590.15 1.23253
\(275\) 0 0
\(276\) −58.4330 −0.0127437
\(277\) −5272.18 −1.14359 −0.571796 0.820396i \(-0.693753\pi\)
−0.571796 + 0.820396i \(0.693753\pi\)
\(278\) 753.010 0.162455
\(279\) −6158.77 −1.32156
\(280\) 4964.25 1.05954
\(281\) 7315.48 1.55304 0.776522 0.630090i \(-0.216982\pi\)
0.776522 + 0.630090i \(0.216982\pi\)
\(282\) 331.018 0.0699002
\(283\) 3844.65 0.807565 0.403782 0.914855i \(-0.367695\pi\)
0.403782 + 0.914855i \(0.367695\pi\)
\(284\) 266.508 0.0556842
\(285\) −722.347 −0.150134
\(286\) 0 0
\(287\) 6957.30 1.43093
\(288\) −1325.17 −0.271134
\(289\) 289.000 0.0588235
\(290\) −1057.01 −0.214034
\(291\) −558.868 −0.112582
\(292\) −380.042 −0.0761654
\(293\) −7082.74 −1.41221 −0.706106 0.708106i \(-0.749550\pi\)
−0.706106 + 0.708106i \(0.749550\pi\)
\(294\) 122.994 0.0243985
\(295\) 2143.01 0.422952
\(296\) −4707.78 −0.924439
\(297\) 0 0
\(298\) 5324.03 1.03494
\(299\) 3732.54 0.721934
\(300\) 14.1178 0.00271696
\(301\) −730.022 −0.139793
\(302\) 1536.04 0.292680
\(303\) −87.5144 −0.0165926
\(304\) 8875.92 1.67457
\(305\) −1114.58 −0.209249
\(306\) −1196.68 −0.223560
\(307\) −9752.05 −1.81296 −0.906481 0.422247i \(-0.861241\pi\)
−0.906481 + 0.422247i \(0.861241\pi\)
\(308\) 0 0
\(309\) −71.1354 −0.0130963
\(310\) 5924.88 1.08552
\(311\) 5131.62 0.935652 0.467826 0.883821i \(-0.345037\pi\)
0.467826 + 0.883821i \(0.345037\pi\)
\(312\) −336.721 −0.0610995
\(313\) 5460.01 0.986000 0.493000 0.870029i \(-0.335900\pi\)
0.493000 + 0.870029i \(0.335900\pi\)
\(314\) 6972.16 1.25306
\(315\) 5565.49 0.995492
\(316\) −1056.17 −0.188019
\(317\) −7660.98 −1.35736 −0.678680 0.734434i \(-0.737448\pi\)
−0.678680 + 0.734434i \(0.737448\pi\)
\(318\) 104.767 0.0184749
\(319\) 0 0
\(320\) 5513.73 0.963209
\(321\) 501.291 0.0871630
\(322\) −6590.62 −1.14062
\(323\) −2795.24 −0.481521
\(324\) −784.701 −0.134551
\(325\) −901.802 −0.153917
\(326\) −3571.97 −0.606850
\(327\) 401.338 0.0678717
\(328\) 7860.76 1.32329
\(329\) −5957.34 −0.998293
\(330\) 0 0
\(331\) −1943.61 −0.322750 −0.161375 0.986893i \(-0.551593\pi\)
−0.161375 + 0.986893i \(0.551593\pi\)
\(332\) 120.112 0.0198555
\(333\) −5277.96 −0.868559
\(334\) −849.361 −0.139147
\(335\) 379.695 0.0619252
\(336\) 511.162 0.0829945
\(337\) 6547.56 1.05836 0.529181 0.848509i \(-0.322499\pi\)
0.529181 + 0.848509i \(0.322499\pi\)
\(338\) −3168.97 −0.509968
\(339\) 518.146 0.0830143
\(340\) −183.694 −0.0293006
\(341\) 0 0
\(342\) 11574.4 1.83003
\(343\) 5043.36 0.793924
\(344\) −824.821 −0.129277
\(345\) 521.013 0.0813055
\(346\) 5188.92 0.806237
\(347\) −4321.37 −0.668540 −0.334270 0.942477i \(-0.608490\pi\)
−0.334270 + 0.942477i \(0.608490\pi\)
\(348\) 20.2000 0.00311159
\(349\) 4937.21 0.757258 0.378629 0.925549i \(-0.376396\pi\)
0.378629 + 0.925549i \(0.376396\pi\)
\(350\) 1592.33 0.243182
\(351\) −757.826 −0.115242
\(352\) 0 0
\(353\) −5817.82 −0.877199 −0.438599 0.898683i \(-0.644525\pi\)
−0.438599 + 0.898683i \(0.644525\pi\)
\(354\) 256.662 0.0385352
\(355\) −2376.29 −0.355269
\(356\) −1479.24 −0.220223
\(357\) −160.977 −0.0238650
\(358\) −8621.30 −1.27277
\(359\) 12193.3 1.79258 0.896291 0.443466i \(-0.146251\pi\)
0.896291 + 0.443466i \(0.146251\pi\)
\(360\) 6288.21 0.920605
\(361\) 20176.8 2.94166
\(362\) −6675.84 −0.969266
\(363\) 0 0
\(364\) 733.020 0.105551
\(365\) 3388.61 0.485940
\(366\) −133.491 −0.0190647
\(367\) 7122.35 1.01304 0.506518 0.862230i \(-0.330933\pi\)
0.506518 + 0.862230i \(0.330933\pi\)
\(368\) −6402.01 −0.906868
\(369\) 8812.81 1.24330
\(370\) 5077.52 0.713426
\(371\) −1885.49 −0.263853
\(372\) −113.227 −0.0157810
\(373\) 3434.51 0.476762 0.238381 0.971172i \(-0.423383\pi\)
0.238381 + 0.971172i \(0.423383\pi\)
\(374\) 0 0
\(375\) −675.023 −0.0929548
\(376\) −6730.94 −0.923196
\(377\) −1290.32 −0.176272
\(378\) 1338.11 0.182077
\(379\) 12549.1 1.70080 0.850399 0.526138i \(-0.176361\pi\)
0.850399 + 0.526138i \(0.176361\pi\)
\(380\) 1776.71 0.239850
\(381\) 217.765 0.0292820
\(382\) 8710.88 1.16672
\(383\) 11780.3 1.57166 0.785831 0.618441i \(-0.212235\pi\)
0.785831 + 0.618441i \(0.212235\pi\)
\(384\) 483.317 0.0642296
\(385\) 0 0
\(386\) 7012.40 0.924667
\(387\) −924.718 −0.121463
\(388\) 1374.61 0.179859
\(389\) −8032.97 −1.04701 −0.523506 0.852022i \(-0.675376\pi\)
−0.523506 + 0.852022i \(0.675376\pi\)
\(390\) 363.166 0.0471529
\(391\) 2016.14 0.260769
\(392\) −2500.96 −0.322239
\(393\) −853.208 −0.109513
\(394\) −6044.10 −0.772836
\(395\) 9417.22 1.19957
\(396\) 0 0
\(397\) −6434.07 −0.813392 −0.406696 0.913563i \(-0.633319\pi\)
−0.406696 + 0.913563i \(0.633319\pi\)
\(398\) −1215.13 −0.153037
\(399\) 1556.99 0.195355
\(400\) 1546.76 0.193345
\(401\) 8429.79 1.04978 0.524892 0.851169i \(-0.324106\pi\)
0.524892 + 0.851169i \(0.324106\pi\)
\(402\) 45.4751 0.00564201
\(403\) 7232.62 0.894001
\(404\) 215.253 0.0265080
\(405\) 6996.72 0.858443
\(406\) 2278.34 0.278503
\(407\) 0 0
\(408\) −181.881 −0.0220697
\(409\) −13871.5 −1.67703 −0.838513 0.544881i \(-0.816575\pi\)
−0.838513 + 0.544881i \(0.816575\pi\)
\(410\) −8478.13 −1.02123
\(411\) 952.542 0.114320
\(412\) 174.967 0.0209223
\(413\) −4619.15 −0.550348
\(414\) −8348.33 −0.991059
\(415\) −1070.97 −0.126679
\(416\) 1556.23 0.183415
\(417\) 128.310 0.0150681
\(418\) 0 0
\(419\) −5981.50 −0.697412 −0.348706 0.937232i \(-0.613379\pi\)
−0.348706 + 0.937232i \(0.613379\pi\)
\(420\) 102.320 0.0118874
\(421\) 2176.05 0.251910 0.125955 0.992036i \(-0.459800\pi\)
0.125955 + 0.992036i \(0.459800\pi\)
\(422\) 13939.9 1.60802
\(423\) −7546.15 −0.867391
\(424\) −2130.33 −0.244005
\(425\) −487.112 −0.0555962
\(426\) −284.602 −0.0323686
\(427\) 2402.43 0.272276
\(428\) −1232.99 −0.139249
\(429\) 0 0
\(430\) 889.601 0.0997683
\(431\) 16124.0 1.80201 0.901004 0.433811i \(-0.142831\pi\)
0.901004 + 0.433811i \(0.142831\pi\)
\(432\) 1299.82 0.144762
\(433\) 11222.2 1.24551 0.622756 0.782416i \(-0.286013\pi\)
0.622756 + 0.782416i \(0.286013\pi\)
\(434\) −12770.8 −1.41248
\(435\) −180.111 −0.0198521
\(436\) −987.143 −0.108430
\(437\) −19500.3 −2.13462
\(438\) 405.845 0.0442740
\(439\) −11850.4 −1.28836 −0.644178 0.764876i \(-0.722800\pi\)
−0.644178 + 0.764876i \(0.722800\pi\)
\(440\) 0 0
\(441\) −2803.87 −0.302761
\(442\) 1405.33 0.151232
\(443\) −6913.30 −0.741447 −0.370723 0.928743i \(-0.620890\pi\)
−0.370723 + 0.928743i \(0.620890\pi\)
\(444\) −97.0336 −0.0103716
\(445\) 13189.5 1.40504
\(446\) −10668.8 −1.13270
\(447\) 907.196 0.0959931
\(448\) −11884.6 −1.25333
\(449\) 2076.79 0.218285 0.109142 0.994026i \(-0.465190\pi\)
0.109142 + 0.994026i \(0.465190\pi\)
\(450\) 2017.01 0.211295
\(451\) 0 0
\(452\) −1274.45 −0.132622
\(453\) 261.736 0.0271466
\(454\) −14843.0 −1.53440
\(455\) −6535.90 −0.673424
\(456\) 1759.17 0.180659
\(457\) −7379.60 −0.755368 −0.377684 0.925935i \(-0.623279\pi\)
−0.377684 + 0.925935i \(0.623279\pi\)
\(458\) −8969.26 −0.915079
\(459\) −409.343 −0.0416263
\(460\) −1281.50 −0.129892
\(461\) −8852.42 −0.894357 −0.447178 0.894445i \(-0.647571\pi\)
−0.447178 + 0.894445i \(0.647571\pi\)
\(462\) 0 0
\(463\) −7239.37 −0.726657 −0.363328 0.931661i \(-0.618360\pi\)
−0.363328 + 0.931661i \(0.618360\pi\)
\(464\) 2213.14 0.221427
\(465\) 1009.58 0.100684
\(466\) 4966.44 0.493704
\(467\) 16024.3 1.58782 0.793912 0.608032i \(-0.208041\pi\)
0.793912 + 0.608032i \(0.208041\pi\)
\(468\) 928.516 0.0917108
\(469\) −818.415 −0.0805776
\(470\) 7259.58 0.712467
\(471\) 1188.03 0.116224
\(472\) −5218.98 −0.508947
\(473\) 0 0
\(474\) 1127.88 0.109293
\(475\) 4711.40 0.455102
\(476\) 395.943 0.0381261
\(477\) −2388.34 −0.229255
\(478\) 10168.4 0.972994
\(479\) 9515.90 0.907709 0.453855 0.891076i \(-0.350049\pi\)
0.453855 + 0.891076i \(0.350049\pi\)
\(480\) 217.230 0.0206565
\(481\) 6198.23 0.587557
\(482\) −6646.15 −0.628058
\(483\) −1123.02 −0.105795
\(484\) 0 0
\(485\) −12256.6 −1.14751
\(486\) 2545.63 0.237597
\(487\) −7281.24 −0.677504 −0.338752 0.940876i \(-0.610005\pi\)
−0.338752 + 0.940876i \(0.610005\pi\)
\(488\) 2714.40 0.251794
\(489\) −608.651 −0.0562866
\(490\) 2697.39 0.248685
\(491\) −4668.89 −0.429132 −0.214566 0.976709i \(-0.568834\pi\)
−0.214566 + 0.976709i \(0.568834\pi\)
\(492\) 162.021 0.0148465
\(493\) −696.970 −0.0636713
\(494\) −13592.5 −1.23797
\(495\) 0 0
\(496\) −12405.3 −1.12301
\(497\) 5121.98 0.462278
\(498\) −128.267 −0.0115418
\(499\) −20500.5 −1.83913 −0.919567 0.392934i \(-0.871460\pi\)
−0.919567 + 0.392934i \(0.871460\pi\)
\(500\) 1660.31 0.148502
\(501\) −144.728 −0.0129061
\(502\) 15105.7 1.34303
\(503\) −5141.02 −0.455719 −0.227860 0.973694i \(-0.573173\pi\)
−0.227860 + 0.973694i \(0.573173\pi\)
\(504\) −13553.9 −1.19790
\(505\) −1919.28 −0.169123
\(506\) 0 0
\(507\) −539.981 −0.0473006
\(508\) −535.621 −0.0467802
\(509\) 10957.5 0.954193 0.477097 0.878851i \(-0.341689\pi\)
0.477097 + 0.878851i \(0.341689\pi\)
\(510\) 196.166 0.0170321
\(511\) −7303.99 −0.632308
\(512\) −12992.4 −1.12146
\(513\) 3959.20 0.340747
\(514\) −1605.21 −0.137749
\(515\) −1560.07 −0.133486
\(516\) −17.0007 −0.00145041
\(517\) 0 0
\(518\) −10944.4 −0.928316
\(519\) 884.173 0.0747801
\(520\) −7384.64 −0.622765
\(521\) 9623.01 0.809197 0.404599 0.914494i \(-0.367411\pi\)
0.404599 + 0.914494i \(0.367411\pi\)
\(522\) 2885.97 0.241984
\(523\) 21271.6 1.77847 0.889237 0.457446i \(-0.151236\pi\)
0.889237 + 0.457446i \(0.151236\pi\)
\(524\) 2098.58 0.174956
\(525\) 271.328 0.0225556
\(526\) 8706.85 0.721743
\(527\) 3906.73 0.322922
\(528\) 0 0
\(529\) 1898.16 0.156009
\(530\) 2297.64 0.188308
\(531\) −5851.08 −0.478183
\(532\) −3829.61 −0.312095
\(533\) −10349.4 −0.841057
\(534\) 1579.67 0.128013
\(535\) 10993.8 0.888420
\(536\) −924.692 −0.0745160
\(537\) −1469.04 −0.118052
\(538\) −13278.4 −1.06408
\(539\) 0 0
\(540\) 260.186 0.0207345
\(541\) −657.106 −0.0522204 −0.0261102 0.999659i \(-0.508312\pi\)
−0.0261102 + 0.999659i \(0.508312\pi\)
\(542\) 11451.7 0.907548
\(543\) −1137.54 −0.0899014
\(544\) 840.606 0.0662512
\(545\) 8801.77 0.691791
\(546\) −782.788 −0.0613557
\(547\) 24418.1 1.90867 0.954336 0.298735i \(-0.0965646\pi\)
0.954336 + 0.298735i \(0.0965646\pi\)
\(548\) −2342.90 −0.182634
\(549\) 3043.16 0.236573
\(550\) 0 0
\(551\) 6741.16 0.521204
\(552\) −1268.85 −0.0978367
\(553\) −20298.4 −1.56090
\(554\) −13848.0 −1.06200
\(555\) 865.191 0.0661718
\(556\) −315.596 −0.0240724
\(557\) −9529.58 −0.724922 −0.362461 0.931999i \(-0.618063\pi\)
−0.362461 + 0.931999i \(0.618063\pi\)
\(558\) −16176.8 −1.22727
\(559\) 1085.95 0.0821663
\(560\) 11210.3 0.845932
\(561\) 0 0
\(562\) 19215.0 1.44224
\(563\) −1501.45 −0.112395 −0.0561975 0.998420i \(-0.517898\pi\)
−0.0561975 + 0.998420i \(0.517898\pi\)
\(564\) −138.734 −0.0103577
\(565\) 11363.5 0.846134
\(566\) 10098.5 0.749947
\(567\) −15081.1 −1.11701
\(568\) 5787.11 0.427503
\(569\) 8465.64 0.623723 0.311861 0.950128i \(-0.399048\pi\)
0.311861 + 0.950128i \(0.399048\pi\)
\(570\) −1897.33 −0.139422
\(571\) −5622.12 −0.412046 −0.206023 0.978547i \(-0.566052\pi\)
−0.206023 + 0.978547i \(0.566052\pi\)
\(572\) 0 0
\(573\) 1484.30 0.108216
\(574\) 18274.2 1.32883
\(575\) −3398.22 −0.246462
\(576\) −15054.2 −1.08899
\(577\) −10537.8 −0.760305 −0.380153 0.924924i \(-0.624129\pi\)
−0.380153 + 0.924924i \(0.624129\pi\)
\(578\) 759.094 0.0546266
\(579\) 1194.89 0.0857648
\(580\) 443.007 0.0317153
\(581\) 2308.43 0.164836
\(582\) −1467.94 −0.104550
\(583\) 0 0
\(584\) −8252.47 −0.584742
\(585\) −8279.02 −0.585120
\(586\) −18603.7 −1.31145
\(587\) −14545.3 −1.02274 −0.511371 0.859360i \(-0.670862\pi\)
−0.511371 + 0.859360i \(0.670862\pi\)
\(588\) −51.5483 −0.00361533
\(589\) −37786.3 −2.64339
\(590\) 5628.88 0.392775
\(591\) −1029.89 −0.0716822
\(592\) −10631.1 −0.738069
\(593\) 23802.4 1.64831 0.824156 0.566363i \(-0.191650\pi\)
0.824156 + 0.566363i \(0.191650\pi\)
\(594\) 0 0
\(595\) −3530.39 −0.243247
\(596\) −2231.37 −0.153356
\(597\) −207.053 −0.0141945
\(598\) 9803.97 0.670425
\(599\) 1494.23 0.101924 0.0509621 0.998701i \(-0.483771\pi\)
0.0509621 + 0.998701i \(0.483771\pi\)
\(600\) 306.562 0.0208589
\(601\) −20323.3 −1.37938 −0.689689 0.724106i \(-0.742253\pi\)
−0.689689 + 0.724106i \(0.742253\pi\)
\(602\) −1917.49 −0.129819
\(603\) −1036.69 −0.0700117
\(604\) −643.773 −0.0433688
\(605\) 0 0
\(606\) −229.867 −0.0154088
\(607\) −18367.5 −1.22819 −0.614096 0.789232i \(-0.710479\pi\)
−0.614096 + 0.789232i \(0.710479\pi\)
\(608\) −8130.43 −0.542323
\(609\) 388.221 0.0258317
\(610\) −2927.59 −0.194319
\(611\) 8861.91 0.586767
\(612\) 501.541 0.0331268
\(613\) −21692.8 −1.42930 −0.714652 0.699480i \(-0.753415\pi\)
−0.714652 + 0.699480i \(0.753415\pi\)
\(614\) −25615.0 −1.68361
\(615\) −1444.64 −0.0947214
\(616\) 0 0
\(617\) −3342.60 −0.218100 −0.109050 0.994036i \(-0.534781\pi\)
−0.109050 + 0.994036i \(0.534781\pi\)
\(618\) −186.846 −0.0121619
\(619\) 21127.4 1.37186 0.685929 0.727668i \(-0.259396\pi\)
0.685929 + 0.727668i \(0.259396\pi\)
\(620\) −2483.19 −0.160850
\(621\) −2855.69 −0.184533
\(622\) 13478.8 0.868894
\(623\) −28429.3 −1.82824
\(624\) −760.385 −0.0487817
\(625\) −11222.3 −0.718225
\(626\) 14341.4 0.915651
\(627\) 0 0
\(628\) −2922.12 −0.185677
\(629\) 3348.00 0.212231
\(630\) 14618.5 0.924465
\(631\) −21087.0 −1.33036 −0.665182 0.746681i \(-0.731646\pi\)
−0.665182 + 0.746681i \(0.731646\pi\)
\(632\) −22934.3 −1.44348
\(633\) 2375.32 0.149147
\(634\) −20122.5 −1.26051
\(635\) 4775.81 0.298460
\(636\) −43.9090 −0.00273758
\(637\) 3292.76 0.204810
\(638\) 0 0
\(639\) 6488.01 0.401661
\(640\) 10599.6 0.654668
\(641\) 18629.7 1.14794 0.573971 0.818876i \(-0.305402\pi\)
0.573971 + 0.818876i \(0.305402\pi\)
\(642\) 1316.70 0.0809440
\(643\) −13426.5 −0.823469 −0.411735 0.911304i \(-0.635077\pi\)
−0.411735 + 0.911304i \(0.635077\pi\)
\(644\) 2762.21 0.169016
\(645\) 151.585 0.00925372
\(646\) −7342.04 −0.447165
\(647\) 11631.2 0.706751 0.353376 0.935482i \(-0.385034\pi\)
0.353376 + 0.935482i \(0.385034\pi\)
\(648\) −17039.5 −1.03298
\(649\) 0 0
\(650\) −2368.69 −0.142935
\(651\) −2176.10 −0.131011
\(652\) 1497.05 0.0899221
\(653\) 24813.6 1.48703 0.743515 0.668719i \(-0.233157\pi\)
0.743515 + 0.668719i \(0.233157\pi\)
\(654\) 1054.16 0.0630292
\(655\) −18711.8 −1.11623
\(656\) 17751.2 1.05651
\(657\) −9251.96 −0.549396
\(658\) −15647.7 −0.927067
\(659\) 28209.0 1.66747 0.833737 0.552161i \(-0.186197\pi\)
0.833737 + 0.552161i \(0.186197\pi\)
\(660\) 0 0
\(661\) 10453.0 0.615087 0.307544 0.951534i \(-0.400493\pi\)
0.307544 + 0.951534i \(0.400493\pi\)
\(662\) −5105.12 −0.299723
\(663\) 239.463 0.0140271
\(664\) 2608.19 0.152436
\(665\) 34146.3 1.99118
\(666\) −13863.2 −0.806589
\(667\) −4862.25 −0.282259
\(668\) 355.977 0.0206185
\(669\) −1817.93 −0.105060
\(670\) 997.316 0.0575070
\(671\) 0 0
\(672\) −468.229 −0.0268784
\(673\) −11513.5 −0.659455 −0.329728 0.944076i \(-0.606957\pi\)
−0.329728 + 0.944076i \(0.606957\pi\)
\(674\) 17198.0 0.982850
\(675\) 689.950 0.0393425
\(676\) 1328.15 0.0755662
\(677\) −3285.96 −0.186543 −0.0932715 0.995641i \(-0.529732\pi\)
−0.0932715 + 0.995641i \(0.529732\pi\)
\(678\) 1360.97 0.0770913
\(679\) 26418.5 1.49315
\(680\) −3988.84 −0.224948
\(681\) −2529.19 −0.142318
\(682\) 0 0
\(683\) −14822.1 −0.830386 −0.415193 0.909733i \(-0.636286\pi\)
−0.415193 + 0.909733i \(0.636286\pi\)
\(684\) −4850.96 −0.271171
\(685\) 20890.2 1.16522
\(686\) 13247.0 0.737279
\(687\) −1528.33 −0.0848755
\(688\) −1862.62 −0.103215
\(689\) 2804.78 0.155085
\(690\) 1368.50 0.0755044
\(691\) 7389.63 0.406823 0.203412 0.979093i \(-0.434797\pi\)
0.203412 + 0.979093i \(0.434797\pi\)
\(692\) −2174.74 −0.119467
\(693\) 0 0
\(694\) −11350.6 −0.620841
\(695\) 2813.98 0.153583
\(696\) 438.635 0.0238885
\(697\) −5590.28 −0.303798
\(698\) 12968.2 0.703229
\(699\) 846.264 0.0457920
\(700\) −667.365 −0.0360343
\(701\) −6812.00 −0.367027 −0.183513 0.983017i \(-0.558747\pi\)
−0.183513 + 0.983017i \(0.558747\pi\)
\(702\) −1990.52 −0.107019
\(703\) −32382.2 −1.73729
\(704\) 0 0
\(705\) 1237.01 0.0660827
\(706\) −15281.2 −0.814612
\(707\) 4136.92 0.220064
\(708\) −107.570 −0.00571008
\(709\) −34700.2 −1.83807 −0.919036 0.394173i \(-0.871031\pi\)
−0.919036 + 0.394173i \(0.871031\pi\)
\(710\) −6241.62 −0.329921
\(711\) −25711.9 −1.35622
\(712\) −32121.0 −1.69071
\(713\) 27254.4 1.43154
\(714\) −422.826 −0.0221623
\(715\) 0 0
\(716\) 3613.29 0.188596
\(717\) 1732.66 0.0902472
\(718\) 32027.2 1.66468
\(719\) 18345.8 0.951576 0.475788 0.879560i \(-0.342163\pi\)
0.475788 + 0.879560i \(0.342163\pi\)
\(720\) 14200.1 0.735008
\(721\) 3362.67 0.173692
\(722\) 52997.0 2.73178
\(723\) −1132.48 −0.0582537
\(724\) 2797.92 0.143624
\(725\) 1174.75 0.0601780
\(726\) 0 0
\(727\) −26658.5 −1.35999 −0.679993 0.733219i \(-0.738017\pi\)
−0.679993 + 0.733219i \(0.738017\pi\)
\(728\) 15917.2 0.810346
\(729\) −18812.2 −0.955760
\(730\) 8900.60 0.451269
\(731\) 586.582 0.0296792
\(732\) 55.9475 0.00282497
\(733\) −36988.4 −1.86384 −0.931922 0.362658i \(-0.881869\pi\)
−0.931922 + 0.362658i \(0.881869\pi\)
\(734\) 18707.7 0.940757
\(735\) 459.625 0.0230660
\(736\) 5864.29 0.293697
\(737\) 0 0
\(738\) 23147.9 1.15459
\(739\) −13103.7 −0.652271 −0.326135 0.945323i \(-0.605747\pi\)
−0.326135 + 0.945323i \(0.605747\pi\)
\(740\) −2128.05 −0.105714
\(741\) −2316.11 −0.114824
\(742\) −4952.46 −0.245028
\(743\) −2793.90 −0.137952 −0.0689759 0.997618i \(-0.521973\pi\)
−0.0689759 + 0.997618i \(0.521973\pi\)
\(744\) −2458.68 −0.121155
\(745\) 19895.8 0.978422
\(746\) 9021.17 0.442746
\(747\) 2924.08 0.143222
\(748\) 0 0
\(749\) −23696.7 −1.15602
\(750\) −1773.03 −0.0863226
\(751\) 21755.5 1.05708 0.528542 0.848907i \(-0.322739\pi\)
0.528542 + 0.848907i \(0.322739\pi\)
\(752\) −15199.9 −0.737077
\(753\) 2573.96 0.124569
\(754\) −3389.18 −0.163696
\(755\) 5740.14 0.276696
\(756\) −560.818 −0.0269798
\(757\) −33379.5 −1.60264 −0.801319 0.598237i \(-0.795868\pi\)
−0.801319 + 0.598237i \(0.795868\pi\)
\(758\) 32961.7 1.57945
\(759\) 0 0
\(760\) 38580.5 1.84140
\(761\) 15410.8 0.734090 0.367045 0.930203i \(-0.380370\pi\)
0.367045 + 0.930203i \(0.380370\pi\)
\(762\) 571.986 0.0271927
\(763\) −18971.8 −0.900164
\(764\) −3650.83 −0.172883
\(765\) −4471.94 −0.211351
\(766\) 30942.5 1.45953
\(767\) 6871.28 0.323478
\(768\) −741.806 −0.0348537
\(769\) 7909.87 0.370920 0.185460 0.982652i \(-0.440623\pi\)
0.185460 + 0.982652i \(0.440623\pi\)
\(770\) 0 0
\(771\) −273.522 −0.0127765
\(772\) −2938.98 −0.137016
\(773\) 23265.3 1.08253 0.541264 0.840853i \(-0.317946\pi\)
0.541264 + 0.840853i \(0.317946\pi\)
\(774\) −2428.89 −0.112797
\(775\) −6584.82 −0.305205
\(776\) 29849.1 1.38082
\(777\) −1864.88 −0.0861032
\(778\) −21099.6 −0.972309
\(779\) 54069.8 2.48684
\(780\) −152.207 −0.00698705
\(781\) 0 0
\(782\) 5295.65 0.242164
\(783\) 987.195 0.0450568
\(784\) −5647.70 −0.257275
\(785\) 26054.8 1.18463
\(786\) −2241.06 −0.101700
\(787\) −21095.9 −0.955511 −0.477756 0.878493i \(-0.658550\pi\)
−0.477756 + 0.878493i \(0.658550\pi\)
\(788\) 2533.16 0.114518
\(789\) 1483.62 0.0669432
\(790\) 24735.5 1.11399
\(791\) −24493.5 −1.10100
\(792\) 0 0
\(793\) −3573.77 −0.160036
\(794\) −16899.9 −0.755358
\(795\) 391.510 0.0174660
\(796\) 509.274 0.0226768
\(797\) −79.4517 −0.00353115 −0.00176557 0.999998i \(-0.500562\pi\)
−0.00176557 + 0.999998i \(0.500562\pi\)
\(798\) 4089.61 0.181417
\(799\) 4786.79 0.211946
\(800\) −1416.85 −0.0626164
\(801\) −36011.4 −1.58851
\(802\) 22141.9 0.974884
\(803\) 0 0
\(804\) −19.0591 −0.000836025 0
\(805\) −24629.0 −1.07833
\(806\) 18997.4 0.830216
\(807\) −2262.60 −0.0986953
\(808\) 4674.13 0.203509
\(809\) 22943.5 0.997095 0.498548 0.866862i \(-0.333867\pi\)
0.498548 + 0.866862i \(0.333867\pi\)
\(810\) 18377.7 0.797195
\(811\) 36919.6 1.59855 0.799274 0.600967i \(-0.205218\pi\)
0.799274 + 0.600967i \(0.205218\pi\)
\(812\) −954.880 −0.0412681
\(813\) 1951.32 0.0841769
\(814\) 0 0
\(815\) −13348.3 −0.573708
\(816\) −410.725 −0.0176204
\(817\) −5673.48 −0.242950
\(818\) −36435.3 −1.55737
\(819\) 17845.0 0.761363
\(820\) 3553.29 0.151325
\(821\) −7061.69 −0.300188 −0.150094 0.988672i \(-0.547958\pi\)
−0.150094 + 0.988672i \(0.547958\pi\)
\(822\) 2501.97 0.106163
\(823\) 17365.1 0.735492 0.367746 0.929926i \(-0.380130\pi\)
0.367746 + 0.929926i \(0.380130\pi\)
\(824\) 3799.33 0.160626
\(825\) 0 0
\(826\) −12132.8 −0.511082
\(827\) 1350.18 0.0567718 0.0283859 0.999597i \(-0.490963\pi\)
0.0283859 + 0.999597i \(0.490963\pi\)
\(828\) 3498.89 0.146854
\(829\) −27944.8 −1.17076 −0.585382 0.810758i \(-0.699055\pi\)
−0.585382 + 0.810758i \(0.699055\pi\)
\(830\) −2813.04 −0.117641
\(831\) −2359.66 −0.0985025
\(832\) 17679.1 0.736673
\(833\) 1778.59 0.0739791
\(834\) 337.023 0.0139930
\(835\) −3174.04 −0.131547
\(836\) 0 0
\(837\) −5533.53 −0.228515
\(838\) −15711.2 −0.647653
\(839\) −2211.80 −0.0910128 −0.0455064 0.998964i \(-0.514490\pi\)
−0.0455064 + 0.998964i \(0.514490\pi\)
\(840\) 2221.84 0.0912626
\(841\) −22708.1 −0.931082
\(842\) 5715.67 0.233937
\(843\) 3274.17 0.133770
\(844\) −5842.40 −0.238274
\(845\) −11842.3 −0.482117
\(846\) −19820.9 −0.805504
\(847\) 0 0
\(848\) −4810.73 −0.194813
\(849\) 1720.74 0.0695591
\(850\) −1279.46 −0.0516295
\(851\) 23356.5 0.940837
\(852\) 119.280 0.00479632
\(853\) 38390.8 1.54100 0.770501 0.637439i \(-0.220006\pi\)
0.770501 + 0.637439i \(0.220006\pi\)
\(854\) 6310.29 0.252850
\(855\) 43253.1 1.73009
\(856\) −26773.9 −1.06906
\(857\) 21371.6 0.851855 0.425928 0.904757i \(-0.359948\pi\)
0.425928 + 0.904757i \(0.359948\pi\)
\(858\) 0 0
\(859\) 24207.0 0.961504 0.480752 0.876857i \(-0.340364\pi\)
0.480752 + 0.876857i \(0.340364\pi\)
\(860\) −372.842 −0.0147835
\(861\) 3113.86 0.123252
\(862\) 42351.7 1.67344
\(863\) 11773.3 0.464391 0.232196 0.972669i \(-0.425409\pi\)
0.232196 + 0.972669i \(0.425409\pi\)
\(864\) −1190.64 −0.0468825
\(865\) 19390.8 0.762206
\(866\) 29476.6 1.15665
\(867\) 129.347 0.00506673
\(868\) 5352.40 0.209300
\(869\) 0 0
\(870\) −473.084 −0.0184357
\(871\) 1217.44 0.0473611
\(872\) −21435.4 −0.832448
\(873\) 33464.2 1.29736
\(874\) −51220.1 −1.98232
\(875\) 31909.3 1.23283
\(876\) −170.094 −0.00656045
\(877\) −36559.1 −1.40765 −0.703826 0.710372i \(-0.748527\pi\)
−0.703826 + 0.710372i \(0.748527\pi\)
\(878\) −31126.5 −1.19643
\(879\) −3170.00 −0.121640
\(880\) 0 0
\(881\) −39666.6 −1.51692 −0.758458 0.651722i \(-0.774047\pi\)
−0.758458 + 0.651722i \(0.774047\pi\)
\(882\) −7364.70 −0.281159
\(883\) 15193.5 0.579052 0.289526 0.957170i \(-0.406502\pi\)
0.289526 + 0.957170i \(0.406502\pi\)
\(884\) −588.991 −0.0224094
\(885\) 959.140 0.0364307
\(886\) −18158.6 −0.688546
\(887\) −39304.3 −1.48783 −0.743917 0.668272i \(-0.767034\pi\)
−0.743917 + 0.668272i \(0.767034\pi\)
\(888\) −2107.05 −0.0796260
\(889\) −10294.0 −0.388359
\(890\) 34643.8 1.30479
\(891\) 0 0
\(892\) 4471.43 0.167841
\(893\) −46298.4 −1.73496
\(894\) 2382.86 0.0891441
\(895\) −32217.6 −1.20326
\(896\) −22847.0 −0.851859
\(897\) 1670.56 0.0621833
\(898\) 5454.95 0.202711
\(899\) −9421.69 −0.349534
\(900\) −845.351 −0.0313093
\(901\) 1515.01 0.0560182
\(902\) 0 0
\(903\) −326.734 −0.0120410
\(904\) −27674.1 −1.01817
\(905\) −24947.4 −0.916332
\(906\) 687.482 0.0252098
\(907\) −37140.3 −1.35967 −0.679836 0.733364i \(-0.737949\pi\)
−0.679836 + 0.733364i \(0.737949\pi\)
\(908\) 6220.87 0.227364
\(909\) 5240.24 0.191208
\(910\) −17167.4 −0.625376
\(911\) −3463.44 −0.125959 −0.0629797 0.998015i \(-0.520060\pi\)
−0.0629797 + 0.998015i \(0.520060\pi\)
\(912\) 3972.57 0.144238
\(913\) 0 0
\(914\) −19383.4 −0.701473
\(915\) −498.851 −0.0180235
\(916\) 3759.13 0.135595
\(917\) 40332.3 1.45244
\(918\) −1075.19 −0.0386563
\(919\) 41545.0 1.49123 0.745616 0.666376i \(-0.232155\pi\)
0.745616 + 0.666376i \(0.232155\pi\)
\(920\) −27827.2 −0.997213
\(921\) −4364.70 −0.156158
\(922\) −23252.0 −0.830546
\(923\) −7619.27 −0.271713
\(924\) 0 0
\(925\) −5643.07 −0.200587
\(926\) −19015.1 −0.674811
\(927\) 4259.49 0.150917
\(928\) −2027.25 −0.0717111
\(929\) −25841.8 −0.912641 −0.456320 0.889816i \(-0.650833\pi\)
−0.456320 + 0.889816i \(0.650833\pi\)
\(930\) 2651.78 0.0935004
\(931\) −17202.7 −0.605582
\(932\) −2081.49 −0.0731562
\(933\) 2296.75 0.0805917
\(934\) 42089.7 1.47454
\(935\) 0 0
\(936\) 20162.3 0.704089
\(937\) −21136.9 −0.736939 −0.368470 0.929640i \(-0.620118\pi\)
−0.368470 + 0.929640i \(0.620118\pi\)
\(938\) −2149.67 −0.0748285
\(939\) 2443.72 0.0849285
\(940\) −3042.57 −0.105572
\(941\) 5398.95 0.187036 0.0935180 0.995618i \(-0.470189\pi\)
0.0935180 + 0.995618i \(0.470189\pi\)
\(942\) 3120.51 0.107932
\(943\) −38999.3 −1.34676
\(944\) −11785.5 −0.406342
\(945\) 5000.48 0.172133
\(946\) 0 0
\(947\) 28724.5 0.985661 0.492831 0.870125i \(-0.335962\pi\)
0.492831 + 0.870125i \(0.335962\pi\)
\(948\) −472.706 −0.0161949
\(949\) 10865.1 0.371652
\(950\) 12375.1 0.422632
\(951\) −3428.80 −0.116915
\(952\) 8597.75 0.292705
\(953\) 48567.4 1.65084 0.825421 0.564518i \(-0.190938\pi\)
0.825421 + 0.564518i \(0.190938\pi\)
\(954\) −6273.28 −0.212898
\(955\) 32552.3 1.10300
\(956\) −4261.69 −0.144177
\(957\) 0 0
\(958\) 24994.7 0.842946
\(959\) −45027.9 −1.51619
\(960\) 2467.77 0.0829654
\(961\) 23020.5 0.772732
\(962\) 16280.4 0.545636
\(963\) −30016.6 −1.00443
\(964\) 2785.48 0.0930647
\(965\) 26205.1 0.874169
\(966\) −2949.75 −0.0982469
\(967\) 36587.2 1.21672 0.608359 0.793662i \(-0.291828\pi\)
0.608359 + 0.793662i \(0.291828\pi\)
\(968\) 0 0
\(969\) −1251.06 −0.0414755
\(970\) −32193.4 −1.06564
\(971\) −13679.7 −0.452112 −0.226056 0.974114i \(-0.572583\pi\)
−0.226056 + 0.974114i \(0.572583\pi\)
\(972\) −1066.90 −0.0352068
\(973\) −6065.40 −0.199844
\(974\) −19125.1 −0.629165
\(975\) −403.617 −0.0132575
\(976\) 6129.69 0.201031
\(977\) −3140.90 −0.102852 −0.0514260 0.998677i \(-0.516377\pi\)
−0.0514260 + 0.998677i \(0.516377\pi\)
\(978\) −1598.70 −0.0522706
\(979\) 0 0
\(980\) −1130.51 −0.0368497
\(981\) −24031.6 −0.782129
\(982\) −12263.4 −0.398515
\(983\) −22968.9 −0.745265 −0.372632 0.927979i \(-0.621545\pi\)
−0.372632 + 0.927979i \(0.621545\pi\)
\(984\) 3518.22 0.113980
\(985\) −22586.6 −0.730630
\(986\) −1830.68 −0.0591284
\(987\) −2666.31 −0.0859874
\(988\) 5696.78 0.183440
\(989\) 4092.16 0.131570
\(990\) 0 0
\(991\) 7553.19 0.242114 0.121057 0.992646i \(-0.461372\pi\)
0.121057 + 0.992646i \(0.461372\pi\)
\(992\) 11363.4 0.363697
\(993\) −869.895 −0.0277999
\(994\) 13453.5 0.429295
\(995\) −4540.89 −0.144679
\(996\) 53.7583 0.00171024
\(997\) −39778.8 −1.26360 −0.631798 0.775133i \(-0.717683\pi\)
−0.631798 + 0.775133i \(0.717683\pi\)
\(998\) −53847.0 −1.70791
\(999\) −4742.14 −0.150185
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2057.4.a.h.1.8 10
11.10 odd 2 187.4.a.e.1.3 10
33.32 even 2 1683.4.a.j.1.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
187.4.a.e.1.3 10 11.10 odd 2
1683.4.a.j.1.8 10 33.32 even 2
2057.4.a.h.1.8 10 1.1 even 1 trivial