Properties

Label 2-2057-1.1-c3-0-114
Degree $2$
Conductor $2057$
Sign $1$
Analytic cond. $121.366$
Root an. cond. $11.0166$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.62·2-s + 0.447·3-s − 1.10·4-s + 9.81·5-s + 1.17·6-s − 21.1·7-s − 23.9·8-s − 26.7·9-s + 25.7·10-s − 0.492·12-s + 31.4·13-s − 55.5·14-s + 4.39·15-s − 53.9·16-s + 17·17-s − 70.3·18-s − 164.·19-s − 10.8·20-s − 9.46·21-s + 118.·23-s − 10.6·24-s − 28.6·25-s + 82.6·26-s − 24.0·27-s + 23.2·28-s − 40.9·29-s + 11.5·30-s + ⋯
L(s)  = 1  + 0.928·2-s + 0.0861·3-s − 0.137·4-s + 0.877·5-s + 0.0799·6-s − 1.14·7-s − 1.05·8-s − 0.992·9-s + 0.815·10-s − 0.0118·12-s + 0.671·13-s − 1.06·14-s + 0.0756·15-s − 0.843·16-s + 0.242·17-s − 0.921·18-s − 1.98·19-s − 0.120·20-s − 0.0983·21-s + 1.07·23-s − 0.0909·24-s − 0.229·25-s + 0.623·26-s − 0.171·27-s + 0.157·28-s − 0.262·29-s + 0.0702·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2057\)    =    \(11^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(121.366\)
Root analytic conductor: \(11.0166\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2057,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.198523133\)
\(L(\frac12)\) \(\approx\) \(2.198523133\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
17 \( 1 - 17T \)
good2 \( 1 - 2.62T + 8T^{2} \)
3 \( 1 - 0.447T + 27T^{2} \)
5 \( 1 - 9.81T + 125T^{2} \)
7 \( 1 + 21.1T + 343T^{2} \)
13 \( 1 - 31.4T + 2.19e3T^{2} \)
19 \( 1 + 164.T + 6.85e3T^{2} \)
23 \( 1 - 118.T + 1.21e4T^{2} \)
29 \( 1 + 40.9T + 2.43e4T^{2} \)
31 \( 1 - 229.T + 2.97e4T^{2} \)
37 \( 1 - 196.T + 5.06e4T^{2} \)
41 \( 1 + 328.T + 6.89e4T^{2} \)
43 \( 1 - 34.5T + 7.95e4T^{2} \)
47 \( 1 - 281.T + 1.03e5T^{2} \)
53 \( 1 - 89.1T + 1.48e5T^{2} \)
59 \( 1 - 218.T + 2.05e5T^{2} \)
61 \( 1 + 113.T + 2.26e5T^{2} \)
67 \( 1 - 38.6T + 3.00e5T^{2} \)
71 \( 1 + 242.T + 3.57e5T^{2} \)
73 \( 1 - 345.T + 3.89e5T^{2} \)
79 \( 1 - 959.T + 4.93e5T^{2} \)
83 \( 1 + 109.T + 5.71e5T^{2} \)
89 \( 1 - 1.34e3T + 7.04e5T^{2} \)
97 \( 1 + 1.24e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.850739169252968343424992140465, −8.228666655381297105636382466556, −6.68954815593001923645217959825, −6.20573738771098753455980974632, −5.71700600090009514483017735933, −4.76177059375676213247976247314, −3.78814517587150982647091586801, −3.01959334615633107969218910864, −2.24615791773116403249327905249, −0.55783514327573564066075491942, 0.55783514327573564066075491942, 2.24615791773116403249327905249, 3.01959334615633107969218910864, 3.78814517587150982647091586801, 4.76177059375676213247976247314, 5.71700600090009514483017735933, 6.20573738771098753455980974632, 6.68954815593001923645217959825, 8.228666655381297105636382466556, 8.850739169252968343424992140465

Graph of the $Z$-function along the critical line