Properties

Label 2040.2.cf.e.1441.4
Level $2040$
Weight $2$
Character 2040.1441
Analytic conductor $16.289$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2040,2,Mod(361,2040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2040, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2040.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2040.cf (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2894820123\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} + 34 x^{18} - 92 x^{17} + 162 x^{16} - 344 x^{15} + 2614 x^{14} + 5936 x^{13} + \cdots + 7688 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1441.4
Root \(1.72040 + 4.15341i\) of defining polynomial
Character \(\chi\) \(=\) 2040.1441
Dual form 2040.2.cf.e.361.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(0.707107 + 0.707107i) q^{5} +(1.99447 - 1.99447i) q^{7} +1.00000i q^{9} +(-0.973731 + 0.973731i) q^{11} -5.30344 q^{13} -1.00000i q^{15} +(4.04255 - 0.811061i) q^{17} +7.91334i q^{19} -2.82061 q^{21} +(-6.39296 + 6.39296i) q^{23} +1.00000i q^{25} +(0.707107 - 0.707107i) q^{27} +(2.61466 + 2.61466i) q^{29} +(5.62185 + 5.62185i) q^{31} +1.37706 q^{33} +2.82061 q^{35} +(-6.31432 - 6.31432i) q^{37} +(3.75010 + 3.75010i) q^{39} +(7.51005 - 7.51005i) q^{41} +3.41059i q^{43} +(-0.707107 + 0.707107i) q^{45} +0.558773 q^{47} -0.955847i q^{49} +(-3.43202 - 2.28501i) q^{51} +9.29257i q^{53} -1.37706 q^{55} +(5.59558 - 5.59558i) q^{57} -6.38214i q^{59} +(-0.253278 + 0.253278i) q^{61} +(1.99447 + 1.99447i) q^{63} +(-3.75010 - 3.75010i) q^{65} -11.3627 q^{67} +9.04101 q^{69} +(3.96077 + 3.96077i) q^{71} +(2.81184 + 2.81184i) q^{73} +(0.707107 - 0.707107i) q^{75} +3.88416i q^{77} +(-6.24848 + 6.24848i) q^{79} -1.00000 q^{81} +0.373918i q^{83} +(3.43202 + 2.28501i) q^{85} -3.69768i q^{87} -6.65909 q^{89} +(-10.5776 + 10.5776i) q^{91} -7.95049i q^{93} +(-5.59558 + 5.59558i) q^{95} +(13.6102 + 13.6102i) q^{97} +(-0.973731 - 0.973731i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{7} + 4 q^{11} - 16 q^{13} + 4 q^{17} - 8 q^{21} + 4 q^{23} + 12 q^{29} + 16 q^{31} - 8 q^{33} + 8 q^{35} - 20 q^{37} - 4 q^{39} - 4 q^{41} + 8 q^{51} + 8 q^{55} - 8 q^{57} + 4 q^{63} + 4 q^{65}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2040\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1021\) \(1361\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 1.99447 1.99447i 0.753840 0.753840i −0.221354 0.975194i \(-0.571047\pi\)
0.975194 + 0.221354i \(0.0710475\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −0.973731 + 0.973731i −0.293591 + 0.293591i −0.838497 0.544906i \(-0.816565\pi\)
0.544906 + 0.838497i \(0.316565\pi\)
\(12\) 0 0
\(13\) −5.30344 −1.47091 −0.735454 0.677574i \(-0.763031\pi\)
−0.735454 + 0.677574i \(0.763031\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 4.04255 0.811061i 0.980461 0.196711i
\(18\) 0 0
\(19\) 7.91334i 1.81544i 0.419571 + 0.907722i \(0.362180\pi\)
−0.419571 + 0.907722i \(0.637820\pi\)
\(20\) 0 0
\(21\) −2.82061 −0.615508
\(22\) 0 0
\(23\) −6.39296 + 6.39296i −1.33302 + 1.33302i −0.430373 + 0.902651i \(0.641618\pi\)
−0.902651 + 0.430373i \(0.858382\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 2.61466 + 2.61466i 0.485529 + 0.485529i 0.906892 0.421363i \(-0.138448\pi\)
−0.421363 + 0.906892i \(0.638448\pi\)
\(30\) 0 0
\(31\) 5.62185 + 5.62185i 1.00971 + 1.00971i 0.999952 + 0.00976085i \(0.00310702\pi\)
0.00976085 + 0.999952i \(0.496893\pi\)
\(32\) 0 0
\(33\) 1.37706 0.239716
\(34\) 0 0
\(35\) 2.82061 0.476770
\(36\) 0 0
\(37\) −6.31432 6.31432i −1.03807 1.03807i −0.999246 0.0388212i \(-0.987640\pi\)
−0.0388212 0.999246i \(-0.512360\pi\)
\(38\) 0 0
\(39\) 3.75010 + 3.75010i 0.600496 + 0.600496i
\(40\) 0 0
\(41\) 7.51005 7.51005i 1.17287 1.17287i 0.191352 0.981522i \(-0.438713\pi\)
0.981522 0.191352i \(-0.0612871\pi\)
\(42\) 0 0
\(43\) 3.41059i 0.520110i 0.965594 + 0.260055i \(0.0837406\pi\)
−0.965594 + 0.260055i \(0.916259\pi\)
\(44\) 0 0
\(45\) −0.707107 + 0.707107i −0.105409 + 0.105409i
\(46\) 0 0
\(47\) 0.558773 0.0815054 0.0407527 0.999169i \(-0.487024\pi\)
0.0407527 + 0.999169i \(0.487024\pi\)
\(48\) 0 0
\(49\) 0.955847i 0.136550i
\(50\) 0 0
\(51\) −3.43202 2.28501i −0.480579 0.319965i
\(52\) 0 0
\(53\) 9.29257i 1.27643i 0.769857 + 0.638216i \(0.220327\pi\)
−0.769857 + 0.638216i \(0.779673\pi\)
\(54\) 0 0
\(55\) −1.37706 −0.185683
\(56\) 0 0
\(57\) 5.59558 5.59558i 0.741152 0.741152i
\(58\) 0 0
\(59\) 6.38214i 0.830884i −0.909620 0.415442i \(-0.863627\pi\)
0.909620 0.415442i \(-0.136373\pi\)
\(60\) 0 0
\(61\) −0.253278 + 0.253278i −0.0324290 + 0.0324290i −0.723135 0.690706i \(-0.757300\pi\)
0.690706 + 0.723135i \(0.257300\pi\)
\(62\) 0 0
\(63\) 1.99447 + 1.99447i 0.251280 + 0.251280i
\(64\) 0 0
\(65\) −3.75010 3.75010i −0.465142 0.465142i
\(66\) 0 0
\(67\) −11.3627 −1.38818 −0.694089 0.719889i \(-0.744192\pi\)
−0.694089 + 0.719889i \(0.744192\pi\)
\(68\) 0 0
\(69\) 9.04101 1.08841
\(70\) 0 0
\(71\) 3.96077 + 3.96077i 0.470057 + 0.470057i 0.901933 0.431876i \(-0.142148\pi\)
−0.431876 + 0.901933i \(0.642148\pi\)
\(72\) 0 0
\(73\) 2.81184 + 2.81184i 0.329102 + 0.329102i 0.852245 0.523143i \(-0.175241\pi\)
−0.523143 + 0.852245i \(0.675241\pi\)
\(74\) 0 0
\(75\) 0.707107 0.707107i 0.0816497 0.0816497i
\(76\) 0 0
\(77\) 3.88416i 0.442641i
\(78\) 0 0
\(79\) −6.24848 + 6.24848i −0.703009 + 0.703009i −0.965055 0.262047i \(-0.915603\pi\)
0.262047 + 0.965055i \(0.415603\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 0.373918i 0.0410429i 0.999789 + 0.0205214i \(0.00653263\pi\)
−0.999789 + 0.0205214i \(0.993467\pi\)
\(84\) 0 0
\(85\) 3.43202 + 2.28501i 0.372255 + 0.247844i
\(86\) 0 0
\(87\) 3.69768i 0.396433i
\(88\) 0 0
\(89\) −6.65909 −0.705863 −0.352931 0.935649i \(-0.614815\pi\)
−0.352931 + 0.935649i \(0.614815\pi\)
\(90\) 0 0
\(91\) −10.5776 + 10.5776i −1.10883 + 1.10883i
\(92\) 0 0
\(93\) 7.95049i 0.824427i
\(94\) 0 0
\(95\) −5.59558 + 5.59558i −0.574094 + 0.574094i
\(96\) 0 0
\(97\) 13.6102 + 13.6102i 1.38191 + 1.38191i 0.841223 + 0.540688i \(0.181836\pi\)
0.540688 + 0.841223i \(0.318164\pi\)
\(98\) 0 0
\(99\) −0.973731 0.973731i −0.0978636 0.0978636i
\(100\) 0 0
\(101\) 14.1034 1.40334 0.701669 0.712503i \(-0.252439\pi\)
0.701669 + 0.712503i \(0.252439\pi\)
\(102\) 0 0
\(103\) 2.96694 0.292341 0.146171 0.989259i \(-0.453305\pi\)
0.146171 + 0.989259i \(0.453305\pi\)
\(104\) 0 0
\(105\) −1.99447 1.99447i −0.194641 0.194641i
\(106\) 0 0
\(107\) 1.47679 + 1.47679i 0.142766 + 0.142766i 0.774878 0.632111i \(-0.217811\pi\)
−0.632111 + 0.774878i \(0.717811\pi\)
\(108\) 0 0
\(109\) 1.81143 1.81143i 0.173504 0.173504i −0.615013 0.788517i \(-0.710849\pi\)
0.788517 + 0.615013i \(0.210849\pi\)
\(110\) 0 0
\(111\) 8.92979i 0.847578i
\(112\) 0 0
\(113\) 9.09420 9.09420i 0.855510 0.855510i −0.135295 0.990805i \(-0.543198\pi\)
0.990805 + 0.135295i \(0.0431983\pi\)
\(114\) 0 0
\(115\) −9.04101 −0.843079
\(116\) 0 0
\(117\) 5.30344i 0.490303i
\(118\) 0 0
\(119\) 6.44511 9.68039i 0.590822 0.887400i
\(120\) 0 0
\(121\) 9.10370i 0.827609i
\(122\) 0 0
\(123\) −10.6208 −0.957647
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 7.02190i 0.623093i −0.950231 0.311547i \(-0.899153\pi\)
0.950231 0.311547i \(-0.100847\pi\)
\(128\) 0 0
\(129\) 2.41165 2.41165i 0.212334 0.212334i
\(130\) 0 0
\(131\) −1.01645 1.01645i −0.0888080 0.0888080i 0.661307 0.750115i \(-0.270002\pi\)
−0.750115 + 0.661307i \(0.770002\pi\)
\(132\) 0 0
\(133\) 15.7829 + 15.7829i 1.36855 + 1.36855i
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 7.84170 0.669962 0.334981 0.942225i \(-0.391270\pi\)
0.334981 + 0.942225i \(0.391270\pi\)
\(138\) 0 0
\(139\) 8.51929 + 8.51929i 0.722597 + 0.722597i 0.969133 0.246537i \(-0.0792926\pi\)
−0.246537 + 0.969133i \(0.579293\pi\)
\(140\) 0 0
\(141\) −0.395112 0.395112i −0.0332744 0.0332744i
\(142\) 0 0
\(143\) 5.16412 5.16412i 0.431845 0.431845i
\(144\) 0 0
\(145\) 3.69768i 0.307076i
\(146\) 0 0
\(147\) −0.675886 + 0.675886i −0.0557462 + 0.0557462i
\(148\) 0 0
\(149\) −9.20202 −0.753859 −0.376929 0.926242i \(-0.623020\pi\)
−0.376929 + 0.926242i \(0.623020\pi\)
\(150\) 0 0
\(151\) 16.5906i 1.35012i 0.737763 + 0.675060i \(0.235882\pi\)
−0.737763 + 0.675060i \(0.764118\pi\)
\(152\) 0 0
\(153\) 0.811061 + 4.04255i 0.0655704 + 0.326820i
\(154\) 0 0
\(155\) 7.95049i 0.638599i
\(156\) 0 0
\(157\) −2.12713 −0.169763 −0.0848816 0.996391i \(-0.527051\pi\)
−0.0848816 + 0.996391i \(0.527051\pi\)
\(158\) 0 0
\(159\) 6.57084 6.57084i 0.521101 0.521101i
\(160\) 0 0
\(161\) 25.5012i 2.00977i
\(162\) 0 0
\(163\) 6.53718 6.53718i 0.512031 0.512031i −0.403117 0.915148i \(-0.632073\pi\)
0.915148 + 0.403117i \(0.132073\pi\)
\(164\) 0 0
\(165\) 0.973731 + 0.973731i 0.0758048 + 0.0758048i
\(166\) 0 0
\(167\) −8.00033 8.00033i −0.619084 0.619084i 0.326212 0.945297i \(-0.394228\pi\)
−0.945297 + 0.326212i \(0.894228\pi\)
\(168\) 0 0
\(169\) 15.1264 1.16357
\(170\) 0 0
\(171\) −7.91334 −0.605148
\(172\) 0 0
\(173\) −1.59040 1.59040i −0.120916 0.120916i 0.644060 0.764975i \(-0.277249\pi\)
−0.764975 + 0.644060i \(0.777249\pi\)
\(174\) 0 0
\(175\) 1.99447 + 1.99447i 0.150768 + 0.150768i
\(176\) 0 0
\(177\) −4.51286 + 4.51286i −0.339207 + 0.339207i
\(178\) 0 0
\(179\) 19.0227i 1.42182i 0.703281 + 0.710912i \(0.251718\pi\)
−0.703281 + 0.710912i \(0.748282\pi\)
\(180\) 0 0
\(181\) −8.79621 + 8.79621i −0.653817 + 0.653817i −0.953910 0.300093i \(-0.902982\pi\)
0.300093 + 0.953910i \(0.402982\pi\)
\(182\) 0 0
\(183\) 0.358190 0.0264781
\(184\) 0 0
\(185\) 8.92979i 0.656531i
\(186\) 0 0
\(187\) −3.14660 + 4.72611i −0.230102 + 0.345607i
\(188\) 0 0
\(189\) 2.82061i 0.205169i
\(190\) 0 0
\(191\) 16.0650 1.16243 0.581213 0.813752i \(-0.302578\pi\)
0.581213 + 0.813752i \(0.302578\pi\)
\(192\) 0 0
\(193\) −6.21299 + 6.21299i −0.447220 + 0.447220i −0.894429 0.447209i \(-0.852418\pi\)
0.447209 + 0.894429i \(0.352418\pi\)
\(194\) 0 0
\(195\) 5.30344i 0.379787i
\(196\) 0 0
\(197\) 3.22826 3.22826i 0.230004 0.230004i −0.582690 0.812694i \(-0.698000\pi\)
0.812694 + 0.582690i \(0.198000\pi\)
\(198\) 0 0
\(199\) 8.82355 + 8.82355i 0.625485 + 0.625485i 0.946929 0.321444i \(-0.104168\pi\)
−0.321444 + 0.946929i \(0.604168\pi\)
\(200\) 0 0
\(201\) 8.03466 + 8.03466i 0.566721 + 0.566721i
\(202\) 0 0
\(203\) 10.4297 0.732023
\(204\) 0 0
\(205\) 10.6208 0.741790
\(206\) 0 0
\(207\) −6.39296 6.39296i −0.444341 0.444341i
\(208\) 0 0
\(209\) −7.70546 7.70546i −0.532998 0.532998i
\(210\) 0 0
\(211\) 0.508728 0.508728i 0.0350223 0.0350223i −0.689379 0.724401i \(-0.742116\pi\)
0.724401 + 0.689379i \(0.242116\pi\)
\(212\) 0 0
\(213\) 5.60137i 0.383800i
\(214\) 0 0
\(215\) −2.41165 + 2.41165i −0.164473 + 0.164473i
\(216\) 0 0
\(217\) 22.4252 1.52232
\(218\) 0 0
\(219\) 3.97655i 0.268710i
\(220\) 0 0
\(221\) −21.4394 + 4.30141i −1.44217 + 0.289344i
\(222\) 0 0
\(223\) 7.90359i 0.529264i 0.964350 + 0.264632i \(0.0852504\pi\)
−0.964350 + 0.264632i \(0.914750\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −13.8064 + 13.8064i −0.916365 + 0.916365i −0.996763 0.0803974i \(-0.974381\pi\)
0.0803974 + 0.996763i \(0.474381\pi\)
\(228\) 0 0
\(229\) 14.6319i 0.966900i −0.875372 0.483450i \(-0.839383\pi\)
0.875372 0.483450i \(-0.160617\pi\)
\(230\) 0 0
\(231\) 2.74652 2.74652i 0.180707 0.180707i
\(232\) 0 0
\(233\) −19.1321 19.1321i −1.25339 1.25339i −0.954192 0.299195i \(-0.903282\pi\)
−0.299195 0.954192i \(-0.596718\pi\)
\(234\) 0 0
\(235\) 0.395112 + 0.395112i 0.0257743 + 0.0257743i
\(236\) 0 0
\(237\) 8.83668 0.574004
\(238\) 0 0
\(239\) −19.7735 −1.27904 −0.639521 0.768774i \(-0.720867\pi\)
−0.639521 + 0.768774i \(0.720867\pi\)
\(240\) 0 0
\(241\) −17.5625 17.5625i −1.13130 1.13130i −0.989961 0.141338i \(-0.954860\pi\)
−0.141338 0.989961i \(-0.545140\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 0.675886 0.675886i 0.0431808 0.0431808i
\(246\) 0 0
\(247\) 41.9679i 2.67035i
\(248\) 0 0
\(249\) 0.264400 0.264400i 0.0167557 0.0167557i
\(250\) 0 0
\(251\) 11.2063 0.707333 0.353666 0.935372i \(-0.384935\pi\)
0.353666 + 0.935372i \(0.384935\pi\)
\(252\) 0 0
\(253\) 12.4500i 0.782728i
\(254\) 0 0
\(255\) −0.811061 4.04255i −0.0507906 0.253154i
\(256\) 0 0
\(257\) 19.4660i 1.21426i −0.794604 0.607128i \(-0.792321\pi\)
0.794604 0.607128i \(-0.207679\pi\)
\(258\) 0 0
\(259\) −25.1875 −1.56507
\(260\) 0 0
\(261\) −2.61466 + 2.61466i −0.161843 + 0.161843i
\(262\) 0 0
\(263\) 8.50318i 0.524329i 0.965023 + 0.262164i \(0.0844362\pi\)
−0.965023 + 0.262164i \(0.915564\pi\)
\(264\) 0 0
\(265\) −6.57084 + 6.57084i −0.403643 + 0.403643i
\(266\) 0 0
\(267\) 4.70869 + 4.70869i 0.288167 + 0.288167i
\(268\) 0 0
\(269\) 4.83042 + 4.83042i 0.294516 + 0.294516i 0.838861 0.544345i \(-0.183222\pi\)
−0.544345 + 0.838861i \(0.683222\pi\)
\(270\) 0 0
\(271\) −22.5790 −1.37158 −0.685788 0.727802i \(-0.740542\pi\)
−0.685788 + 0.727802i \(0.740542\pi\)
\(272\) 0 0
\(273\) 14.9589 0.905356
\(274\) 0 0
\(275\) −0.973731 0.973731i −0.0587182 0.0587182i
\(276\) 0 0
\(277\) 8.27912 + 8.27912i 0.497444 + 0.497444i 0.910641 0.413197i \(-0.135588\pi\)
−0.413197 + 0.910641i \(0.635588\pi\)
\(278\) 0 0
\(279\) −5.62185 + 5.62185i −0.336571 + 0.336571i
\(280\) 0 0
\(281\) 15.7552i 0.939877i −0.882699 0.469939i \(-0.844276\pi\)
0.882699 0.469939i \(-0.155724\pi\)
\(282\) 0 0
\(283\) 9.68630 9.68630i 0.575790 0.575790i −0.357950 0.933741i \(-0.616524\pi\)
0.933741 + 0.357950i \(0.116524\pi\)
\(284\) 0 0
\(285\) 7.91334 0.468746
\(286\) 0 0
\(287\) 29.9572i 1.76832i
\(288\) 0 0
\(289\) 15.6844 6.55750i 0.922609 0.385735i
\(290\) 0 0
\(291\) 19.2478i 1.12833i
\(292\) 0 0
\(293\) −8.27088 −0.483190 −0.241595 0.970377i \(-0.577671\pi\)
−0.241595 + 0.970377i \(0.577671\pi\)
\(294\) 0 0
\(295\) 4.51286 4.51286i 0.262749 0.262749i
\(296\) 0 0
\(297\) 1.37706i 0.0799053i
\(298\) 0 0
\(299\) 33.9047 33.9047i 1.96076 1.96076i
\(300\) 0 0
\(301\) 6.80232 + 6.80232i 0.392079 + 0.392079i
\(302\) 0 0
\(303\) −9.97259 9.97259i −0.572910 0.572910i
\(304\) 0 0
\(305\) −0.358190 −0.0205099
\(306\) 0 0
\(307\) −27.3011 −1.55816 −0.779079 0.626925i \(-0.784313\pi\)
−0.779079 + 0.626925i \(0.784313\pi\)
\(308\) 0 0
\(309\) −2.09794 2.09794i −0.119348 0.119348i
\(310\) 0 0
\(311\) −4.24922 4.24922i −0.240951 0.240951i 0.576292 0.817244i \(-0.304499\pi\)
−0.817244 + 0.576292i \(0.804499\pi\)
\(312\) 0 0
\(313\) −16.3492 + 16.3492i −0.924111 + 0.924111i −0.997317 0.0732054i \(-0.976677\pi\)
0.0732054 + 0.997317i \(0.476677\pi\)
\(314\) 0 0
\(315\) 2.82061i 0.158923i
\(316\) 0 0
\(317\) 18.1828 18.1828i 1.02125 1.02125i 0.0214783 0.999769i \(-0.493163\pi\)
0.999769 0.0214783i \(-0.00683729\pi\)
\(318\) 0 0
\(319\) −5.09194 −0.285094
\(320\) 0 0
\(321\) 2.08849i 0.116568i
\(322\) 0 0
\(323\) 6.41820 + 31.9900i 0.357118 + 1.77997i
\(324\) 0 0
\(325\) 5.30344i 0.294182i
\(326\) 0 0
\(327\) −2.56176 −0.141665
\(328\) 0 0
\(329\) 1.11446 1.11446i 0.0614420 0.0614420i
\(330\) 0 0
\(331\) 18.5030i 1.01702i 0.861057 + 0.508508i \(0.169803\pi\)
−0.861057 + 0.508508i \(0.830197\pi\)
\(332\) 0 0
\(333\) 6.31432 6.31432i 0.346022 0.346022i
\(334\) 0 0
\(335\) −8.03466 8.03466i −0.438980 0.438980i
\(336\) 0 0
\(337\) 13.8123 + 13.8123i 0.752403 + 0.752403i 0.974927 0.222524i \(-0.0714295\pi\)
−0.222524 + 0.974927i \(0.571430\pi\)
\(338\) 0 0
\(339\) −12.8611 −0.698521
\(340\) 0 0
\(341\) −10.9483 −0.592885
\(342\) 0 0
\(343\) 12.0549 + 12.0549i 0.650903 + 0.650903i
\(344\) 0 0
\(345\) 6.39296 + 6.39296i 0.344185 + 0.344185i
\(346\) 0 0
\(347\) 18.8927 18.8927i 1.01421 1.01421i 0.0143162 0.999898i \(-0.495443\pi\)
0.999898 0.0143162i \(-0.00455714\pi\)
\(348\) 0 0
\(349\) 20.6784i 1.10689i 0.832887 + 0.553444i \(0.186687\pi\)
−0.832887 + 0.553444i \(0.813313\pi\)
\(350\) 0 0
\(351\) −3.75010 + 3.75010i −0.200165 + 0.200165i
\(352\) 0 0
\(353\) 19.0870 1.01590 0.507949 0.861387i \(-0.330404\pi\)
0.507949 + 0.861387i \(0.330404\pi\)
\(354\) 0 0
\(355\) 5.60137i 0.297290i
\(356\) 0 0
\(357\) −11.4025 + 2.28769i −0.603482 + 0.121077i
\(358\) 0 0
\(359\) 6.43264i 0.339502i 0.985487 + 0.169751i \(0.0542963\pi\)
−0.985487 + 0.169751i \(0.945704\pi\)
\(360\) 0 0
\(361\) −43.6209 −2.29584
\(362\) 0 0
\(363\) 6.43729 6.43729i 0.337870 0.337870i
\(364\) 0 0
\(365\) 3.97655i 0.208142i
\(366\) 0 0
\(367\) −5.54698 + 5.54698i −0.289550 + 0.289550i −0.836902 0.547352i \(-0.815636\pi\)
0.547352 + 0.836902i \(0.315636\pi\)
\(368\) 0 0
\(369\) 7.51005 + 7.51005i 0.390958 + 0.390958i
\(370\) 0 0
\(371\) 18.5338 + 18.5338i 0.962226 + 0.962226i
\(372\) 0 0
\(373\) −32.0731 −1.66068 −0.830341 0.557256i \(-0.811854\pi\)
−0.830341 + 0.557256i \(0.811854\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −13.8667 13.8667i −0.714169 0.714169i
\(378\) 0 0
\(379\) 13.7164 + 13.7164i 0.704567 + 0.704567i 0.965387 0.260821i \(-0.0839931\pi\)
−0.260821 + 0.965387i \(0.583993\pi\)
\(380\) 0 0
\(381\) −4.96523 + 4.96523i −0.254377 + 0.254377i
\(382\) 0 0
\(383\) 17.8366i 0.911410i −0.890131 0.455705i \(-0.849387\pi\)
0.890131 0.455705i \(-0.150613\pi\)
\(384\) 0 0
\(385\) −2.74652 + 2.74652i −0.139975 + 0.139975i
\(386\) 0 0
\(387\) −3.41059 −0.173370
\(388\) 0 0
\(389\) 31.0499i 1.57429i −0.616766 0.787147i \(-0.711557\pi\)
0.616766 0.787147i \(-0.288443\pi\)
\(390\) 0 0
\(391\) −20.6588 + 31.0289i −1.04476 + 1.56920i
\(392\) 0 0
\(393\) 1.43748i 0.0725114i
\(394\) 0 0
\(395\) −8.83668 −0.444622
\(396\) 0 0
\(397\) −12.0033 + 12.0033i −0.602428 + 0.602428i −0.940956 0.338528i \(-0.890071\pi\)
0.338528 + 0.940956i \(0.390071\pi\)
\(398\) 0 0
\(399\) 22.3205i 1.11742i
\(400\) 0 0
\(401\) −6.81399 + 6.81399i −0.340275 + 0.340275i −0.856471 0.516196i \(-0.827348\pi\)
0.516196 + 0.856471i \(0.327348\pi\)
\(402\) 0 0
\(403\) −29.8151 29.8151i −1.48520 1.48520i
\(404\) 0 0
\(405\) −0.707107 0.707107i −0.0351364 0.0351364i
\(406\) 0 0
\(407\) 12.2969 0.609534
\(408\) 0 0
\(409\) 11.0129 0.544551 0.272276 0.962219i \(-0.412224\pi\)
0.272276 + 0.962219i \(0.412224\pi\)
\(410\) 0 0
\(411\) −5.54492 5.54492i −0.273511 0.273511i
\(412\) 0 0
\(413\) −12.7290 12.7290i −0.626354 0.626354i
\(414\) 0 0
\(415\) −0.264400 + 0.264400i −0.0129789 + 0.0129789i
\(416\) 0 0
\(417\) 12.0481i 0.589998i
\(418\) 0 0
\(419\) −25.2640 + 25.2640i −1.23423 + 1.23423i −0.271902 + 0.962325i \(0.587653\pi\)
−0.962325 + 0.271902i \(0.912347\pi\)
\(420\) 0 0
\(421\) 4.24585 0.206930 0.103465 0.994633i \(-0.467007\pi\)
0.103465 + 0.994633i \(0.467007\pi\)
\(422\) 0 0
\(423\) 0.558773i 0.0271685i
\(424\) 0 0
\(425\) 0.811061 + 4.04255i 0.0393422 + 0.196092i
\(426\) 0 0
\(427\) 1.01031i 0.0488925i
\(428\) 0 0
\(429\) −7.30317 −0.352600
\(430\) 0 0
\(431\) −11.7542 + 11.7542i −0.566182 + 0.566182i −0.931057 0.364875i \(-0.881112\pi\)
0.364875 + 0.931057i \(0.381112\pi\)
\(432\) 0 0
\(433\) 35.5584i 1.70883i −0.519593 0.854414i \(-0.673916\pi\)
0.519593 0.854414i \(-0.326084\pi\)
\(434\) 0 0
\(435\) 2.61466 2.61466i 0.125363 0.125363i
\(436\) 0 0
\(437\) −50.5897 50.5897i −2.42003 2.42003i
\(438\) 0 0
\(439\) −28.4156 28.4156i −1.35620 1.35620i −0.878549 0.477652i \(-0.841488\pi\)
−0.477652 0.878549i \(-0.658512\pi\)
\(440\) 0 0
\(441\) 0.955847 0.0455165
\(442\) 0 0
\(443\) 14.0331 0.666731 0.333365 0.942798i \(-0.391816\pi\)
0.333365 + 0.942798i \(0.391816\pi\)
\(444\) 0 0
\(445\) −4.70869 4.70869i −0.223213 0.223213i
\(446\) 0 0
\(447\) 6.50681 + 6.50681i 0.307762 + 0.307762i
\(448\) 0 0
\(449\) 8.76010 8.76010i 0.413415 0.413415i −0.469512 0.882926i \(-0.655570\pi\)
0.882926 + 0.469512i \(0.155570\pi\)
\(450\) 0 0
\(451\) 14.6255i 0.688690i
\(452\) 0 0
\(453\) 11.7313 11.7313i 0.551184 0.551184i
\(454\) 0 0
\(455\) −14.9589 −0.701286
\(456\) 0 0
\(457\) 27.3654i 1.28010i −0.768334 0.640049i \(-0.778914\pi\)
0.768334 0.640049i \(-0.221086\pi\)
\(458\) 0 0
\(459\) 2.28501 3.43202i 0.106655 0.160193i
\(460\) 0 0
\(461\) 16.9348i 0.788731i 0.918954 + 0.394365i \(0.129036\pi\)
−0.918954 + 0.394365i \(0.870964\pi\)
\(462\) 0 0
\(463\) 23.2955 1.08263 0.541317 0.840819i \(-0.317926\pi\)
0.541317 + 0.840819i \(0.317926\pi\)
\(464\) 0 0
\(465\) 5.62185 5.62185i 0.260707 0.260707i
\(466\) 0 0
\(467\) 26.1680i 1.21091i −0.795879 0.605456i \(-0.792991\pi\)
0.795879 0.605456i \(-0.207009\pi\)
\(468\) 0 0
\(469\) −22.6626 + 22.6626i −1.04646 + 1.04646i
\(470\) 0 0
\(471\) 1.50411 + 1.50411i 0.0693055 + 0.0693055i
\(472\) 0 0
\(473\) −3.32099 3.32099i −0.152699 0.152699i
\(474\) 0 0
\(475\) −7.91334 −0.363089
\(476\) 0 0
\(477\) −9.29257 −0.425477
\(478\) 0 0
\(479\) −9.96509 9.96509i −0.455317 0.455317i 0.441798 0.897115i \(-0.354341\pi\)
−0.897115 + 0.441798i \(0.854341\pi\)
\(480\) 0 0
\(481\) 33.4876 + 33.4876i 1.52690 + 1.52690i
\(482\) 0 0
\(483\) 18.0321 18.0321i 0.820487 0.820487i
\(484\) 0 0
\(485\) 19.2478i 0.873997i
\(486\) 0 0
\(487\) −22.3785 + 22.3785i −1.01407 + 1.01407i −0.0141677 + 0.999900i \(0.504510\pi\)
−0.999900 + 0.0141677i \(0.995490\pi\)
\(488\) 0 0
\(489\) −9.24496 −0.418072
\(490\) 0 0
\(491\) 39.7145i 1.79229i −0.443759 0.896146i \(-0.646355\pi\)
0.443759 0.896146i \(-0.353645\pi\)
\(492\) 0 0
\(493\) 12.6905 + 8.44922i 0.571552 + 0.380534i
\(494\) 0 0
\(495\) 1.37706i 0.0618944i
\(496\) 0 0
\(497\) 15.7993 0.708695
\(498\) 0 0
\(499\) 19.3831 19.3831i 0.867706 0.867706i −0.124512 0.992218i \(-0.539736\pi\)
0.992218 + 0.124512i \(0.0397365\pi\)
\(500\) 0 0
\(501\) 11.3142i 0.505480i
\(502\) 0 0
\(503\) 9.43380 9.43380i 0.420632 0.420632i −0.464789 0.885421i \(-0.653870\pi\)
0.885421 + 0.464789i \(0.153870\pi\)
\(504\) 0 0
\(505\) 9.97259 + 9.97259i 0.443774 + 0.443774i
\(506\) 0 0
\(507\) −10.6960 10.6960i −0.475026 0.475026i
\(508\) 0 0
\(509\) 0.824026 0.0365243 0.0182622 0.999833i \(-0.494187\pi\)
0.0182622 + 0.999833i \(0.494187\pi\)
\(510\) 0 0
\(511\) 11.2163 0.496180
\(512\) 0 0
\(513\) 5.59558 + 5.59558i 0.247051 + 0.247051i
\(514\) 0 0
\(515\) 2.09794 + 2.09794i 0.0924465 + 0.0924465i
\(516\) 0 0
\(517\) −0.544094 + 0.544094i −0.0239292 + 0.0239292i
\(518\) 0 0
\(519\) 2.24916i 0.0987272i
\(520\) 0 0
\(521\) 10.7266 10.7266i 0.469940 0.469940i −0.431955 0.901895i \(-0.642176\pi\)
0.901895 + 0.431955i \(0.142176\pi\)
\(522\) 0 0
\(523\) −12.4696 −0.545256 −0.272628 0.962119i \(-0.587893\pi\)
−0.272628 + 0.962119i \(0.587893\pi\)
\(524\) 0 0
\(525\) 2.82061i 0.123102i
\(526\) 0 0
\(527\) 27.2862 + 18.1669i 1.18861 + 0.791363i
\(528\) 0 0
\(529\) 58.7399i 2.55391i
\(530\) 0 0
\(531\) 6.38214 0.276961
\(532\) 0 0
\(533\) −39.8291 + 39.8291i −1.72519 + 1.72519i
\(534\) 0 0
\(535\) 2.08849i 0.0902934i
\(536\) 0 0
\(537\) 13.4511 13.4511i 0.580457 0.580457i
\(538\) 0 0
\(539\) 0.930738 + 0.930738i 0.0400897 + 0.0400897i
\(540\) 0 0
\(541\) −6.01645 6.01645i −0.258668 0.258668i 0.565844 0.824512i \(-0.308550\pi\)
−0.824512 + 0.565844i \(0.808550\pi\)
\(542\) 0 0
\(543\) 12.4397 0.533839
\(544\) 0 0
\(545\) 2.56176 0.109734
\(546\) 0 0
\(547\) −0.586915 0.586915i −0.0250947 0.0250947i 0.694448 0.719543i \(-0.255649\pi\)
−0.719543 + 0.694448i \(0.755649\pi\)
\(548\) 0 0
\(549\) −0.253278 0.253278i −0.0108097 0.0108097i
\(550\) 0 0
\(551\) −20.6907 + 20.6907i −0.881452 + 0.881452i
\(552\) 0 0
\(553\) 24.9248i 1.05991i
\(554\) 0 0
\(555\) −6.31432 + 6.31432i −0.268028 + 0.268028i
\(556\) 0 0
\(557\) 17.5926 0.745421 0.372710 0.927948i \(-0.378428\pi\)
0.372710 + 0.927948i \(0.378428\pi\)
\(558\) 0 0
\(559\) 18.0878i 0.765034i
\(560\) 0 0
\(561\) 5.56684 1.11688i 0.235032 0.0471548i
\(562\) 0 0
\(563\) 19.3293i 0.814633i 0.913287 + 0.407317i \(0.133535\pi\)
−0.913287 + 0.407317i \(0.866465\pi\)
\(564\) 0 0
\(565\) 12.8611 0.541072
\(566\) 0 0
\(567\) −1.99447 + 1.99447i −0.0837600 + 0.0837600i
\(568\) 0 0
\(569\) 0.408193i 0.0171123i 0.999963 + 0.00855617i \(0.00272355\pi\)
−0.999963 + 0.00855617i \(0.997276\pi\)
\(570\) 0 0
\(571\) 13.7975 13.7975i 0.577407 0.577407i −0.356781 0.934188i \(-0.616126\pi\)
0.934188 + 0.356781i \(0.116126\pi\)
\(572\) 0 0
\(573\) −11.3597 11.3597i −0.474558 0.474558i
\(574\) 0 0
\(575\) −6.39296 6.39296i −0.266605 0.266605i
\(576\) 0 0
\(577\) 24.5084 1.02030 0.510149 0.860086i \(-0.329590\pi\)
0.510149 + 0.860086i \(0.329590\pi\)
\(578\) 0 0
\(579\) 8.78649 0.365154
\(580\) 0 0
\(581\) 0.745770 + 0.745770i 0.0309398 + 0.0309398i
\(582\) 0 0
\(583\) −9.04846 9.04846i −0.374749 0.374749i
\(584\) 0 0
\(585\) 3.75010 3.75010i 0.155047 0.155047i
\(586\) 0 0
\(587\) 10.7151i 0.442261i −0.975244 0.221130i \(-0.929025\pi\)
0.975244 0.221130i \(-0.0709747\pi\)
\(588\) 0 0
\(589\) −44.4876 + 44.4876i −1.83308 + 1.83308i
\(590\) 0 0
\(591\) −4.56546 −0.187798
\(592\) 0 0
\(593\) 15.0740i 0.619015i −0.950897 0.309508i \(-0.899836\pi\)
0.950897 0.309508i \(-0.100164\pi\)
\(594\) 0 0
\(595\) 11.4025 2.28769i 0.467455 0.0937860i
\(596\) 0 0
\(597\) 12.4784i 0.510706i
\(598\) 0 0
\(599\) 33.3521 1.36273 0.681365 0.731944i \(-0.261387\pi\)
0.681365 + 0.731944i \(0.261387\pi\)
\(600\) 0 0
\(601\) 17.1773 17.1773i 0.700676 0.700676i −0.263879 0.964556i \(-0.585002\pi\)
0.964556 + 0.263879i \(0.0850020\pi\)
\(602\) 0 0
\(603\) 11.3627i 0.462726i
\(604\) 0 0
\(605\) −6.43729 + 6.43729i −0.261713 + 0.261713i
\(606\) 0 0
\(607\) −1.72524 1.72524i −0.0700253 0.0700253i 0.671227 0.741252i \(-0.265768\pi\)
−0.741252 + 0.671227i \(0.765768\pi\)
\(608\) 0 0
\(609\) −7.37493 7.37493i −0.298847 0.298847i
\(610\) 0 0
\(611\) −2.96342 −0.119887
\(612\) 0 0
\(613\) 24.6312 0.994845 0.497423 0.867508i \(-0.334280\pi\)
0.497423 + 0.867508i \(0.334280\pi\)
\(614\) 0 0
\(615\) −7.51005 7.51005i −0.302835 0.302835i
\(616\) 0 0
\(617\) 32.3258 + 32.3258i 1.30139 + 1.30139i 0.927458 + 0.373928i \(0.121989\pi\)
0.373928 + 0.927458i \(0.378011\pi\)
\(618\) 0 0
\(619\) −11.2002 + 11.2002i −0.450175 + 0.450175i −0.895413 0.445237i \(-0.853119\pi\)
0.445237 + 0.895413i \(0.353119\pi\)
\(620\) 0 0
\(621\) 9.04101i 0.362803i
\(622\) 0 0
\(623\) −13.2814 + 13.2814i −0.532107 + 0.532107i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 10.8972i 0.435191i
\(628\) 0 0
\(629\) −30.6472 20.4046i −1.22198 0.813586i
\(630\) 0 0
\(631\) 8.97590i 0.357325i −0.983910 0.178663i \(-0.942823\pi\)
0.983910 0.178663i \(-0.0571770\pi\)
\(632\) 0 0
\(633\) −0.719450 −0.0285956
\(634\) 0 0
\(635\) 4.96523 4.96523i 0.197039 0.197039i
\(636\) 0 0
\(637\) 5.06928i 0.200852i
\(638\) 0 0
\(639\) −3.96077 + 3.96077i −0.156686 + 0.156686i
\(640\) 0 0
\(641\) 11.4869 + 11.4869i 0.453703 + 0.453703i 0.896582 0.442878i \(-0.146043\pi\)
−0.442878 + 0.896582i \(0.646043\pi\)
\(642\) 0 0
\(643\) −3.99287 3.99287i −0.157464 0.157464i 0.623978 0.781442i \(-0.285515\pi\)
−0.781442 + 0.623978i \(0.785515\pi\)
\(644\) 0 0
\(645\) 3.41059 0.134292
\(646\) 0 0
\(647\) 21.9021 0.861059 0.430529 0.902577i \(-0.358327\pi\)
0.430529 + 0.902577i \(0.358327\pi\)
\(648\) 0 0
\(649\) 6.21449 + 6.21449i 0.243940 + 0.243940i
\(650\) 0 0
\(651\) −15.8570 15.8570i −0.621486 0.621486i
\(652\) 0 0
\(653\) −16.0555 + 16.0555i −0.628302 + 0.628302i −0.947641 0.319339i \(-0.896539\pi\)
0.319339 + 0.947641i \(0.396539\pi\)
\(654\) 0 0
\(655\) 1.43748i 0.0561671i
\(656\) 0 0
\(657\) −2.81184 + 2.81184i −0.109701 + 0.109701i
\(658\) 0 0
\(659\) 40.9096 1.59361 0.796805 0.604236i \(-0.206522\pi\)
0.796805 + 0.604236i \(0.206522\pi\)
\(660\) 0 0
\(661\) 4.04244i 0.157233i −0.996905 0.0786164i \(-0.974950\pi\)
0.996905 0.0786164i \(-0.0250502\pi\)
\(662\) 0 0
\(663\) 18.2015 + 12.1184i 0.706887 + 0.470639i
\(664\) 0 0
\(665\) 22.3205i 0.865550i
\(666\) 0 0
\(667\) −33.4308 −1.29444
\(668\) 0 0
\(669\) 5.58868 5.58868i 0.216071 0.216071i
\(670\) 0 0
\(671\) 0.493250i 0.0190417i
\(672\) 0 0
\(673\) 12.5535 12.5535i 0.483902 0.483902i −0.422474 0.906375i \(-0.638838\pi\)
0.906375 + 0.422474i \(0.138838\pi\)
\(674\) 0 0
\(675\) 0.707107 + 0.707107i 0.0272166 + 0.0272166i
\(676\) 0 0
\(677\) 26.0901 + 26.0901i 1.00273 + 1.00273i 0.999996 + 0.00272902i \(0.000868674\pi\)
0.00272902 + 0.999996i \(0.499131\pi\)
\(678\) 0 0
\(679\) 54.2905 2.08348
\(680\) 0 0
\(681\) 19.5253 0.748209
\(682\) 0 0
\(683\) −17.2264 17.2264i −0.659149 0.659149i 0.296030 0.955179i \(-0.404337\pi\)
−0.955179 + 0.296030i \(0.904337\pi\)
\(684\) 0 0
\(685\) 5.54492 + 5.54492i 0.211860 + 0.211860i
\(686\) 0 0
\(687\) −10.3463 + 10.3463i −0.394735 + 0.394735i
\(688\) 0 0
\(689\) 49.2825i 1.87751i
\(690\) 0 0
\(691\) −32.2960 + 32.2960i −1.22860 + 1.22860i −0.264105 + 0.964494i \(0.585076\pi\)
−0.964494 + 0.264105i \(0.914924\pi\)
\(692\) 0 0
\(693\) −3.88416 −0.147547
\(694\) 0 0
\(695\) 12.0481i 0.457010i
\(696\) 0 0
\(697\) 24.2686 36.4508i 0.919240 1.38067i
\(698\) 0 0
\(699\) 27.0569i 1.02339i
\(700\) 0 0
\(701\) 8.77977 0.331607 0.165804 0.986159i \(-0.446978\pi\)
0.165804 + 0.986159i \(0.446978\pi\)
\(702\) 0 0
\(703\) 49.9673 49.9673i 1.88455 1.88455i
\(704\) 0 0
\(705\) 0.558773i 0.0210446i
\(706\) 0 0
\(707\) 28.1288 28.1288i 1.05789 1.05789i
\(708\) 0 0
\(709\) −35.0224 35.0224i −1.31529 1.31529i −0.917456 0.397837i \(-0.869761\pi\)
−0.397837 0.917456i \(-0.630239\pi\)
\(710\) 0 0
\(711\) −6.24848 6.24848i −0.234336 0.234336i
\(712\) 0 0
\(713\) −71.8805 −2.69194
\(714\) 0 0
\(715\) 7.30317 0.273123
\(716\) 0 0
\(717\) 13.9820 + 13.9820i 0.522166 + 0.522166i
\(718\) 0 0
\(719\) −3.15250 3.15250i −0.117568 0.117568i 0.645875 0.763443i \(-0.276493\pi\)
−0.763443 + 0.645875i \(0.776493\pi\)
\(720\) 0 0
\(721\) 5.91748 5.91748i 0.220379 0.220379i
\(722\) 0 0
\(723\) 24.8371i 0.923702i
\(724\) 0 0
\(725\) −2.61466 + 2.61466i −0.0971059 + 0.0971059i
\(726\) 0 0
\(727\) −15.6067 −0.578821 −0.289411 0.957205i \(-0.593459\pi\)
−0.289411 + 0.957205i \(0.593459\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 2.76619 + 13.7875i 0.102311 + 0.509947i
\(732\) 0 0
\(733\) 4.94469i 0.182636i 0.995822 + 0.0913182i \(0.0291080\pi\)
−0.995822 + 0.0913182i \(0.970892\pi\)
\(734\) 0 0
\(735\) −0.955847 −0.0352570
\(736\) 0 0
\(737\) 11.0642 11.0642i 0.407556 0.407556i
\(738\) 0 0
\(739\) 13.3654i 0.491653i −0.969314 0.245826i \(-0.920941\pi\)
0.969314 0.245826i \(-0.0790593\pi\)
\(740\) 0 0
\(741\) −29.6758 + 29.6758i −1.09017 + 1.09017i
\(742\) 0 0
\(743\) −20.9973 20.9973i −0.770317 0.770317i 0.207845 0.978162i \(-0.433355\pi\)
−0.978162 + 0.207845i \(0.933355\pi\)
\(744\) 0 0
\(745\) −6.50681 6.50681i −0.238391 0.238391i
\(746\) 0 0
\(747\) −0.373918 −0.0136810
\(748\) 0 0
\(749\) 5.89082 0.215246
\(750\) 0 0
\(751\) −12.7780 12.7780i −0.466276 0.466276i 0.434430 0.900706i \(-0.356950\pi\)
−0.900706 + 0.434430i \(0.856950\pi\)
\(752\) 0 0
\(753\) −7.92402 7.92402i −0.288767 0.288767i
\(754\) 0 0
\(755\) −11.7313 + 11.7313i −0.426945 + 0.426945i
\(756\) 0 0
\(757\) 20.8097i 0.756342i −0.925736 0.378171i \(-0.876553\pi\)
0.925736 0.378171i \(-0.123447\pi\)
\(758\) 0 0
\(759\) −8.80351 + 8.80351i −0.319547 + 0.319547i
\(760\) 0 0
\(761\) −25.3503 −0.918948 −0.459474 0.888191i \(-0.651962\pi\)
−0.459474 + 0.888191i \(0.651962\pi\)
\(762\) 0 0
\(763\) 7.22572i 0.261588i
\(764\) 0 0
\(765\) −2.28501 + 3.43202i −0.0826145 + 0.124085i
\(766\) 0 0
\(767\) 33.8473i 1.22215i
\(768\) 0 0
\(769\) 27.4442 0.989664 0.494832 0.868989i \(-0.335230\pi\)
0.494832 + 0.868989i \(0.335230\pi\)
\(770\) 0 0
\(771\) −13.7645 + 13.7645i −0.495718 + 0.495718i
\(772\) 0 0
\(773\) 8.59641i 0.309192i −0.987978 0.154596i \(-0.950592\pi\)
0.987978 0.154596i \(-0.0494075\pi\)
\(774\) 0 0
\(775\) −5.62185 + 5.62185i −0.201943 + 0.201943i
\(776\) 0 0
\(777\) 17.8102 + 17.8102i 0.638939 + 0.638939i
\(778\) 0 0
\(779\) 59.4296 + 59.4296i 2.12929 + 2.12929i
\(780\) 0 0
\(781\) −7.71345 −0.276009
\(782\) 0 0
\(783\) 3.69768 0.132144
\(784\) 0 0
\(785\) −1.50411 1.50411i −0.0536838 0.0536838i
\(786\) 0 0
\(787\) −2.48348 2.48348i −0.0885263 0.0885263i 0.661457 0.749983i \(-0.269938\pi\)
−0.749983 + 0.661457i \(0.769938\pi\)
\(788\) 0 0
\(789\) 6.01266 6.01266i 0.214056 0.214056i
\(790\) 0 0
\(791\) 36.2763i 1.28984i
\(792\) 0 0
\(793\) 1.34325 1.34325i 0.0477000 0.0477000i
\(794\) 0 0
\(795\) 9.29257 0.329573
\(796\) 0 0
\(797\) 49.2122i 1.74319i 0.490231 + 0.871593i \(0.336913\pi\)
−0.490231 + 0.871593i \(0.663087\pi\)
\(798\) 0 0
\(799\) 2.25887 0.453199i 0.0799129 0.0160330i
\(800\) 0 0
\(801\) 6.65909i 0.235288i
\(802\) 0 0
\(803\) −5.47596 −0.193242
\(804\) 0 0
\(805\) −18.0321 + 18.0321i −0.635546 + 0.635546i
\(806\) 0 0
\(807\) 6.83124i 0.240471i
\(808\) 0 0
\(809\) −4.17134 + 4.17134i −0.146656 + 0.146656i −0.776623 0.629966i \(-0.783069\pi\)
0.629966 + 0.776623i \(0.283069\pi\)
\(810\) 0 0
\(811\) 27.1111 + 27.1111i 0.951998 + 0.951998i 0.998900 0.0469014i \(-0.0149347\pi\)
−0.0469014 + 0.998900i \(0.514935\pi\)
\(812\) 0 0
\(813\) 15.9657 + 15.9657i 0.559943 + 0.559943i
\(814\) 0 0
\(815\) 9.24496 0.323837
\(816\) 0 0
\(817\) −26.9891 −0.944230
\(818\) 0 0
\(819\) −10.5776 10.5776i −0.369610 0.369610i
\(820\) 0 0
\(821\) −34.4268 34.4268i −1.20150 1.20150i −0.973709 0.227793i \(-0.926849\pi\)
−0.227793 0.973709i \(-0.573151\pi\)
\(822\) 0 0
\(823\) −35.3270 + 35.3270i −1.23142 + 1.23142i −0.268005 + 0.963418i \(0.586364\pi\)
−0.963418 + 0.268005i \(0.913636\pi\)
\(824\) 0 0
\(825\) 1.37706i 0.0479432i
\(826\) 0 0
\(827\) 0.101760 0.101760i 0.00353854 0.00353854i −0.705335 0.708874i \(-0.749204\pi\)
0.708874 + 0.705335i \(0.249204\pi\)
\(828\) 0 0
\(829\) −31.0155 −1.07721 −0.538606 0.842558i \(-0.681049\pi\)
−0.538606 + 0.842558i \(0.681049\pi\)
\(830\) 0 0
\(831\) 11.7084i 0.406161i
\(832\) 0 0
\(833\) −0.775250 3.86406i −0.0268608 0.133882i
\(834\) 0 0
\(835\) 11.3142i 0.391543i
\(836\) 0 0
\(837\) 7.95049 0.274809
\(838\) 0 0
\(839\) 28.9112 28.9112i 0.998127 0.998127i −0.00187119 0.999998i \(-0.500596\pi\)
0.999998 + 0.00187119i \(0.000595619\pi\)
\(840\) 0 0
\(841\) 15.3272i 0.528522i
\(842\) 0 0
\(843\) −11.1406 + 11.1406i −0.383703 + 0.383703i
\(844\) 0 0
\(845\) 10.6960 + 10.6960i 0.367954 + 0.367954i
\(846\) 0 0
\(847\) 18.1571 + 18.1571i 0.623885 + 0.623885i
\(848\) 0 0
\(849\) −13.6985 −0.470131
\(850\) 0 0
\(851\) 80.7344 2.76754
\(852\) 0 0
\(853\) −6.53196 6.53196i −0.223650 0.223650i 0.586383 0.810034i \(-0.300551\pi\)
−0.810034 + 0.586383i \(0.800551\pi\)
\(854\) 0 0
\(855\) −5.59558 5.59558i −0.191365 0.191365i
\(856\) 0 0
\(857\) −24.3626 + 24.3626i −0.832211 + 0.832211i −0.987819 0.155608i \(-0.950266\pi\)
0.155608 + 0.987819i \(0.450266\pi\)
\(858\) 0 0
\(859\) 14.5832i 0.497571i −0.968559 0.248785i \(-0.919969\pi\)
0.968559 0.248785i \(-0.0800314\pi\)
\(860\) 0 0
\(861\) −21.1829 + 21.1829i −0.721913 + 0.721913i
\(862\) 0 0
\(863\) −9.62593 −0.327671 −0.163835 0.986488i \(-0.552387\pi\)
−0.163835 + 0.986488i \(0.552387\pi\)
\(864\) 0 0
\(865\) 2.24916i 0.0764738i
\(866\) 0 0
\(867\) −15.7274 6.45367i −0.534130 0.219178i
\(868\) 0 0
\(869\) 12.1687i 0.412794i
\(870\) 0 0
\(871\) 60.2615 2.04188
\(872\) 0 0
\(873\) −13.6102 + 13.6102i −0.460637 + 0.460637i
\(874\) 0 0
\(875\) 2.82061i 0.0953541i
\(876\) 0 0
\(877\) 23.5693 23.5693i 0.795878 0.795878i −0.186565 0.982443i \(-0.559735\pi\)
0.982443 + 0.186565i \(0.0597355\pi\)
\(878\) 0 0
\(879\) 5.84840 + 5.84840i 0.197262 + 0.197262i
\(880\) 0 0
\(881\) 38.5206 + 38.5206i 1.29779 + 1.29779i 0.929847 + 0.367946i \(0.119939\pi\)
0.367946 + 0.929847i \(0.380061\pi\)
\(882\) 0 0
\(883\) 3.93822 0.132532 0.0662658 0.997802i \(-0.478891\pi\)
0.0662658 + 0.997802i \(0.478891\pi\)
\(884\) 0 0
\(885\) −6.38214 −0.214533
\(886\) 0 0
\(887\) 18.3742 + 18.3742i 0.616945 + 0.616945i 0.944747 0.327801i \(-0.106308\pi\)
−0.327801 + 0.944747i \(0.606308\pi\)
\(888\) 0 0
\(889\) −14.0050 14.0050i −0.469713 0.469713i
\(890\) 0 0
\(891\) 0.973731 0.973731i 0.0326212 0.0326212i
\(892\) 0 0
\(893\) 4.42176i 0.147969i
\(894\) 0 0
\(895\) −13.4511 + 13.4511i −0.449620 + 0.449620i
\(896\) 0 0
\(897\) −47.9484 −1.60095
\(898\) 0 0
\(899\) 29.3984i 0.980491i
\(900\) 0 0
\(901\) 7.53683 + 37.5656i 0.251088 + 1.25149i
\(902\) 0 0
\(903\) 9.61994i 0.320131i
\(904\) 0 0
\(905\) −12.4397 −0.413510
\(906\) 0 0
\(907\) 4.64445 4.64445i 0.154216 0.154216i −0.625782 0.779998i \(-0.715220\pi\)
0.779998 + 0.625782i \(0.215220\pi\)
\(908\) 0 0
\(909\) 14.1034i 0.467779i
\(910\) 0 0
\(911\) −15.2547 + 15.2547i −0.505412 + 0.505412i −0.913115 0.407703i \(-0.866330\pi\)
0.407703 + 0.913115i \(0.366330\pi\)
\(912\) 0 0
\(913\) −0.364096 0.364096i −0.0120498 0.0120498i
\(914\) 0 0
\(915\) 0.253278 + 0.253278i 0.00837312 + 0.00837312i
\(916\) 0 0
\(917\) −4.05458 −0.133894
\(918\) 0 0
\(919\) 55.4164 1.82802 0.914009 0.405693i \(-0.132970\pi\)
0.914009 + 0.405693i \(0.132970\pi\)
\(920\) 0 0
\(921\) 19.3048 + 19.3048i 0.636116 + 0.636116i
\(922\) 0 0
\(923\) −21.0057 21.0057i −0.691411 0.691411i
\(924\) 0 0
\(925\) 6.31432 6.31432i 0.207613 0.207613i
\(926\) 0 0
\(927\) 2.96694i 0.0974471i
\(928\) 0 0
\(929\) −39.4595 + 39.4595i −1.29463 + 1.29463i −0.362732 + 0.931894i \(0.618156\pi\)
−0.931894 + 0.362732i \(0.881844\pi\)
\(930\) 0 0
\(931\) 7.56395 0.247898
\(932\) 0 0
\(933\) 6.00931i 0.196736i
\(934\) 0 0
\(935\) −5.56684 + 1.11688i −0.182055 + 0.0365259i
\(936\) 0 0
\(937\) 55.3322i 1.80763i 0.427928 + 0.903813i \(0.359244\pi\)
−0.427928 + 0.903813i \(0.640756\pi\)
\(938\) 0 0
\(939\) 23.1213 0.754534
\(940\) 0 0
\(941\) −17.0994 + 17.0994i −0.557426 + 0.557426i −0.928574 0.371148i \(-0.878964\pi\)
0.371148 + 0.928574i \(0.378964\pi\)
\(942\) 0 0
\(943\) 96.0229i 3.12694i
\(944\) 0 0
\(945\) 1.99447 1.99447i 0.0648802 0.0648802i
\(946\) 0 0
\(947\) −0.756856 0.756856i −0.0245945 0.0245945i 0.694703 0.719297i \(-0.255536\pi\)
−0.719297 + 0.694703i \(0.755536\pi\)
\(948\) 0 0
\(949\) −14.9124 14.9124i −0.484078 0.484078i
\(950\) 0 0
\(951\) −25.7144 −0.833845
\(952\) 0 0
\(953\) −34.1782 −1.10714 −0.553570 0.832803i \(-0.686735\pi\)
−0.553570 + 0.832803i \(0.686735\pi\)
\(954\) 0 0
\(955\) 11.3597 + 11.3597i 0.367591 + 0.367591i
\(956\) 0 0
\(957\) 3.60055 + 3.60055i 0.116389 + 0.116389i
\(958\) 0 0
\(959\) 15.6401 15.6401i 0.505044 0.505044i
\(960\) 0 0
\(961\) 32.2103i 1.03904i
\(962\) 0 0
\(963\) −1.47679 + 1.47679i −0.0475888 + 0.0475888i
\(964\) 0 0
\(965\) −8.78649 −0.282847
\(966\) 0 0
\(967\) 53.6202i 1.72431i −0.506644 0.862155i \(-0.669114\pi\)
0.506644 0.862155i \(-0.330886\pi\)
\(968\) 0 0
\(969\) 18.0820 27.1587i 0.580878 0.872464i
\(970\) 0 0
\(971\) 41.2678i 1.32435i −0.749351 0.662173i \(-0.769635\pi\)
0.749351 0.662173i \(-0.230365\pi\)
\(972\) 0 0
\(973\) 33.9830 1.08944
\(974\) 0 0
\(975\) −3.75010 + 3.75010i −0.120099 + 0.120099i
\(976\) 0 0
\(977\) 4.35594i 0.139359i −0.997569 0.0696795i \(-0.977802\pi\)
0.997569 0.0696795i \(-0.0221977\pi\)
\(978\) 0 0
\(979\) 6.48416 6.48416i 0.207235 0.207235i
\(980\) 0 0
\(981\) 1.81143 + 1.81143i 0.0578347 + 0.0578347i
\(982\) 0 0
\(983\) 27.4424 + 27.4424i 0.875275 + 0.875275i 0.993041 0.117766i \(-0.0375733\pi\)
−0.117766 + 0.993041i \(0.537573\pi\)
\(984\) 0 0
\(985\) 4.56546 0.145467
\(986\) 0 0
\(987\) −1.57608 −0.0501672
\(988\) 0 0
\(989\) −21.8037 21.8037i −0.693319 0.693319i
\(990\) 0 0
\(991\) −32.7439 32.7439i −1.04014 1.04014i −0.999160 0.0409834i \(-0.986951\pi\)
−0.0409834 0.999160i \(-0.513049\pi\)
\(992\) 0 0
\(993\) 13.0836 13.0836i 0.415195 0.415195i
\(994\) 0 0
\(995\) 12.4784i 0.395591i
\(996\) 0 0
\(997\) −15.6319 + 15.6319i −0.495066 + 0.495066i −0.909898 0.414832i \(-0.863840\pi\)
0.414832 + 0.909898i \(0.363840\pi\)
\(998\) 0 0
\(999\) −8.92979 −0.282526
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2040.2.cf.e.1441.4 yes 20
17.4 even 4 inner 2040.2.cf.e.361.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.cf.e.361.4 20 17.4 even 4 inner
2040.2.cf.e.1441.4 yes 20 1.1 even 1 trivial