L(s) = 1 | + (−0.707 − 0.707i)3-s + (0.707 + 0.707i)5-s + (1.99 − 1.99i)7-s + 1.00i·9-s + (−0.973 + 0.973i)11-s − 5.30·13-s − 1.00i·15-s + (4.04 − 0.811i)17-s + 7.91i·19-s − 2.82·21-s + (−6.39 + 6.39i)23-s + 1.00i·25-s + (0.707 − 0.707i)27-s + (2.61 + 2.61i)29-s + (5.62 + 5.62i)31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (0.316 + 0.316i)5-s + (0.753 − 0.753i)7-s + 0.333i·9-s + (−0.293 + 0.293i)11-s − 1.47·13-s − 0.258i·15-s + (0.980 − 0.196i)17-s + 1.81i·19-s − 0.615·21-s + (−1.33 + 1.33i)23-s + 0.200i·25-s + (0.136 − 0.136i)27-s + (0.485 + 0.485i)29-s + (1.00 + 1.00i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.448 - 0.893i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.448 - 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.274466086\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.274466086\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 17 | \( 1 + (-4.04 + 0.811i)T \) |
good | 7 | \( 1 + (-1.99 + 1.99i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.973 - 0.973i)T - 11iT^{2} \) |
| 13 | \( 1 + 5.30T + 13T^{2} \) |
| 19 | \( 1 - 7.91iT - 19T^{2} \) |
| 23 | \( 1 + (6.39 - 6.39i)T - 23iT^{2} \) |
| 29 | \( 1 + (-2.61 - 2.61i)T + 29iT^{2} \) |
| 31 | \( 1 + (-5.62 - 5.62i)T + 31iT^{2} \) |
| 37 | \( 1 + (6.31 + 6.31i)T + 37iT^{2} \) |
| 41 | \( 1 + (-7.51 + 7.51i)T - 41iT^{2} \) |
| 43 | \( 1 - 3.41iT - 43T^{2} \) |
| 47 | \( 1 - 0.558T + 47T^{2} \) |
| 53 | \( 1 - 9.29iT - 53T^{2} \) |
| 59 | \( 1 + 6.38iT - 59T^{2} \) |
| 61 | \( 1 + (0.253 - 0.253i)T - 61iT^{2} \) |
| 67 | \( 1 + 11.3T + 67T^{2} \) |
| 71 | \( 1 + (-3.96 - 3.96i)T + 71iT^{2} \) |
| 73 | \( 1 + (-2.81 - 2.81i)T + 73iT^{2} \) |
| 79 | \( 1 + (6.24 - 6.24i)T - 79iT^{2} \) |
| 83 | \( 1 - 0.373iT - 83T^{2} \) |
| 89 | \( 1 + 6.65T + 89T^{2} \) |
| 97 | \( 1 + (-13.6 - 13.6i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.485404349318528730360270895862, −8.183501697488648692837182568686, −7.52316433251923374010110416142, −7.23942299205546587084614905610, −5.98255999782095111977550564608, −5.39134043577825757376542510744, −4.50627455303996027895705767338, −3.46886421652948979591771635680, −2.18550225161834474436764065637, −1.28080380164474543274717067327,
0.49566574676040864375387260459, 2.15039799810505167100012461961, 2.89694742099735779511485024049, 4.54287508927529969645900181423, 4.81723019122099698822896845295, 5.72288998701427175627603400830, 6.44982662910162344762826777352, 7.55922710754401360375899384664, 8.310031145593077007295644401332, 8.978668704195481660093517195087