Properties

Label 2028.2.q.j.361.4
Level $2028$
Weight $2$
Character 2028.361
Analytic conductor $16.194$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2028,2,Mod(361,2028)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2028.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,6,0,0,0,0,0,-6,0,0,0,0,0,0,0,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.4
Root \(1.07992 + 0.623490i\) of defining polynomial
Character \(\chi\) \(=\) 2028.361
Dual form 2028.2.q.j.1837.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +0.554958i q^{5} +(0.908389 + 0.524459i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(2.52174 - 1.45593i) q^{11} +(-0.480608 + 0.277479i) q^{15} +(1.37651 - 2.38419i) q^{17} +(4.01058 + 2.31551i) q^{19} +1.04892i q^{21} +(-2.88135 - 4.99065i) q^{23} +4.69202 q^{25} -1.00000 q^{27} +(1.40097 + 2.42655i) q^{29} +4.18598i q^{31} +(2.52174 + 1.45593i) q^{33} +(-0.291053 + 0.504118i) q^{35} +(0.404271 - 0.233406i) q^{37} +(3.37730 - 1.94989i) q^{41} +(4.59783 - 7.96368i) q^{43} +(-0.480608 - 0.277479i) q^{45} +11.5211i q^{47} +(-2.94989 - 5.10935i) q^{49} +2.75302 q^{51} +5.62565 q^{53} +(0.807979 + 1.39946i) q^{55} +4.63102i q^{57} +(-2.69327 - 1.55496i) q^{59} +(-5.45257 + 9.44414i) q^{61} +(-0.908389 + 0.524459i) q^{63} +(-6.97057 + 4.02446i) q^{67} +(2.88135 - 4.99065i) q^{69} +(11.8576 + 6.84601i) q^{71} +9.36658i q^{73} +(2.34601 + 4.06341i) q^{75} +3.05429 q^{77} -3.60925 q^{79} +(-0.500000 - 0.866025i) q^{81} -1.65519i q^{83} +(1.32312 + 0.763906i) q^{85} +(-1.40097 + 2.42655i) q^{87} +(15.5629 - 8.98523i) q^{89} +(-3.62517 + 2.09299i) q^{93} +(-1.28501 + 2.22571i) q^{95} +(-1.14113 - 0.658834i) q^{97} +2.91185i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} - 6 q^{9} + 26 q^{17} + 36 q^{25} - 12 q^{27} + 8 q^{29} + 8 q^{35} - 18 q^{43} + 10 q^{49} + 52 q^{51} + 20 q^{53} + 30 q^{55} - 14 q^{61} + 18 q^{75} - 12 q^{77} + 4 q^{79} - 6 q^{81} - 8 q^{87}+ \cdots + 34 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.554958i 0.248185i 0.992271 + 0.124092i \(0.0396019\pi\)
−0.992271 + 0.124092i \(0.960398\pi\)
\(6\) 0 0
\(7\) 0.908389 + 0.524459i 0.343339 + 0.198227i 0.661747 0.749727i \(-0.269815\pi\)
−0.318409 + 0.947954i \(0.603148\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.52174 1.45593i 0.760333 0.438979i −0.0690822 0.997611i \(-0.522007\pi\)
0.829415 + 0.558632i \(0.188674\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −0.480608 + 0.277479i −0.124092 + 0.0716448i
\(16\) 0 0
\(17\) 1.37651 2.38419i 0.333853 0.578250i −0.649411 0.760438i \(-0.724984\pi\)
0.983264 + 0.182188i \(0.0583178\pi\)
\(18\) 0 0
\(19\) 4.01058 + 2.31551i 0.920091 + 0.531215i 0.883664 0.468122i \(-0.155069\pi\)
0.0364268 + 0.999336i \(0.488402\pi\)
\(20\) 0 0
\(21\) 1.04892i 0.228893i
\(22\) 0 0
\(23\) −2.88135 4.99065i −0.600804 1.04062i −0.992700 0.120613i \(-0.961514\pi\)
0.391896 0.920010i \(-0.371819\pi\)
\(24\) 0 0
\(25\) 4.69202 0.938404
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 1.40097 + 2.42655i 0.260153 + 0.450599i 0.966283 0.257484i \(-0.0828935\pi\)
−0.706129 + 0.708083i \(0.749560\pi\)
\(30\) 0 0
\(31\) 4.18598i 0.751824i 0.926655 + 0.375912i \(0.122671\pi\)
−0.926655 + 0.375912i \(0.877329\pi\)
\(32\) 0 0
\(33\) 2.52174 + 1.45593i 0.438979 + 0.253444i
\(34\) 0 0
\(35\) −0.291053 + 0.504118i −0.0491969 + 0.0852115i
\(36\) 0 0
\(37\) 0.404271 0.233406i 0.0664618 0.0383717i −0.466401 0.884573i \(-0.654450\pi\)
0.532863 + 0.846202i \(0.321116\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.37730 1.94989i 0.527446 0.304521i −0.212530 0.977155i \(-0.568170\pi\)
0.739976 + 0.672634i \(0.234837\pi\)
\(42\) 0 0
\(43\) 4.59783 7.96368i 0.701163 1.21445i −0.266895 0.963726i \(-0.585998\pi\)
0.968058 0.250725i \(-0.0806689\pi\)
\(44\) 0 0
\(45\) −0.480608 0.277479i −0.0716448 0.0413641i
\(46\) 0 0
\(47\) 11.5211i 1.68053i 0.542179 + 0.840263i \(0.317599\pi\)
−0.542179 + 0.840263i \(0.682401\pi\)
\(48\) 0 0
\(49\) −2.94989 5.10935i −0.421412 0.729908i
\(50\) 0 0
\(51\) 2.75302 0.385500
\(52\) 0 0
\(53\) 5.62565 0.772742 0.386371 0.922343i \(-0.373728\pi\)
0.386371 + 0.922343i \(0.373728\pi\)
\(54\) 0 0
\(55\) 0.807979 + 1.39946i 0.108948 + 0.188703i
\(56\) 0 0
\(57\) 4.63102i 0.613394i
\(58\) 0 0
\(59\) −2.69327 1.55496i −0.350633 0.202438i 0.314331 0.949314i \(-0.398220\pi\)
−0.664964 + 0.746875i \(0.731553\pi\)
\(60\) 0 0
\(61\) −5.45257 + 9.44414i −0.698131 + 1.20920i 0.270983 + 0.962584i \(0.412651\pi\)
−0.969114 + 0.246614i \(0.920682\pi\)
\(62\) 0 0
\(63\) −0.908389 + 0.524459i −0.114446 + 0.0660756i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.97057 + 4.02446i −0.851590 + 0.491666i −0.861187 0.508288i \(-0.830279\pi\)
0.00959683 + 0.999954i \(0.496945\pi\)
\(68\) 0 0
\(69\) 2.88135 4.99065i 0.346874 0.600804i
\(70\) 0 0
\(71\) 11.8576 + 6.84601i 1.40724 + 0.812472i 0.995121 0.0986570i \(-0.0314547\pi\)
0.412121 + 0.911129i \(0.364788\pi\)
\(72\) 0 0
\(73\) 9.36658i 1.09628i 0.836388 + 0.548138i \(0.184663\pi\)
−0.836388 + 0.548138i \(0.815337\pi\)
\(74\) 0 0
\(75\) 2.34601 + 4.06341i 0.270894 + 0.469202i
\(76\) 0 0
\(77\) 3.05429 0.348069
\(78\) 0 0
\(79\) −3.60925 −0.406073 −0.203036 0.979171i \(-0.565081\pi\)
−0.203036 + 0.979171i \(0.565081\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 1.65519i 0.181680i −0.995865 0.0908401i \(-0.971045\pi\)
0.995865 0.0908401i \(-0.0289552\pi\)
\(84\) 0 0
\(85\) 1.32312 + 0.763906i 0.143513 + 0.0828572i
\(86\) 0 0
\(87\) −1.40097 + 2.42655i −0.150200 + 0.260153i
\(88\) 0 0
\(89\) 15.5629 8.98523i 1.64966 0.952432i 0.672456 0.740137i \(-0.265239\pi\)
0.977206 0.212295i \(-0.0680939\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.62517 + 2.09299i −0.375912 + 0.217033i
\(94\) 0 0
\(95\) −1.28501 + 2.22571i −0.131839 + 0.228353i
\(96\) 0 0
\(97\) −1.14113 0.658834i −0.115865 0.0668944i 0.440948 0.897533i \(-0.354642\pi\)
−0.556812 + 0.830638i \(0.687976\pi\)
\(98\) 0 0
\(99\) 2.91185i 0.292652i
\(100\) 0 0
\(101\) −7.51238 13.0118i −0.747509 1.29472i −0.949013 0.315237i \(-0.897916\pi\)
0.201504 0.979488i \(-0.435417\pi\)
\(102\) 0 0
\(103\) 9.20775 0.907267 0.453633 0.891188i \(-0.350128\pi\)
0.453633 + 0.891188i \(0.350128\pi\)
\(104\) 0 0
\(105\) −0.582105 −0.0568077
\(106\) 0 0
\(107\) −3.61476 6.26095i −0.349452 0.605269i 0.636700 0.771112i \(-0.280299\pi\)
−0.986152 + 0.165843i \(0.946966\pi\)
\(108\) 0 0
\(109\) 15.5036i 1.48498i 0.669857 + 0.742490i \(0.266355\pi\)
−0.669857 + 0.742490i \(0.733645\pi\)
\(110\) 0 0
\(111\) 0.404271 + 0.233406i 0.0383717 + 0.0221539i
\(112\) 0 0
\(113\) −6.91335 + 11.9743i −0.650353 + 1.12644i 0.332684 + 0.943038i \(0.392046\pi\)
−0.983037 + 0.183406i \(0.941288\pi\)
\(114\) 0 0
\(115\) 2.76960 1.59903i 0.258267 0.149110i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.50081 1.44385i 0.229249 0.132357i
\(120\) 0 0
\(121\) −1.26055 + 2.18334i −0.114596 + 0.198486i
\(122\) 0 0
\(123\) 3.37730 + 1.94989i 0.304521 + 0.175815i
\(124\) 0 0
\(125\) 5.37867i 0.481083i
\(126\) 0 0
\(127\) 3.58815 + 6.21485i 0.318396 + 0.551479i 0.980154 0.198239i \(-0.0635223\pi\)
−0.661757 + 0.749718i \(0.730189\pi\)
\(128\) 0 0
\(129\) 9.19567 0.809634
\(130\) 0 0
\(131\) 13.1304 1.14720 0.573602 0.819134i \(-0.305545\pi\)
0.573602 + 0.819134i \(0.305545\pi\)
\(132\) 0 0
\(133\) 2.42878 + 4.20677i 0.210602 + 0.364773i
\(134\) 0 0
\(135\) 0.554958i 0.0477632i
\(136\) 0 0
\(137\) −18.8894 10.9058i −1.61383 0.931747i −0.988471 0.151411i \(-0.951618\pi\)
−0.625361 0.780335i \(-0.715048\pi\)
\(138\) 0 0
\(139\) 1.48307 2.56876i 0.125793 0.217879i −0.796250 0.604968i \(-0.793186\pi\)
0.922043 + 0.387089i \(0.126519\pi\)
\(140\) 0 0
\(141\) −9.97757 + 5.76055i −0.840263 + 0.485126i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1.34663 + 0.777479i −0.111832 + 0.0645661i
\(146\) 0 0
\(147\) 2.94989 5.10935i 0.243303 0.421412i
\(148\) 0 0
\(149\) −4.93317 2.84817i −0.404141 0.233331i 0.284128 0.958786i \(-0.408296\pi\)
−0.688269 + 0.725455i \(0.741629\pi\)
\(150\) 0 0
\(151\) 19.1468i 1.55814i 0.626937 + 0.779070i \(0.284309\pi\)
−0.626937 + 0.779070i \(0.715691\pi\)
\(152\) 0 0
\(153\) 1.37651 + 2.38419i 0.111284 + 0.192750i
\(154\) 0 0
\(155\) −2.32304 −0.186591
\(156\) 0 0
\(157\) −8.38404 −0.669119 −0.334560 0.942375i \(-0.608588\pi\)
−0.334560 + 0.942375i \(0.608588\pi\)
\(158\) 0 0
\(159\) 2.81282 + 4.87195i 0.223071 + 0.386371i
\(160\) 0 0
\(161\) 6.04461i 0.476382i
\(162\) 0 0
\(163\) 1.70647 + 0.985230i 0.133661 + 0.0771692i 0.565339 0.824858i \(-0.308745\pi\)
−0.431679 + 0.902028i \(0.642079\pi\)
\(164\) 0 0
\(165\) −0.807979 + 1.39946i −0.0629010 + 0.108948i
\(166\) 0 0
\(167\) 21.4770 12.3998i 1.66194 0.959523i 0.690157 0.723660i \(-0.257542\pi\)
0.971786 0.235863i \(-0.0757917\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −4.01058 + 2.31551i −0.306697 + 0.177072i
\(172\) 0 0
\(173\) −1.28568 + 2.22686i −0.0977481 + 0.169305i −0.910752 0.412953i \(-0.864497\pi\)
0.813004 + 0.582258i \(0.197831\pi\)
\(174\) 0 0
\(175\) 4.26218 + 2.46077i 0.322191 + 0.186017i
\(176\) 0 0
\(177\) 3.10992i 0.233756i
\(178\) 0 0
\(179\) −1.50269 2.60273i −0.112316 0.194537i 0.804388 0.594105i \(-0.202494\pi\)
−0.916704 + 0.399568i \(0.869160\pi\)
\(180\) 0 0
\(181\) 14.6843 1.09147 0.545736 0.837957i \(-0.316250\pi\)
0.545736 + 0.837957i \(0.316250\pi\)
\(182\) 0 0
\(183\) −10.9051 −0.806132
\(184\) 0 0
\(185\) 0.129531 + 0.224354i 0.00952328 + 0.0164948i
\(186\) 0 0
\(187\) 8.01639i 0.586217i
\(188\) 0 0
\(189\) −0.908389 0.524459i −0.0660756 0.0381488i
\(190\) 0 0
\(191\) 8.54019 14.7920i 0.617946 1.07031i −0.371914 0.928267i \(-0.621298\pi\)
0.989860 0.142047i \(-0.0453684\pi\)
\(192\) 0 0
\(193\) −12.9695 + 7.48792i −0.933562 + 0.538992i −0.887936 0.459966i \(-0.847861\pi\)
−0.0456255 + 0.998959i \(0.514528\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.166870 + 0.0963427i −0.0118890 + 0.00686414i −0.505933 0.862573i \(-0.668852\pi\)
0.494044 + 0.869437i \(0.335518\pi\)
\(198\) 0 0
\(199\) 5.93631 10.2820i 0.420814 0.728871i −0.575205 0.818009i \(-0.695078\pi\)
0.996019 + 0.0891378i \(0.0284112\pi\)
\(200\) 0 0
\(201\) −6.97057 4.02446i −0.491666 0.283863i
\(202\) 0 0
\(203\) 2.93900i 0.206277i
\(204\) 0 0
\(205\) 1.08211 + 1.87426i 0.0755775 + 0.130904i
\(206\) 0 0
\(207\) 5.76271 0.400536
\(208\) 0 0
\(209\) 13.4849 0.932767
\(210\) 0 0
\(211\) −3.01693 5.22547i −0.207694 0.359736i 0.743294 0.668965i \(-0.233262\pi\)
−0.950988 + 0.309229i \(0.899929\pi\)
\(212\) 0 0
\(213\) 13.6920i 0.938162i
\(214\) 0 0
\(215\) 4.41951 + 2.55161i 0.301408 + 0.174018i
\(216\) 0 0
\(217\) −2.19537 + 3.80250i −0.149032 + 0.258130i
\(218\) 0 0
\(219\) −8.11170 + 4.68329i −0.548138 + 0.316468i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.38415 + 4.26324i −0.494479 + 0.285488i −0.726431 0.687240i \(-0.758822\pi\)
0.231952 + 0.972727i \(0.425489\pi\)
\(224\) 0 0
\(225\) −2.34601 + 4.06341i −0.156401 + 0.270894i
\(226\) 0 0
\(227\) 9.52628 + 5.50000i 0.632281 + 0.365048i 0.781635 0.623736i \(-0.214386\pi\)
−0.149354 + 0.988784i \(0.547719\pi\)
\(228\) 0 0
\(229\) 17.9119i 1.18365i −0.806067 0.591824i \(-0.798408\pi\)
0.806067 0.591824i \(-0.201592\pi\)
\(230\) 0 0
\(231\) 1.52715 + 2.64510i 0.100479 + 0.174035i
\(232\) 0 0
\(233\) −22.8159 −1.49472 −0.747361 0.664418i \(-0.768679\pi\)
−0.747361 + 0.664418i \(0.768679\pi\)
\(234\) 0 0
\(235\) −6.39373 −0.417081
\(236\) 0 0
\(237\) −1.80463 3.12570i −0.117223 0.203036i
\(238\) 0 0
\(239\) 8.34481i 0.539781i −0.962891 0.269891i \(-0.913012\pi\)
0.962891 0.269891i \(-0.0869875\pi\)
\(240\) 0 0
\(241\) 3.25228 + 1.87771i 0.209498 + 0.120954i 0.601078 0.799190i \(-0.294738\pi\)
−0.391580 + 0.920144i \(0.628071\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 2.83548 1.63706i 0.181152 0.104588i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.43343 0.827593i 0.0908401 0.0524466i
\(250\) 0 0
\(251\) −15.1543 + 26.2480i −0.956530 + 1.65676i −0.225703 + 0.974196i \(0.572468\pi\)
−0.730827 + 0.682562i \(0.760866\pi\)
\(252\) 0 0
\(253\) −14.5321 8.39008i −0.913622 0.527480i
\(254\) 0 0
\(255\) 1.52781i 0.0956752i
\(256\) 0 0
\(257\) −10.4206 18.0490i −0.650018 1.12586i −0.983118 0.182973i \(-0.941428\pi\)
0.333100 0.942892i \(-0.391905\pi\)
\(258\) 0 0
\(259\) 0.489647 0.0304252
\(260\) 0 0
\(261\) −2.80194 −0.173436
\(262\) 0 0
\(263\) −4.29321 7.43606i −0.264731 0.458527i 0.702762 0.711425i \(-0.251950\pi\)
−0.967493 + 0.252898i \(0.918616\pi\)
\(264\) 0 0
\(265\) 3.12200i 0.191783i
\(266\) 0 0
\(267\) 15.5629 + 8.98523i 0.952432 + 0.549887i
\(268\) 0 0
\(269\) −7.41335 + 12.8403i −0.452000 + 0.782886i −0.998510 0.0545658i \(-0.982623\pi\)
0.546510 + 0.837452i \(0.315956\pi\)
\(270\) 0 0
\(271\) −6.26561 + 3.61745i −0.380608 + 0.219744i −0.678083 0.734985i \(-0.737189\pi\)
0.297475 + 0.954730i \(0.403856\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.8321 6.83124i 0.713500 0.411939i
\(276\) 0 0
\(277\) 5.60268 9.70412i 0.336632 0.583064i −0.647165 0.762350i \(-0.724045\pi\)
0.983797 + 0.179286i \(0.0573787\pi\)
\(278\) 0 0
\(279\) −3.62517 2.09299i −0.217033 0.125304i
\(280\) 0 0
\(281\) 12.3002i 0.733769i −0.930267 0.366884i \(-0.880424\pi\)
0.930267 0.366884i \(-0.119576\pi\)
\(282\) 0 0
\(283\) 12.1761 + 21.0895i 0.723791 + 1.25364i 0.959470 + 0.281812i \(0.0909355\pi\)
−0.235678 + 0.971831i \(0.575731\pi\)
\(284\) 0 0
\(285\) −2.57002 −0.152235
\(286\) 0 0
\(287\) 4.09054 0.241457
\(288\) 0 0
\(289\) 4.71044 + 8.15872i 0.277085 + 0.479925i
\(290\) 0 0
\(291\) 1.31767i 0.0772430i
\(292\) 0 0
\(293\) −5.37141 3.10119i −0.313801 0.181173i 0.334825 0.942280i \(-0.391323\pi\)
−0.648626 + 0.761107i \(0.724656\pi\)
\(294\) 0 0
\(295\) 0.862937 1.49465i 0.0502421 0.0870219i
\(296\) 0 0
\(297\) −2.52174 + 1.45593i −0.146326 + 0.0844815i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 8.35325 4.82275i 0.481473 0.277979i
\(302\) 0 0
\(303\) 7.51238 13.0118i 0.431575 0.747509i
\(304\) 0 0
\(305\) −5.24110 3.02595i −0.300105 0.173265i
\(306\) 0 0
\(307\) 26.4795i 1.51126i −0.654996 0.755632i \(-0.727330\pi\)
0.654996 0.755632i \(-0.272670\pi\)
\(308\) 0 0
\(309\) 4.60388 + 7.97415i 0.261905 + 0.453633i
\(310\) 0 0
\(311\) −15.5308 −0.880671 −0.440335 0.897833i \(-0.645140\pi\)
−0.440335 + 0.897833i \(0.645140\pi\)
\(312\) 0 0
\(313\) 16.9681 0.959092 0.479546 0.877517i \(-0.340801\pi\)
0.479546 + 0.877517i \(0.340801\pi\)
\(314\) 0 0
\(315\) −0.291053 0.504118i −0.0163990 0.0284038i
\(316\) 0 0
\(317\) 25.5066i 1.43260i −0.697795 0.716298i \(-0.745835\pi\)
0.697795 0.716298i \(-0.254165\pi\)
\(318\) 0 0
\(319\) 7.06576 + 4.07942i 0.395606 + 0.228403i
\(320\) 0 0
\(321\) 3.61476 6.26095i 0.201756 0.349452i
\(322\) 0 0
\(323\) 11.0412 6.37465i 0.614350 0.354695i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −13.4266 + 7.75182i −0.742490 + 0.428677i
\(328\) 0 0
\(329\) −6.04234 + 10.4656i −0.333125 + 0.576990i
\(330\) 0 0
\(331\) 9.19162 + 5.30678i 0.505217 + 0.291687i 0.730865 0.682522i \(-0.239117\pi\)
−0.225648 + 0.974209i \(0.572450\pi\)
\(332\) 0 0
\(333\) 0.466812i 0.0255811i
\(334\) 0 0
\(335\) −2.23341 3.86837i −0.122024 0.211352i
\(336\) 0 0
\(337\) −29.2717 −1.59453 −0.797266 0.603628i \(-0.793721\pi\)
−0.797266 + 0.603628i \(0.793721\pi\)
\(338\) 0 0
\(339\) −13.8267 −0.750963
\(340\) 0 0
\(341\) 6.09448 + 10.5560i 0.330035 + 0.571637i
\(342\) 0 0
\(343\) 13.5308i 0.730594i
\(344\) 0 0
\(345\) 2.76960 + 1.59903i 0.149110 + 0.0860889i
\(346\) 0 0
\(347\) 17.4073 30.1503i 0.934473 1.61855i 0.158902 0.987294i \(-0.449205\pi\)
0.775571 0.631261i \(-0.217462\pi\)
\(348\) 0 0
\(349\) −26.1502 + 15.0978i −1.39979 + 0.808169i −0.994370 0.105962i \(-0.966208\pi\)
−0.405419 + 0.914131i \(0.632874\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 21.6239 12.4846i 1.15092 0.664486i 0.201812 0.979424i \(-0.435317\pi\)
0.949112 + 0.314938i \(0.101984\pi\)
\(354\) 0 0
\(355\) −3.79925 + 6.58049i −0.201643 + 0.349256i
\(356\) 0 0
\(357\) 2.50081 + 1.44385i 0.132357 + 0.0764164i
\(358\) 0 0
\(359\) 14.1661i 0.747660i −0.927497 0.373830i \(-0.878044\pi\)
0.927497 0.373830i \(-0.121956\pi\)
\(360\) 0 0
\(361\) 1.22318 + 2.11862i 0.0643782 + 0.111506i
\(362\) 0 0
\(363\) −2.52111 −0.132324
\(364\) 0 0
\(365\) −5.19806 −0.272079
\(366\) 0 0
\(367\) −4.39344 7.60965i −0.229335 0.397221i 0.728276 0.685284i \(-0.240322\pi\)
−0.957611 + 0.288063i \(0.906989\pi\)
\(368\) 0 0
\(369\) 3.89977i 0.203014i
\(370\) 0 0
\(371\) 5.11028 + 2.95042i 0.265312 + 0.153178i
\(372\) 0 0
\(373\) 9.16301 15.8708i 0.474443 0.821759i −0.525129 0.851023i \(-0.675983\pi\)
0.999572 + 0.0292636i \(0.00931621\pi\)
\(374\) 0 0
\(375\) −4.65806 + 2.68933i −0.240541 + 0.138877i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 4.13601 2.38793i 0.212453 0.122660i −0.389998 0.920816i \(-0.627524\pi\)
0.602451 + 0.798156i \(0.294191\pi\)
\(380\) 0 0
\(381\) −3.58815 + 6.21485i −0.183826 + 0.318396i
\(382\) 0 0
\(383\) 5.36095 + 3.09515i 0.273932 + 0.158155i 0.630673 0.776049i \(-0.282779\pi\)
−0.356741 + 0.934203i \(0.616112\pi\)
\(384\) 0 0
\(385\) 1.69501i 0.0863855i
\(386\) 0 0
\(387\) 4.59783 + 7.96368i 0.233721 + 0.404817i
\(388\) 0 0
\(389\) −24.8780 −1.26136 −0.630682 0.776041i \(-0.717225\pi\)
−0.630682 + 0.776041i \(0.717225\pi\)
\(390\) 0 0
\(391\) −15.8649 −0.802320
\(392\) 0 0
\(393\) 6.56518 + 11.3712i 0.331169 + 0.573602i
\(394\) 0 0
\(395\) 2.00298i 0.100781i
\(396\) 0 0
\(397\) 4.00127 + 2.31013i 0.200818 + 0.115942i 0.597037 0.802214i \(-0.296345\pi\)
−0.396219 + 0.918156i \(0.629678\pi\)
\(398\) 0 0
\(399\) −2.42878 + 4.20677i −0.121591 + 0.210602i
\(400\) 0 0
\(401\) −1.42763 + 0.824240i −0.0712923 + 0.0411606i −0.535222 0.844711i \(-0.679772\pi\)
0.463930 + 0.885872i \(0.346439\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.480608 0.277479i 0.0238816 0.0137880i
\(406\) 0 0
\(407\) 0.679644 1.17718i 0.0336887 0.0583506i
\(408\) 0 0
\(409\) −30.1419 17.4025i −1.49042 0.860496i −0.490483 0.871451i \(-0.663180\pi\)
−0.999940 + 0.0109543i \(0.996513\pi\)
\(410\) 0 0
\(411\) 21.8116i 1.07589i
\(412\) 0 0
\(413\) −1.63102 2.82501i −0.0802574 0.139010i
\(414\) 0 0
\(415\) 0.918559 0.0450903
\(416\) 0 0
\(417\) 2.96615 0.145253
\(418\) 0 0
\(419\) −10.8177 18.7367i −0.528478 0.915350i −0.999449 0.0332014i \(-0.989430\pi\)
0.470971 0.882149i \(-0.343904\pi\)
\(420\) 0 0
\(421\) 35.1008i 1.71071i 0.518043 + 0.855355i \(0.326661\pi\)
−0.518043 + 0.855355i \(0.673339\pi\)
\(422\) 0 0
\(423\) −9.97757 5.76055i −0.485126 0.280088i
\(424\) 0 0
\(425\) 6.45862 11.1867i 0.313289 0.542632i
\(426\) 0 0
\(427\) −9.90612 + 5.71930i −0.479391 + 0.276776i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.4006 10.0462i 0.838156 0.483910i −0.0184807 0.999829i \(-0.505883\pi\)
0.856637 + 0.515919i \(0.172550\pi\)
\(432\) 0 0
\(433\) −9.34697 + 16.1894i −0.449187 + 0.778014i −0.998333 0.0577118i \(-0.981620\pi\)
0.549147 + 0.835726i \(0.314953\pi\)
\(434\) 0 0
\(435\) −1.34663 0.777479i −0.0645661 0.0372773i
\(436\) 0 0
\(437\) 26.6872i 1.27662i
\(438\) 0 0
\(439\) 0.675096 + 1.16930i 0.0322206 + 0.0558076i 0.881686 0.471837i \(-0.156409\pi\)
−0.849465 + 0.527644i \(0.823075\pi\)
\(440\) 0 0
\(441\) 5.89977 0.280942
\(442\) 0 0
\(443\) −0.400436 −0.0190253 −0.00951265 0.999955i \(-0.503028\pi\)
−0.00951265 + 0.999955i \(0.503028\pi\)
\(444\) 0 0
\(445\) 4.98643 + 8.63674i 0.236379 + 0.409421i
\(446\) 0 0
\(447\) 5.69633i 0.269427i
\(448\) 0 0
\(449\) −30.9954 17.8952i −1.46277 0.844528i −0.463627 0.886031i \(-0.653452\pi\)
−0.999138 + 0.0415028i \(0.986785\pi\)
\(450\) 0 0
\(451\) 5.67778 9.83421i 0.267356 0.463075i
\(452\) 0 0
\(453\) −16.5816 + 9.57338i −0.779070 + 0.449796i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.47814 + 2.58546i −0.209479 + 0.120943i −0.601069 0.799197i \(-0.705258\pi\)
0.391590 + 0.920140i \(0.371925\pi\)
\(458\) 0 0
\(459\) −1.37651 + 2.38419i −0.0642500 + 0.111284i
\(460\) 0 0
\(461\) −18.0809 10.4390i −0.842111 0.486193i 0.0158705 0.999874i \(-0.494948\pi\)
−0.857981 + 0.513681i \(0.828281\pi\)
\(462\) 0 0
\(463\) 30.7198i 1.42767i −0.700315 0.713834i \(-0.746957\pi\)
0.700315 0.713834i \(-0.253043\pi\)
\(464\) 0 0
\(465\) −1.16152 2.01182i −0.0538643 0.0932957i
\(466\) 0 0
\(467\) −15.2741 −0.706802 −0.353401 0.935472i \(-0.614975\pi\)
−0.353401 + 0.935472i \(0.614975\pi\)
\(468\) 0 0
\(469\) −8.44265 −0.389845
\(470\) 0 0
\(471\) −4.19202 7.26079i −0.193158 0.334560i
\(472\) 0 0
\(473\) 26.7764i 1.23118i
\(474\) 0 0
\(475\) 18.8177 + 10.8644i 0.863417 + 0.498494i
\(476\) 0 0
\(477\) −2.81282 + 4.87195i −0.128790 + 0.223071i
\(478\) 0 0
\(479\) 2.64883 1.52930i 0.121028 0.0698756i −0.438264 0.898846i \(-0.644406\pi\)
0.559292 + 0.828971i \(0.311073\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 5.23478 3.02230i 0.238191 0.137520i
\(484\) 0 0
\(485\) 0.365625 0.633281i 0.0166022 0.0287558i
\(486\) 0 0
\(487\) 13.1221 + 7.57606i 0.594620 + 0.343304i 0.766922 0.641740i \(-0.221787\pi\)
−0.172302 + 0.985044i \(0.555120\pi\)
\(488\) 0 0
\(489\) 1.97046i 0.0891073i
\(490\) 0 0
\(491\) 11.7397 + 20.3338i 0.529807 + 0.917653i 0.999395 + 0.0347674i \(0.0110690\pi\)
−0.469588 + 0.882886i \(0.655598\pi\)
\(492\) 0 0
\(493\) 7.71379 0.347412
\(494\) 0 0
\(495\) −1.61596 −0.0726319
\(496\) 0 0
\(497\) 7.18090 + 12.4377i 0.322107 + 0.557906i
\(498\) 0 0
\(499\) 38.0689i 1.70420i −0.523381 0.852099i \(-0.675330\pi\)
0.523381 0.852099i \(-0.324670\pi\)
\(500\) 0 0
\(501\) 21.4770 + 12.3998i 0.959523 + 0.553981i
\(502\) 0 0
\(503\) 5.56369 9.63659i 0.248073 0.429674i −0.714918 0.699208i \(-0.753536\pi\)
0.962991 + 0.269534i \(0.0868695\pi\)
\(504\) 0 0
\(505\) 7.22101 4.16905i 0.321331 0.185521i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −23.1777 + 13.3817i −1.02733 + 0.593131i −0.916220 0.400676i \(-0.868775\pi\)
−0.111114 + 0.993808i \(0.535442\pi\)
\(510\) 0 0
\(511\) −4.91239 + 8.50850i −0.217311 + 0.376394i
\(512\) 0 0
\(513\) −4.01058 2.31551i −0.177072 0.102232i
\(514\) 0 0
\(515\) 5.10992i 0.225170i
\(516\) 0 0
\(517\) 16.7739 + 29.0532i 0.737715 + 1.27776i
\(518\) 0 0
\(519\) −2.57135 −0.112870
\(520\) 0 0
\(521\) 20.5797 0.901614 0.450807 0.892622i \(-0.351136\pi\)
0.450807 + 0.892622i \(0.351136\pi\)
\(522\) 0 0
\(523\) 3.38740 + 5.86714i 0.148120 + 0.256552i 0.930533 0.366209i \(-0.119344\pi\)
−0.782412 + 0.622761i \(0.786011\pi\)
\(524\) 0 0
\(525\) 4.92154i 0.214794i
\(526\) 0 0
\(527\) 9.98015 + 5.76205i 0.434742 + 0.250999i
\(528\) 0 0
\(529\) −5.10441 + 8.84109i −0.221931 + 0.384395i
\(530\) 0 0
\(531\) 2.69327 1.55496i 0.116878 0.0674794i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 3.47456 2.00604i 0.150219 0.0867287i
\(536\) 0 0
\(537\) 1.50269 2.60273i 0.0648458 0.112316i
\(538\) 0 0
\(539\) −14.8777 8.58964i −0.640827 0.369982i
\(540\) 0 0
\(541\) 1.94331i 0.0835495i 0.999127 + 0.0417748i \(0.0133012\pi\)
−0.999127 + 0.0417748i \(0.986699\pi\)
\(542\) 0 0
\(543\) 7.34213 + 12.7169i 0.315081 + 0.545736i
\(544\) 0 0
\(545\) −8.60388 −0.368550
\(546\) 0 0
\(547\) −39.1323 −1.67318 −0.836588 0.547833i \(-0.815453\pi\)
−0.836588 + 0.547833i \(0.815453\pi\)
\(548\) 0 0
\(549\) −5.45257 9.44414i −0.232710 0.403066i
\(550\) 0 0
\(551\) 12.9758i 0.552789i
\(552\) 0 0
\(553\) −3.27861 1.89290i −0.139420 0.0804945i
\(554\) 0 0
\(555\) −0.129531 + 0.224354i −0.00549827 + 0.00952328i
\(556\) 0 0
\(557\) −21.2166 + 12.2494i −0.898978 + 0.519025i −0.876868 0.480731i \(-0.840372\pi\)
−0.0221094 + 0.999756i \(0.507038\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 6.94240 4.00820i 0.293108 0.169226i
\(562\) 0 0
\(563\) −10.9133 + 18.9025i −0.459943 + 0.796644i −0.998957 0.0456522i \(-0.985463\pi\)
0.539015 + 0.842296i \(0.318797\pi\)
\(564\) 0 0
\(565\) −6.64522 3.83662i −0.279566 0.161408i
\(566\) 0 0
\(567\) 1.04892i 0.0440504i
\(568\) 0 0
\(569\) −5.78136 10.0136i −0.242367 0.419793i 0.719021 0.694989i \(-0.244591\pi\)
−0.961388 + 0.275196i \(0.911257\pi\)
\(570\) 0 0
\(571\) −24.7614 −1.03623 −0.518116 0.855310i \(-0.673366\pi\)
−0.518116 + 0.855310i \(0.673366\pi\)
\(572\) 0 0
\(573\) 17.0804 0.713543
\(574\) 0 0
\(575\) −13.5194 23.4162i −0.563797 0.976525i
\(576\) 0 0
\(577\) 13.5090i 0.562388i −0.959651 0.281194i \(-0.909270\pi\)
0.959651 0.281194i \(-0.0907304\pi\)
\(578\) 0 0
\(579\) −12.9695 7.48792i −0.538992 0.311187i
\(580\) 0 0
\(581\) 0.868076 1.50355i 0.0360139 0.0623779i
\(582\) 0 0
\(583\) 14.1864 8.19053i 0.587541 0.339217i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.80500 3.35152i 0.239598 0.138332i −0.375394 0.926865i \(-0.622493\pi\)
0.614992 + 0.788533i \(0.289159\pi\)
\(588\) 0 0
\(589\) −9.69269 + 16.7882i −0.399380 + 0.691747i
\(590\) 0 0
\(591\) −0.166870 0.0963427i −0.00686414 0.00396301i
\(592\) 0 0
\(593\) 16.0194i 0.657837i −0.944358 0.328918i \(-0.893316\pi\)
0.944358 0.328918i \(-0.106684\pi\)
\(594\) 0 0
\(595\) 0.801274 + 1.38785i 0.0328490 + 0.0568962i
\(596\) 0 0
\(597\) 11.8726 0.485914
\(598\) 0 0
\(599\) 19.8243 0.809999 0.404999 0.914317i \(-0.367272\pi\)
0.404999 + 0.914317i \(0.367272\pi\)
\(600\) 0 0
\(601\) −14.5954 25.2800i −0.595360 1.03119i −0.993496 0.113868i \(-0.963676\pi\)
0.398135 0.917327i \(-0.369657\pi\)
\(602\) 0 0
\(603\) 8.04892i 0.327777i
\(604\) 0 0
\(605\) −1.21166 0.699554i −0.0492611 0.0284409i
\(606\) 0 0
\(607\) 3.18114 5.50989i 0.129118 0.223640i −0.794217 0.607634i \(-0.792119\pi\)
0.923335 + 0.383995i \(0.125452\pi\)
\(608\) 0 0
\(609\) −2.54525 + 1.46950i −0.103139 + 0.0595472i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −26.6485 + 15.3855i −1.07632 + 0.621416i −0.929902 0.367806i \(-0.880109\pi\)
−0.146422 + 0.989222i \(0.546776\pi\)
\(614\) 0 0
\(615\) −1.08211 + 1.87426i −0.0436347 + 0.0755775i
\(616\) 0 0
\(617\) 10.4132 + 6.01208i 0.419221 + 0.242037i 0.694744 0.719257i \(-0.255518\pi\)
−0.275523 + 0.961294i \(0.588851\pi\)
\(618\) 0 0
\(619\) 9.02715i 0.362832i 0.983406 + 0.181416i \(0.0580680\pi\)
−0.983406 + 0.181416i \(0.941932\pi\)
\(620\) 0 0
\(621\) 2.88135 + 4.99065i 0.115625 + 0.200268i
\(622\) 0 0
\(623\) 18.8495 0.755190
\(624\) 0 0
\(625\) 20.4752 0.819007
\(626\) 0 0
\(627\) 6.74243 + 11.6782i 0.269267 + 0.466384i
\(628\) 0 0
\(629\) 1.28514i 0.0512420i
\(630\) 0 0
\(631\) −13.4689 7.77628i −0.536189 0.309569i 0.207344 0.978268i \(-0.433518\pi\)
−0.743533 + 0.668699i \(0.766851\pi\)
\(632\) 0 0
\(633\) 3.01693 5.22547i 0.119912 0.207694i
\(634\) 0 0
\(635\) −3.44898 + 1.99127i −0.136869 + 0.0790212i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −11.8576 + 6.84601i −0.469081 + 0.270824i
\(640\) 0 0
\(641\) −9.71044 + 16.8190i −0.383539 + 0.664310i −0.991565 0.129608i \(-0.958628\pi\)
0.608026 + 0.793917i \(0.291962\pi\)
\(642\) 0 0
\(643\) −23.2326 13.4133i −0.916204 0.528971i −0.0337821 0.999429i \(-0.510755\pi\)
−0.882422 + 0.470458i \(0.844089\pi\)
\(644\) 0 0
\(645\) 5.10321i 0.200939i
\(646\) 0 0
\(647\) 2.54407 + 4.40646i 0.100018 + 0.173236i 0.911692 0.410875i \(-0.134777\pi\)
−0.811674 + 0.584111i \(0.801443\pi\)
\(648\) 0 0
\(649\) −9.05562 −0.355464
\(650\) 0 0
\(651\) −4.39075 −0.172087
\(652\) 0 0
\(653\) 9.85786 + 17.0743i 0.385768 + 0.668169i 0.991875 0.127213i \(-0.0406033\pi\)
−0.606108 + 0.795383i \(0.707270\pi\)
\(654\) 0 0
\(655\) 7.28680i 0.284719i
\(656\) 0 0
\(657\) −8.11170 4.68329i −0.316468 0.182713i
\(658\) 0 0
\(659\) −4.71260 + 8.16245i −0.183577 + 0.317964i −0.943096 0.332521i \(-0.892101\pi\)
0.759519 + 0.650485i \(0.225434\pi\)
\(660\) 0 0
\(661\) −25.9761 + 14.9973i −1.01035 + 0.583328i −0.911295 0.411754i \(-0.864916\pi\)
−0.0990583 + 0.995082i \(0.531583\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.33458 + 1.34787i −0.0905312 + 0.0522682i
\(666\) 0 0
\(667\) 8.07338 13.9835i 0.312602 0.541443i
\(668\) 0 0
\(669\) −7.38415 4.26324i −0.285488 0.164826i
\(670\) 0 0
\(671\) 31.7542i 1.22586i
\(672\) 0 0
\(673\) −23.8647 41.3349i −0.919918 1.59334i −0.799538 0.600616i \(-0.794922\pi\)
−0.120380 0.992728i \(-0.538411\pi\)
\(674\) 0 0
\(675\) −4.69202 −0.180596
\(676\) 0 0
\(677\) −42.9124 −1.64926 −0.824630 0.565673i \(-0.808616\pi\)
−0.824630 + 0.565673i \(0.808616\pi\)
\(678\) 0 0
\(679\) −0.691062 1.19695i −0.0265205 0.0459349i
\(680\) 0 0
\(681\) 11.0000i 0.421521i
\(682\) 0 0
\(683\) −0.840443 0.485230i −0.0321587 0.0185668i 0.483834 0.875160i \(-0.339244\pi\)
−0.515993 + 0.856593i \(0.672577\pi\)
\(684\) 0 0
\(685\) 6.05227 10.4828i 0.231245 0.400529i
\(686\) 0 0
\(687\) 15.5121 8.95593i 0.591824 0.341690i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1.01031 + 0.583302i −0.0384339 + 0.0221898i −0.519094 0.854717i \(-0.673730\pi\)
0.480660 + 0.876907i \(0.340397\pi\)
\(692\) 0 0
\(693\) −1.52715 + 2.64510i −0.0580115 + 0.100479i
\(694\) 0 0
\(695\) 1.42555 + 0.823044i 0.0540743 + 0.0312198i
\(696\) 0 0
\(697\) 10.7362i 0.406661i
\(698\) 0 0
\(699\) −11.4080 19.7592i −0.431489 0.747361i
\(700\) 0 0
\(701\) 17.3274 0.654445 0.327223 0.944947i \(-0.393887\pi\)
0.327223 + 0.944947i \(0.393887\pi\)
\(702\) 0 0
\(703\) 2.16182 0.0815345
\(704\) 0 0
\(705\) −3.19687 5.53713i −0.120401 0.208541i
\(706\) 0 0
\(707\) 15.7597i 0.592705i
\(708\) 0 0
\(709\) −14.2549 8.23005i −0.535353 0.309086i 0.207841 0.978163i \(-0.433356\pi\)
−0.743193 + 0.669077i \(0.766690\pi\)
\(710\) 0 0
\(711\) 1.80463 3.12570i 0.0676788 0.117223i
\(712\) 0 0
\(713\) 20.8908 12.0613i 0.782366 0.451699i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 7.22682 4.17241i 0.269891 0.155821i
\(718\) 0 0
\(719\) 7.08575 12.2729i 0.264254 0.457701i −0.703114 0.711077i \(-0.748208\pi\)
0.967368 + 0.253376i \(0.0815409\pi\)
\(720\) 0 0
\(721\) 8.36422 + 4.82908i 0.311500 + 0.179845i
\(722\) 0 0
\(723\) 3.75541i 0.139665i
\(724\) 0 0
\(725\) 6.57338 + 11.3854i 0.244129 + 0.422844i
\(726\) 0 0
\(727\) 37.8810 1.40493 0.702464 0.711719i \(-0.252083\pi\)
0.702464 + 0.711719i \(0.252083\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.6579 21.9242i −0.468171 0.810895i
\(732\) 0 0
\(733\) 0.377338i 0.0139373i −0.999976 0.00696865i \(-0.997782\pi\)
0.999976 0.00696865i \(-0.00221821\pi\)
\(734\) 0 0
\(735\) 2.83548 + 1.63706i 0.104588 + 0.0603840i
\(736\) 0 0
\(737\) −11.7186 + 20.2973i −0.431662 + 0.747660i
\(738\) 0 0
\(739\) 0.975413 0.563155i 0.0358811 0.0207160i −0.481952 0.876198i \(-0.660072\pi\)
0.517833 + 0.855482i \(0.326739\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.6628 11.3523i 0.721360 0.416477i −0.0938932 0.995582i \(-0.529931\pi\)
0.815253 + 0.579105i \(0.196598\pi\)
\(744\) 0 0
\(745\) 1.58061 2.73770i 0.0579092 0.100302i
\(746\) 0 0
\(747\) 1.43343 + 0.827593i 0.0524466 + 0.0302800i
\(748\) 0 0
\(749\) 7.58317i 0.277083i
\(750\) 0 0
\(751\) 6.96412 + 12.0622i 0.254124 + 0.440157i 0.964657 0.263508i \(-0.0848794\pi\)
−0.710533 + 0.703664i \(0.751546\pi\)
\(752\) 0 0
\(753\) −30.3086 −1.10451
\(754\) 0 0
\(755\) −10.6256 −0.386707
\(756\) 0 0
\(757\) −0.583302 1.01031i −0.0212005 0.0367203i 0.855231 0.518248i \(-0.173415\pi\)
−0.876431 + 0.481527i \(0.840082\pi\)
\(758\) 0 0
\(759\) 16.7802i 0.609081i
\(760\) 0 0
\(761\) −0.711690 0.410895i −0.0257987 0.0148949i 0.487045 0.873377i \(-0.338075\pi\)
−0.512844 + 0.858482i \(0.671408\pi\)
\(762\) 0 0
\(763\) −8.13102 + 14.0833i −0.294363 + 0.509851i
\(764\) 0 0
\(765\) −1.32312 + 0.763906i −0.0478376 + 0.0276191i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 29.1865 16.8509i 1.05249 0.607657i 0.129147 0.991625i \(-0.458776\pi\)
0.923346 + 0.383968i \(0.125443\pi\)
\(770\) 0 0
\(771\) 10.4206 18.0490i 0.375288 0.650018i
\(772\) 0 0
\(773\) −0.661675 0.382019i −0.0237988 0.0137403i 0.488053 0.872814i \(-0.337707\pi\)
−0.511852 + 0.859074i \(0.671040\pi\)
\(774\) 0 0
\(775\) 19.6407i 0.705515i
\(776\) 0 0
\(777\) 0.244824 + 0.424047i 0.00878300 + 0.0152126i
\(778\) 0 0
\(779\) 18.0599 0.647064
\(780\) 0 0
\(781\) 39.8692 1.42663
\(782\) 0 0
\(783\) −1.40097 2.42655i −0.0500665 0.0867178i
\(784\) 0 0
\(785\) 4.65279i 0.166065i
\(786\) 0 0
\(787\) −10.5429 6.08695i −0.375814 0.216976i 0.300181 0.953882i \(-0.402953\pi\)
−0.675995 + 0.736906i \(0.736286\pi\)
\(788\) 0 0
\(789\) 4.29321 7.43606i 0.152842 0.264731i
\(790\) 0 0
\(791\) −12.5600 + 7.25153i −0.446583 + 0.257835i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −2.70373 + 1.56100i −0.0958914 + 0.0553629i
\(796\) 0 0
\(797\) 19.1444 33.1590i 0.678128 1.17455i −0.297416 0.954748i \(-0.596125\pi\)
0.975544 0.219804i \(-0.0705418\pi\)
\(798\) 0 0
\(799\) 27.4685 + 15.8589i 0.971764 + 0.561048i
\(800\) 0 0
\(801\) 17.9705i 0.634955i
\(802\) 0 0
\(803\) 13.6371 + 23.6201i 0.481242 + 0.833535i
\(804\) 0 0
\(805\) 3.35450 0.118231
\(806\) 0 0
\(807\) −14.8267 −0.521924
\(808\) 0 0
\(809\) 14.9819 + 25.9494i 0.526735 + 0.912331i 0.999515 + 0.0311508i \(0.00991722\pi\)
−0.472780 + 0.881181i \(0.656749\pi\)
\(810\) 0 0
\(811\) 46.3521i 1.62764i 0.581115 + 0.813821i \(0.302617\pi\)
−0.581115 + 0.813821i \(0.697383\pi\)
\(812\) 0 0
\(813\) −6.26561 3.61745i −0.219744 0.126869i
\(814\) 0 0
\(815\) −0.546761 + 0.947019i −0.0191522 + 0.0331726i
\(816\) 0 0
\(817\) 36.8800 21.2927i 1.29027 0.744936i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −41.8381 + 24.1552i −1.46016 + 0.843024i −0.999018 0.0443025i \(-0.985893\pi\)
−0.461142 + 0.887326i \(0.652560\pi\)
\(822\) 0 0
\(823\) −2.65615 + 4.60058i −0.0925874 + 0.160366i −0.908599 0.417669i \(-0.862847\pi\)
0.816012 + 0.578035i \(0.196180\pi\)
\(824\) 0 0
\(825\) 11.8321 + 6.83124i 0.411939 + 0.237833i
\(826\) 0 0
\(827\) 22.0968i 0.768380i 0.923254 + 0.384190i \(0.125519\pi\)
−0.923254 + 0.384190i \(0.874481\pi\)
\(828\) 0 0
\(829\) −0.808274 1.39997i −0.0280725 0.0486230i 0.851648 0.524114i \(-0.175604\pi\)
−0.879720 + 0.475491i \(0.842270\pi\)
\(830\) 0 0
\(831\) 11.2054 0.388710
\(832\) 0 0
\(833\) −16.2422 −0.562759
\(834\) 0 0
\(835\) 6.88135 + 11.9189i 0.238139 + 0.412469i
\(836\) 0 0
\(837\) 4.18598i 0.144689i
\(838\) 0 0
\(839\) 35.5783 + 20.5411i 1.22830 + 0.709159i 0.966674 0.256010i \(-0.0824081\pi\)
0.261626 + 0.965169i \(0.415741\pi\)
\(840\) 0 0
\(841\) 10.5746 18.3157i 0.364640 0.631576i
\(842\) 0 0
\(843\) 10.6523 6.15010i 0.366884 0.211821i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2.29015 + 1.32222i −0.0786903 + 0.0454319i
\(848\) 0 0
\(849\) −12.1761 + 21.0895i −0.417881 + 0.723791i
\(850\) 0 0
\(851\) −2.32970 1.34505i −0.0798610 0.0461078i
\(852\) 0 0
\(853\) 35.0441i 1.19989i 0.800042 + 0.599944i \(0.204811\pi\)
−0.800042 + 0.599944i \(0.795189\pi\)
\(854\) 0 0
\(855\) −1.28501 2.22571i −0.0439465 0.0761175i
\(856\) 0 0
\(857\) 3.76079 0.128466 0.0642331 0.997935i \(-0.479540\pi\)
0.0642331 + 0.997935i \(0.479540\pi\)
\(858\) 0 0
\(859\) 7.11662 0.242816 0.121408 0.992603i \(-0.461259\pi\)
0.121408 + 0.992603i \(0.461259\pi\)
\(860\) 0 0
\(861\) 2.04527 + 3.54251i 0.0697026 + 0.120728i
\(862\) 0 0
\(863\) 57.5900i 1.96039i 0.198044 + 0.980193i \(0.436541\pi\)
−0.198044 + 0.980193i \(0.563459\pi\)
\(864\) 0 0
\(865\) −1.23581 0.713496i −0.0420189 0.0242596i
\(866\) 0 0
\(867\) −4.71044 + 8.15872i −0.159975 + 0.277085i
\(868\) 0 0
\(869\) −9.10159 + 5.25481i −0.308750 + 0.178257i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.14113 0.658834i 0.0386215 0.0222981i
\(874\) 0 0
\(875\) −2.82089 + 4.88592i −0.0953634 + 0.165174i
\(876\) 0 0
\(877\) 16.6407 + 9.60752i 0.561917 + 0.324423i 0.753915 0.656972i \(-0.228163\pi\)
−0.191997 + 0.981395i \(0.561497\pi\)
\(878\) 0 0
\(879\) 6.20237i 0.209201i
\(880\) 0 0
\(881\) −5.57218 9.65130i −0.187731 0.325160i 0.756762 0.653690i \(-0.226780\pi\)
−0.944494 + 0.328530i \(0.893447\pi\)
\(882\) 0 0
\(883\) 4.28919 0.144343 0.0721714 0.997392i \(-0.477007\pi\)
0.0721714 + 0.997392i \(0.477007\pi\)
\(884\) 0 0
\(885\) 1.72587 0.0580146
\(886\) 0 0
\(887\) 16.5869 + 28.7294i 0.556935 + 0.964640i 0.997750 + 0.0670421i \(0.0213562\pi\)
−0.440815 + 0.897598i \(0.645310\pi\)
\(888\) 0 0
\(889\) 7.52734i 0.252459i
\(890\) 0 0
\(891\) −2.52174 1.45593i −0.0844815 0.0487754i
\(892\) 0 0
\(893\) −26.6773 + 46.2064i −0.892720 + 1.54624i
\(894\) 0 0
\(895\) 1.44441 0.833929i 0.0482812 0.0278752i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −10.1575 + 5.86443i −0.338771 + 0.195590i
\(900\) 0 0
\(901\) 7.74376 13.4126i 0.257982 0.446838i
\(902\) 0 0
\(903\) 8.35325 + 4.82275i 0.277979 + 0.160491i
\(904\) 0 0
\(905\) 8.14914i 0.270887i
\(906\) 0 0
\(907\) −20.3141 35.1850i −0.674518 1.16830i −0.976610 0.215020i \(-0.931018\pi\)
0.302092 0.953279i \(-0.402315\pi\)
\(908\) 0 0
\(909\) 15.0248 0.498340
\(910\) 0 0
\(911\) 46.2731 1.53309 0.766547 0.642188i \(-0.221973\pi\)
0.766547 + 0.642188i \(0.221973\pi\)
\(912\) 0 0
\(913\) −2.40983 4.17395i −0.0797537 0.138137i
\(914\) 0 0
\(915\) 6.05190i 0.200070i
\(916\) 0 0
\(917\) 11.9275 + 6.88633i 0.393880 + 0.227407i
\(918\) 0 0
\(919\) −25.2337 + 43.7061i −0.832383 + 1.44173i 0.0637605 + 0.997965i \(0.479691\pi\)
−0.896143 + 0.443764i \(0.853643\pi\)
\(920\) 0 0
\(921\) 22.9319 13.2397i 0.755632 0.436264i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.89685 1.09515i 0.0623680 0.0360082i
\(926\) 0 0
\(927\) −4.60388 + 7.97415i −0.151211 + 0.261905i
\(928\) 0 0
\(929\) 15.5235 + 8.96250i 0.509310 + 0.294050i 0.732550 0.680713i \(-0.238330\pi\)
−0.223240 + 0.974763i \(0.571663\pi\)
\(930\) 0 0
\(931\) 27.3220i 0.895442i
\(932\) 0 0
\(933\) −7.76540 13.4501i −0.254228 0.440335i
\(934\) 0 0
\(935\) 4.44876 0.145490
\(936\) 0 0
\(937\) 5.85325 0.191217 0.0956086 0.995419i \(-0.469520\pi\)
0.0956086 + 0.995419i \(0.469520\pi\)
\(938\) 0 0
\(939\) 8.48403 + 14.6948i 0.276866 + 0.479546i
\(940\) 0 0
\(941\) 56.7958i 1.85149i 0.378147 + 0.925745i \(0.376561\pi\)
−0.378147 + 0.925745i \(0.623439\pi\)
\(942\) 0 0
\(943\) −19.4624 11.2366i −0.633783 0.365915i
\(944\) 0 0
\(945\) 0.291053 0.504118i 0.00946794 0.0163990i
\(946\) 0 0
\(947\) −5.32583 + 3.07487i −0.173066 + 0.0999198i −0.584031 0.811731i \(-0.698525\pi\)
0.410965 + 0.911651i \(0.365192\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 22.0894 12.7533i 0.716298 0.413555i
\(952\) 0 0
\(953\) 24.4889 42.4160i 0.793273 1.37399i −0.130658 0.991428i \(-0.541709\pi\)
0.923930 0.382561i \(-0.124958\pi\)
\(954\) 0 0
\(955\) 8.20896 + 4.73945i 0.265636 + 0.153365i
\(956\) 0 0
\(957\) 8.15883i 0.263738i
\(958\) 0 0
\(959\) −11.4393 19.8134i −0.369394 0.639809i
\(960\) 0 0
\(961\) 13.4776 0.434760
\(962\) 0 0
\(963\) 7.22952 0.232968
\(964\) 0 0
\(965\) −4.15548 7.19750i −0.133770 0.231696i
\(966\) 0 0
\(967\) 54.2616i 1.74493i −0.488673 0.872467i \(-0.662519\pi\)
0.488673 0.872467i \(-0.337481\pi\)
\(968\) 0 0
\(969\) 11.0412 + 6.37465i 0.354695 + 0.204783i
\(970\) 0 0
\(971\) 18.1571 31.4490i 0.582689 1.00925i −0.412470 0.910971i \(-0.635334\pi\)
0.995159 0.0982761i \(-0.0313328\pi\)
\(972\) 0 0
\(973\) 2.69442 1.55562i 0.0863790 0.0498710i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −43.0739 + 24.8687i −1.37806 + 0.795621i −0.991925 0.126822i \(-0.959522\pi\)
−0.386131 + 0.922444i \(0.626189\pi\)
\(978\) 0 0
\(979\) 26.1637 45.3168i 0.836195 1.44833i
\(980\) 0 0
\(981\) −13.4266 7.75182i −0.428677 0.247497i
\(982\) 0 0
\(983\) 10.9981i 0.350784i −0.984499 0.175392i \(-0.943881\pi\)
0.984499 0.175392i \(-0.0561193\pi\)
\(984\) 0 0
\(985\) −0.0534662 0.0926061i −0.00170357 0.00295068i
\(986\) 0 0
\(987\) −12.0847 −0.384660
\(988\) 0 0
\(989\) −52.9920 −1.68505
\(990\) 0 0
\(991\) −3.36539 5.82902i −0.106905 0.185165i 0.807610 0.589717i \(-0.200761\pi\)
−0.914515 + 0.404552i \(0.867427\pi\)
\(992\) 0 0
\(993\) 10.6136i 0.336811i
\(994\) 0 0
\(995\) 5.70608 + 3.29440i 0.180895 + 0.104440i
\(996\) 0 0
\(997\) −21.6749 + 37.5420i −0.686450 + 1.18897i 0.286529 + 0.958072i \(0.407498\pi\)
−0.972979 + 0.230894i \(0.925835\pi\)
\(998\) 0 0
\(999\) −0.404271 + 0.233406i −0.0127906 + 0.00738464i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.2.q.j.361.4 12
13.2 odd 12 2028.2.a.j.1.2 yes 3
13.3 even 3 2028.2.b.f.337.4 6
13.4 even 6 inner 2028.2.q.j.1837.3 12
13.5 odd 4 2028.2.i.m.2005.2 6
13.6 odd 12 2028.2.i.m.529.2 6
13.7 odd 12 2028.2.i.l.529.2 6
13.8 odd 4 2028.2.i.l.2005.2 6
13.9 even 3 inner 2028.2.q.j.1837.4 12
13.10 even 6 2028.2.b.f.337.3 6
13.11 odd 12 2028.2.a.i.1.2 3
13.12 even 2 inner 2028.2.q.j.361.3 12
39.2 even 12 6084.2.a.y.1.2 3
39.11 even 12 6084.2.a.bb.1.2 3
39.23 odd 6 6084.2.b.r.4393.4 6
39.29 odd 6 6084.2.b.r.4393.3 6
52.11 even 12 8112.2.a.ch.1.2 3
52.15 even 12 8112.2.a.co.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2028.2.a.i.1.2 3 13.11 odd 12
2028.2.a.j.1.2 yes 3 13.2 odd 12
2028.2.b.f.337.3 6 13.10 even 6
2028.2.b.f.337.4 6 13.3 even 3
2028.2.i.l.529.2 6 13.7 odd 12
2028.2.i.l.2005.2 6 13.8 odd 4
2028.2.i.m.529.2 6 13.6 odd 12
2028.2.i.m.2005.2 6 13.5 odd 4
2028.2.q.j.361.3 12 13.12 even 2 inner
2028.2.q.j.361.4 12 1.1 even 1 trivial
2028.2.q.j.1837.3 12 13.4 even 6 inner
2028.2.q.j.1837.4 12 13.9 even 3 inner
6084.2.a.y.1.2 3 39.2 even 12
6084.2.a.bb.1.2 3 39.11 even 12
6084.2.b.r.4393.3 6 39.29 odd 6
6084.2.b.r.4393.4 6 39.23 odd 6
8112.2.a.ch.1.2 3 52.11 even 12
8112.2.a.co.1.2 3 52.15 even 12