Properties

Label 2028.2.b.f.337.3
Level $2028$
Weight $2$
Character 2028.337
Analytic conductor $16.194$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2028,2,Mod(337,2028)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2028.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,0,0,0,0,0,6,0,0,0,0,0,0,0,-26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.3
Root \(-1.80194i\) of defining polynomial
Character \(\chi\) \(=\) 2028.337
Dual form 2028.2.b.f.337.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -0.554958i q^{5} +1.04892i q^{7} +1.00000 q^{9} -2.91185i q^{11} +0.554958i q^{15} -2.75302 q^{17} +4.63102i q^{19} -1.04892i q^{21} +5.76271 q^{23} +4.69202 q^{25} -1.00000 q^{27} -2.80194 q^{29} -4.18598i q^{31} +2.91185i q^{33} +0.582105 q^{35} -0.466812i q^{37} -3.89977i q^{41} -9.19567 q^{43} -0.554958i q^{45} -11.5211i q^{47} +5.89977 q^{49} +2.75302 q^{51} +5.62565 q^{53} -1.61596 q^{55} -4.63102i q^{57} -3.10992i q^{59} +10.9051 q^{61} +1.04892i q^{63} +8.04892i q^{67} -5.76271 q^{69} +13.6920i q^{71} -9.36658i q^{73} -4.69202 q^{75} +3.05429 q^{77} -3.60925 q^{79} +1.00000 q^{81} +1.65519i q^{83} +1.52781i q^{85} +2.80194 q^{87} -17.9705i q^{89} +4.18598i q^{93} +2.57002 q^{95} -1.31767i q^{97} -2.91185i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 6 q^{9} - 26 q^{17} + 18 q^{25} - 6 q^{27} - 8 q^{29} - 8 q^{35} + 18 q^{43} - 10 q^{49} + 26 q^{51} + 10 q^{53} - 30 q^{55} + 14 q^{61} - 18 q^{75} - 6 q^{77} + 2 q^{79} + 6 q^{81} + 8 q^{87}+ \cdots - 34 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) − 0.554958i − 0.248185i −0.992271 0.124092i \(-0.960398\pi\)
0.992271 0.124092i \(-0.0396019\pi\)
\(6\) 0 0
\(7\) 1.04892i 0.396453i 0.980156 + 0.198227i \(0.0635182\pi\)
−0.980156 + 0.198227i \(0.936482\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) − 2.91185i − 0.877957i −0.898498 0.438979i \(-0.855340\pi\)
0.898498 0.438979i \(-0.144660\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0.554958i 0.143290i
\(16\) 0 0
\(17\) −2.75302 −0.667706 −0.333853 0.942625i \(-0.608349\pi\)
−0.333853 + 0.942625i \(0.608349\pi\)
\(18\) 0 0
\(19\) 4.63102i 1.06243i 0.847237 + 0.531215i \(0.178264\pi\)
−0.847237 + 0.531215i \(0.821736\pi\)
\(20\) 0 0
\(21\) − 1.04892i − 0.228893i
\(22\) 0 0
\(23\) 5.76271 1.20161 0.600804 0.799396i \(-0.294847\pi\)
0.600804 + 0.799396i \(0.294847\pi\)
\(24\) 0 0
\(25\) 4.69202 0.938404
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.80194 −0.520307 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(30\) 0 0
\(31\) − 4.18598i − 0.751824i −0.926655 0.375912i \(-0.877329\pi\)
0.926655 0.375912i \(-0.122671\pi\)
\(32\) 0 0
\(33\) 2.91185i 0.506889i
\(34\) 0 0
\(35\) 0.582105 0.0983937
\(36\) 0 0
\(37\) − 0.466812i − 0.0767434i −0.999264 0.0383717i \(-0.987783\pi\)
0.999264 0.0383717i \(-0.0122171\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 3.89977i − 0.609042i −0.952506 0.304521i \(-0.901504\pi\)
0.952506 0.304521i \(-0.0984964\pi\)
\(42\) 0 0
\(43\) −9.19567 −1.40233 −0.701163 0.713001i \(-0.747336\pi\)
−0.701163 + 0.713001i \(0.747336\pi\)
\(44\) 0 0
\(45\) − 0.554958i − 0.0827283i
\(46\) 0 0
\(47\) − 11.5211i − 1.68053i −0.542179 0.840263i \(-0.682401\pi\)
0.542179 0.840263i \(-0.317599\pi\)
\(48\) 0 0
\(49\) 5.89977 0.842825
\(50\) 0 0
\(51\) 2.75302 0.385500
\(52\) 0 0
\(53\) 5.62565 0.772742 0.386371 0.922343i \(-0.373728\pi\)
0.386371 + 0.922343i \(0.373728\pi\)
\(54\) 0 0
\(55\) −1.61596 −0.217896
\(56\) 0 0
\(57\) − 4.63102i − 0.613394i
\(58\) 0 0
\(59\) − 3.10992i − 0.404877i −0.979295 0.202438i \(-0.935113\pi\)
0.979295 0.202438i \(-0.0648866\pi\)
\(60\) 0 0
\(61\) 10.9051 1.39626 0.698131 0.715970i \(-0.254015\pi\)
0.698131 + 0.715970i \(0.254015\pi\)
\(62\) 0 0
\(63\) 1.04892i 0.132151i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.04892i 0.983332i 0.870784 + 0.491666i \(0.163612\pi\)
−0.870784 + 0.491666i \(0.836388\pi\)
\(68\) 0 0
\(69\) −5.76271 −0.693749
\(70\) 0 0
\(71\) 13.6920i 1.62494i 0.583000 + 0.812472i \(0.301879\pi\)
−0.583000 + 0.812472i \(0.698121\pi\)
\(72\) 0 0
\(73\) − 9.36658i − 1.09628i −0.836388 0.548138i \(-0.815337\pi\)
0.836388 0.548138i \(-0.184663\pi\)
\(74\) 0 0
\(75\) −4.69202 −0.541788
\(76\) 0 0
\(77\) 3.05429 0.348069
\(78\) 0 0
\(79\) −3.60925 −0.406073 −0.203036 0.979171i \(-0.565081\pi\)
−0.203036 + 0.979171i \(0.565081\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.65519i 0.181680i 0.995865 + 0.0908401i \(0.0289552\pi\)
−0.995865 + 0.0908401i \(0.971045\pi\)
\(84\) 0 0
\(85\) 1.52781i 0.165714i
\(86\) 0 0
\(87\) 2.80194 0.300399
\(88\) 0 0
\(89\) − 17.9705i − 1.90486i −0.304750 0.952432i \(-0.598573\pi\)
0.304750 0.952432i \(-0.401427\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.18598i 0.434066i
\(94\) 0 0
\(95\) 2.57002 0.263679
\(96\) 0 0
\(97\) − 1.31767i − 0.133789i −0.997760 0.0668944i \(-0.978691\pi\)
0.997760 0.0668944i \(-0.0213091\pi\)
\(98\) 0 0
\(99\) − 2.91185i − 0.292652i
\(100\) 0 0
\(101\) 15.0248 1.49502 0.747509 0.664251i \(-0.231249\pi\)
0.747509 + 0.664251i \(0.231249\pi\)
\(102\) 0 0
\(103\) 9.20775 0.907267 0.453633 0.891188i \(-0.350128\pi\)
0.453633 + 0.891188i \(0.350128\pi\)
\(104\) 0 0
\(105\) −0.582105 −0.0568077
\(106\) 0 0
\(107\) 7.22952 0.698904 0.349452 0.936954i \(-0.386368\pi\)
0.349452 + 0.936954i \(0.386368\pi\)
\(108\) 0 0
\(109\) − 15.5036i − 1.48498i −0.669857 0.742490i \(-0.733645\pi\)
0.669857 0.742490i \(-0.266355\pi\)
\(110\) 0 0
\(111\) 0.466812i 0.0443078i
\(112\) 0 0
\(113\) 13.8267 1.30071 0.650353 0.759632i \(-0.274621\pi\)
0.650353 + 0.759632i \(0.274621\pi\)
\(114\) 0 0
\(115\) − 3.19806i − 0.298221i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 2.88769i − 0.264714i
\(120\) 0 0
\(121\) 2.52111 0.229191
\(122\) 0 0
\(123\) 3.89977i 0.351631i
\(124\) 0 0
\(125\) − 5.37867i − 0.481083i
\(126\) 0 0
\(127\) −7.17629 −0.636793 −0.318396 0.947958i \(-0.603144\pi\)
−0.318396 + 0.947958i \(0.603144\pi\)
\(128\) 0 0
\(129\) 9.19567 0.809634
\(130\) 0 0
\(131\) 13.1304 1.14720 0.573602 0.819134i \(-0.305545\pi\)
0.573602 + 0.819134i \(0.305545\pi\)
\(132\) 0 0
\(133\) −4.85756 −0.421204
\(134\) 0 0
\(135\) 0.554958i 0.0477632i
\(136\) 0 0
\(137\) − 21.8116i − 1.86349i −0.363109 0.931747i \(-0.618285\pi\)
0.363109 0.931747i \(-0.381715\pi\)
\(138\) 0 0
\(139\) −2.96615 −0.251585 −0.125793 0.992057i \(-0.540147\pi\)
−0.125793 + 0.992057i \(0.540147\pi\)
\(140\) 0 0
\(141\) 11.5211i 0.970252i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.55496i 0.129132i
\(146\) 0 0
\(147\) −5.89977 −0.486605
\(148\) 0 0
\(149\) − 5.69633i − 0.466662i −0.972397 0.233331i \(-0.925037\pi\)
0.972397 0.233331i \(-0.0749625\pi\)
\(150\) 0 0
\(151\) − 19.1468i − 1.55814i −0.626937 0.779070i \(-0.715691\pi\)
0.626937 0.779070i \(-0.284309\pi\)
\(152\) 0 0
\(153\) −2.75302 −0.222569
\(154\) 0 0
\(155\) −2.32304 −0.186591
\(156\) 0 0
\(157\) −8.38404 −0.669119 −0.334560 0.942375i \(-0.608588\pi\)
−0.334560 + 0.942375i \(0.608588\pi\)
\(158\) 0 0
\(159\) −5.62565 −0.446143
\(160\) 0 0
\(161\) 6.04461i 0.476382i
\(162\) 0 0
\(163\) 1.97046i 0.154338i 0.997018 + 0.0771692i \(0.0245882\pi\)
−0.997018 + 0.0771692i \(0.975412\pi\)
\(164\) 0 0
\(165\) 1.61596 0.125802
\(166\) 0 0
\(167\) − 24.7995i − 1.91905i −0.281630 0.959523i \(-0.590875\pi\)
0.281630 0.959523i \(-0.409125\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 4.63102i 0.354143i
\(172\) 0 0
\(173\) 2.57135 0.195496 0.0977481 0.995211i \(-0.468836\pi\)
0.0977481 + 0.995211i \(0.468836\pi\)
\(174\) 0 0
\(175\) 4.92154i 0.372034i
\(176\) 0 0
\(177\) 3.10992i 0.233756i
\(178\) 0 0
\(179\) 3.00538 0.224632 0.112316 0.993673i \(-0.464173\pi\)
0.112316 + 0.993673i \(0.464173\pi\)
\(180\) 0 0
\(181\) 14.6843 1.09147 0.545736 0.837957i \(-0.316250\pi\)
0.545736 + 0.837957i \(0.316250\pi\)
\(182\) 0 0
\(183\) −10.9051 −0.806132
\(184\) 0 0
\(185\) −0.259061 −0.0190466
\(186\) 0 0
\(187\) 8.01639i 0.586217i
\(188\) 0 0
\(189\) − 1.04892i − 0.0762975i
\(190\) 0 0
\(191\) −17.0804 −1.23589 −0.617946 0.786220i \(-0.712035\pi\)
−0.617946 + 0.786220i \(0.712035\pi\)
\(192\) 0 0
\(193\) 14.9758i 1.07798i 0.842311 + 0.538992i \(0.181195\pi\)
−0.842311 + 0.538992i \(0.818805\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.192685i 0.0137283i 0.999976 + 0.00686414i \(0.00218494\pi\)
−0.999976 + 0.00686414i \(0.997815\pi\)
\(198\) 0 0
\(199\) −11.8726 −0.841628 −0.420814 0.907147i \(-0.638256\pi\)
−0.420814 + 0.907147i \(0.638256\pi\)
\(200\) 0 0
\(201\) − 8.04892i − 0.567727i
\(202\) 0 0
\(203\) − 2.93900i − 0.206277i
\(204\) 0 0
\(205\) −2.16421 −0.151155
\(206\) 0 0
\(207\) 5.76271 0.400536
\(208\) 0 0
\(209\) 13.4849 0.932767
\(210\) 0 0
\(211\) 6.03385 0.415387 0.207694 0.978194i \(-0.433404\pi\)
0.207694 + 0.978194i \(0.433404\pi\)
\(212\) 0 0
\(213\) − 13.6920i − 0.938162i
\(214\) 0 0
\(215\) 5.10321i 0.348036i
\(216\) 0 0
\(217\) 4.39075 0.298063
\(218\) 0 0
\(219\) 9.36658i 0.632935i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 8.52648i 0.570976i 0.958382 + 0.285488i \(0.0921556\pi\)
−0.958382 + 0.285488i \(0.907844\pi\)
\(224\) 0 0
\(225\) 4.69202 0.312801
\(226\) 0 0
\(227\) 11.0000i 0.730096i 0.930989 + 0.365048i \(0.118947\pi\)
−0.930989 + 0.365048i \(0.881053\pi\)
\(228\) 0 0
\(229\) 17.9119i 1.18365i 0.806067 + 0.591824i \(0.201592\pi\)
−0.806067 + 0.591824i \(0.798408\pi\)
\(230\) 0 0
\(231\) −3.05429 −0.200958
\(232\) 0 0
\(233\) −22.8159 −1.49472 −0.747361 0.664418i \(-0.768679\pi\)
−0.747361 + 0.664418i \(0.768679\pi\)
\(234\) 0 0
\(235\) −6.39373 −0.417081
\(236\) 0 0
\(237\) 3.60925 0.234446
\(238\) 0 0
\(239\) 8.34481i 0.539781i 0.962891 + 0.269891i \(0.0869875\pi\)
−0.962891 + 0.269891i \(0.913012\pi\)
\(240\) 0 0
\(241\) 3.75541i 0.241907i 0.992658 + 0.120954i \(0.0385953\pi\)
−0.992658 + 0.120954i \(0.961405\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) − 3.27413i − 0.209176i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) − 1.65519i − 0.104893i
\(250\) 0 0
\(251\) 30.3086 1.91306 0.956530 0.291634i \(-0.0941989\pi\)
0.956530 + 0.291634i \(0.0941989\pi\)
\(252\) 0 0
\(253\) − 16.7802i − 1.05496i
\(254\) 0 0
\(255\) − 1.52781i − 0.0956752i
\(256\) 0 0
\(257\) 20.8412 1.30004 0.650018 0.759919i \(-0.274761\pi\)
0.650018 + 0.759919i \(0.274761\pi\)
\(258\) 0 0
\(259\) 0.489647 0.0304252
\(260\) 0 0
\(261\) −2.80194 −0.173436
\(262\) 0 0
\(263\) 8.58642 0.529461 0.264731 0.964322i \(-0.414717\pi\)
0.264731 + 0.964322i \(0.414717\pi\)
\(264\) 0 0
\(265\) − 3.12200i − 0.191783i
\(266\) 0 0
\(267\) 17.9705i 1.09977i
\(268\) 0 0
\(269\) 14.8267 0.903999 0.452000 0.892018i \(-0.350711\pi\)
0.452000 + 0.892018i \(0.350711\pi\)
\(270\) 0 0
\(271\) 7.23490i 0.439489i 0.975557 + 0.219744i \(0.0705223\pi\)
−0.975557 + 0.219744i \(0.929478\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 13.6625i − 0.823879i
\(276\) 0 0
\(277\) −11.2054 −0.673265 −0.336632 0.941636i \(-0.609288\pi\)
−0.336632 + 0.941636i \(0.609288\pi\)
\(278\) 0 0
\(279\) − 4.18598i − 0.250608i
\(280\) 0 0
\(281\) 12.3002i 0.733769i 0.930267 + 0.366884i \(0.119576\pi\)
−0.930267 + 0.366884i \(0.880424\pi\)
\(282\) 0 0
\(283\) −24.3521 −1.44758 −0.723791 0.690019i \(-0.757602\pi\)
−0.723791 + 0.690019i \(0.757602\pi\)
\(284\) 0 0
\(285\) −2.57002 −0.152235
\(286\) 0 0
\(287\) 4.09054 0.241457
\(288\) 0 0
\(289\) −9.42088 −0.554169
\(290\) 0 0
\(291\) 1.31767i 0.0772430i
\(292\) 0 0
\(293\) − 6.20237i − 0.362347i −0.983451 0.181173i \(-0.942011\pi\)
0.983451 0.181173i \(-0.0579895\pi\)
\(294\) 0 0
\(295\) −1.72587 −0.100484
\(296\) 0 0
\(297\) 2.91185i 0.168963i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 9.64550i − 0.555957i
\(302\) 0 0
\(303\) −15.0248 −0.863150
\(304\) 0 0
\(305\) − 6.05190i − 0.346531i
\(306\) 0 0
\(307\) 26.4795i 1.51126i 0.654996 + 0.755632i \(0.272670\pi\)
−0.654996 + 0.755632i \(0.727330\pi\)
\(308\) 0 0
\(309\) −9.20775 −0.523811
\(310\) 0 0
\(311\) −15.5308 −0.880671 −0.440335 0.897833i \(-0.645140\pi\)
−0.440335 + 0.897833i \(0.645140\pi\)
\(312\) 0 0
\(313\) 16.9681 0.959092 0.479546 0.877517i \(-0.340801\pi\)
0.479546 + 0.877517i \(0.340801\pi\)
\(314\) 0 0
\(315\) 0.582105 0.0327979
\(316\) 0 0
\(317\) 25.5066i 1.43260i 0.697795 + 0.716298i \(0.254165\pi\)
−0.697795 + 0.716298i \(0.745835\pi\)
\(318\) 0 0
\(319\) 8.15883i 0.456807i
\(320\) 0 0
\(321\) −7.22952 −0.403513
\(322\) 0 0
\(323\) − 12.7493i − 0.709390i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 15.5036i 0.857354i
\(328\) 0 0
\(329\) 12.0847 0.666250
\(330\) 0 0
\(331\) 10.6136i 0.583374i 0.956514 + 0.291687i \(0.0942166\pi\)
−0.956514 + 0.291687i \(0.905783\pi\)
\(332\) 0 0
\(333\) − 0.466812i − 0.0255811i
\(334\) 0 0
\(335\) 4.46681 0.244048
\(336\) 0 0
\(337\) −29.2717 −1.59453 −0.797266 0.603628i \(-0.793721\pi\)
−0.797266 + 0.603628i \(0.793721\pi\)
\(338\) 0 0
\(339\) −13.8267 −0.750963
\(340\) 0 0
\(341\) −12.1890 −0.660069
\(342\) 0 0
\(343\) 13.5308i 0.730594i
\(344\) 0 0
\(345\) 3.19806i 0.172178i
\(346\) 0 0
\(347\) −34.8146 −1.86895 −0.934473 0.356034i \(-0.884129\pi\)
−0.934473 + 0.356034i \(0.884129\pi\)
\(348\) 0 0
\(349\) 30.1957i 1.61634i 0.588951 + 0.808169i \(0.299541\pi\)
−0.588951 + 0.808169i \(0.700459\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 24.9691i − 1.32897i −0.747300 0.664486i \(-0.768650\pi\)
0.747300 0.664486i \(-0.231350\pi\)
\(354\) 0 0
\(355\) 7.59850 0.403286
\(356\) 0 0
\(357\) 2.88769i 0.152833i
\(358\) 0 0
\(359\) 14.1661i 0.747660i 0.927497 + 0.373830i \(0.121956\pi\)
−0.927497 + 0.373830i \(0.878044\pi\)
\(360\) 0 0
\(361\) −2.44637 −0.128756
\(362\) 0 0
\(363\) −2.52111 −0.132324
\(364\) 0 0
\(365\) −5.19806 −0.272079
\(366\) 0 0
\(367\) 8.78687 0.458671 0.229335 0.973347i \(-0.426345\pi\)
0.229335 + 0.973347i \(0.426345\pi\)
\(368\) 0 0
\(369\) − 3.89977i − 0.203014i
\(370\) 0 0
\(371\) 5.90084i 0.306356i
\(372\) 0 0
\(373\) −18.3260 −0.948886 −0.474443 0.880286i \(-0.657350\pi\)
−0.474443 + 0.880286i \(0.657350\pi\)
\(374\) 0 0
\(375\) 5.37867i 0.277753i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 4.77586i − 0.245319i −0.992449 0.122660i \(-0.960858\pi\)
0.992449 0.122660i \(-0.0391423\pi\)
\(380\) 0 0
\(381\) 7.17629 0.367653
\(382\) 0 0
\(383\) 6.19029i 0.316309i 0.987414 + 0.158155i \(0.0505544\pi\)
−0.987414 + 0.158155i \(0.949446\pi\)
\(384\) 0 0
\(385\) − 1.69501i − 0.0863855i
\(386\) 0 0
\(387\) −9.19567 −0.467442
\(388\) 0 0
\(389\) −24.8780 −1.26136 −0.630682 0.776041i \(-0.717225\pi\)
−0.630682 + 0.776041i \(0.717225\pi\)
\(390\) 0 0
\(391\) −15.8649 −0.802320
\(392\) 0 0
\(393\) −13.1304 −0.662339
\(394\) 0 0
\(395\) 2.00298i 0.100781i
\(396\) 0 0
\(397\) 4.62027i 0.231885i 0.993256 + 0.115942i \(0.0369888\pi\)
−0.993256 + 0.115942i \(0.963011\pi\)
\(398\) 0 0
\(399\) 4.85756 0.243182
\(400\) 0 0
\(401\) 1.64848i 0.0823212i 0.999153 + 0.0411606i \(0.0131055\pi\)
−0.999153 + 0.0411606i \(0.986894\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 0.554958i − 0.0275761i
\(406\) 0 0
\(407\) −1.35929 −0.0673774
\(408\) 0 0
\(409\) − 34.8049i − 1.72099i −0.509457 0.860496i \(-0.670154\pi\)
0.509457 0.860496i \(-0.329846\pi\)
\(410\) 0 0
\(411\) 21.8116i 1.07589i
\(412\) 0 0
\(413\) 3.26205 0.160515
\(414\) 0 0
\(415\) 0.918559 0.0450903
\(416\) 0 0
\(417\) 2.96615 0.145253
\(418\) 0 0
\(419\) 21.6353 1.05696 0.528478 0.848947i \(-0.322763\pi\)
0.528478 + 0.848947i \(0.322763\pi\)
\(420\) 0 0
\(421\) − 35.1008i − 1.71071i −0.518043 0.855355i \(-0.673339\pi\)
0.518043 0.855355i \(-0.326661\pi\)
\(422\) 0 0
\(423\) − 11.5211i − 0.560175i
\(424\) 0 0
\(425\) −12.9172 −0.626578
\(426\) 0 0
\(427\) 11.4386i 0.553553i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 20.0925i − 0.967820i −0.875118 0.483910i \(-0.839216\pi\)
0.875118 0.483910i \(-0.160784\pi\)
\(432\) 0 0
\(433\) 18.6939 0.898373 0.449187 0.893438i \(-0.351714\pi\)
0.449187 + 0.893438i \(0.351714\pi\)
\(434\) 0 0
\(435\) − 1.55496i − 0.0745545i
\(436\) 0 0
\(437\) 26.6872i 1.27662i
\(438\) 0 0
\(439\) −1.35019 −0.0644411 −0.0322206 0.999481i \(-0.510258\pi\)
−0.0322206 + 0.999481i \(0.510258\pi\)
\(440\) 0 0
\(441\) 5.89977 0.280942
\(442\) 0 0
\(443\) −0.400436 −0.0190253 −0.00951265 0.999955i \(-0.503028\pi\)
−0.00951265 + 0.999955i \(0.503028\pi\)
\(444\) 0 0
\(445\) −9.97285 −0.472759
\(446\) 0 0
\(447\) 5.69633i 0.269427i
\(448\) 0 0
\(449\) − 35.7904i − 1.68906i −0.535512 0.844528i \(-0.679881\pi\)
0.535512 0.844528i \(-0.320119\pi\)
\(450\) 0 0
\(451\) −11.3556 −0.534713
\(452\) 0 0
\(453\) 19.1468i 0.899593i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.17092i 0.241885i 0.992660 + 0.120943i \(0.0385917\pi\)
−0.992660 + 0.120943i \(0.961408\pi\)
\(458\) 0 0
\(459\) 2.75302 0.128500
\(460\) 0 0
\(461\) − 20.8780i − 0.972386i −0.873852 0.486193i \(-0.838385\pi\)
0.873852 0.486193i \(-0.161615\pi\)
\(462\) 0 0
\(463\) 30.7198i 1.42767i 0.700315 + 0.713834i \(0.253043\pi\)
−0.700315 + 0.713834i \(0.746957\pi\)
\(464\) 0 0
\(465\) 2.32304 0.107729
\(466\) 0 0
\(467\) −15.2741 −0.706802 −0.353401 0.935472i \(-0.614975\pi\)
−0.353401 + 0.935472i \(0.614975\pi\)
\(468\) 0 0
\(469\) −8.44265 −0.389845
\(470\) 0 0
\(471\) 8.38404 0.386316
\(472\) 0 0
\(473\) 26.7764i 1.23118i
\(474\) 0 0
\(475\) 21.7289i 0.996988i
\(476\) 0 0
\(477\) 5.62565 0.257581
\(478\) 0 0
\(479\) − 3.05861i − 0.139751i −0.997556 0.0698756i \(-0.977740\pi\)
0.997556 0.0698756i \(-0.0222602\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 6.04461i − 0.275039i
\(484\) 0 0
\(485\) −0.731250 −0.0332044
\(486\) 0 0
\(487\) 15.1521i 0.686608i 0.939224 + 0.343304i \(0.111546\pi\)
−0.939224 + 0.343304i \(0.888454\pi\)
\(488\) 0 0
\(489\) − 1.97046i − 0.0891073i
\(490\) 0 0
\(491\) −23.4795 −1.05961 −0.529807 0.848118i \(-0.677736\pi\)
−0.529807 + 0.848118i \(0.677736\pi\)
\(492\) 0 0
\(493\) 7.71379 0.347412
\(494\) 0 0
\(495\) −1.61596 −0.0726319
\(496\) 0 0
\(497\) −14.3618 −0.644215
\(498\) 0 0
\(499\) 38.0689i 1.70420i 0.523381 + 0.852099i \(0.324670\pi\)
−0.523381 + 0.852099i \(0.675330\pi\)
\(500\) 0 0
\(501\) 24.7995i 1.10796i
\(502\) 0 0
\(503\) −11.1274 −0.496145 −0.248073 0.968741i \(-0.579797\pi\)
−0.248073 + 0.968741i \(0.579797\pi\)
\(504\) 0 0
\(505\) − 8.33811i − 0.371041i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 26.7633i 1.18626i 0.805106 + 0.593131i \(0.202108\pi\)
−0.805106 + 0.593131i \(0.797892\pi\)
\(510\) 0 0
\(511\) 9.82477 0.434622
\(512\) 0 0
\(513\) − 4.63102i − 0.204465i
\(514\) 0 0
\(515\) − 5.10992i − 0.225170i
\(516\) 0 0
\(517\) −33.5478 −1.47543
\(518\) 0 0
\(519\) −2.57135 −0.112870
\(520\) 0 0
\(521\) 20.5797 0.901614 0.450807 0.892622i \(-0.351136\pi\)
0.450807 + 0.892622i \(0.351136\pi\)
\(522\) 0 0
\(523\) −6.77479 −0.296241 −0.148120 0.988969i \(-0.547322\pi\)
−0.148120 + 0.988969i \(0.547322\pi\)
\(524\) 0 0
\(525\) − 4.92154i − 0.214794i
\(526\) 0 0
\(527\) 11.5241i 0.501997i
\(528\) 0 0
\(529\) 10.2088 0.443862
\(530\) 0 0
\(531\) − 3.10992i − 0.134959i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 4.01208i − 0.173457i
\(536\) 0 0
\(537\) −3.00538 −0.129692
\(538\) 0 0
\(539\) − 17.1793i − 0.739964i
\(540\) 0 0
\(541\) − 1.94331i − 0.0835495i −0.999127 0.0417748i \(-0.986699\pi\)
0.999127 0.0417748i \(-0.0133012\pi\)
\(542\) 0 0
\(543\) −14.6843 −0.630162
\(544\) 0 0
\(545\) −8.60388 −0.368550
\(546\) 0 0
\(547\) −39.1323 −1.67318 −0.836588 0.547833i \(-0.815453\pi\)
−0.836588 + 0.547833i \(0.815453\pi\)
\(548\) 0 0
\(549\) 10.9051 0.465420
\(550\) 0 0
\(551\) − 12.9758i − 0.552789i
\(552\) 0 0
\(553\) − 3.78581i − 0.160989i
\(554\) 0 0
\(555\) 0.259061 0.0109965
\(556\) 0 0
\(557\) 24.4989i 1.03805i 0.854759 + 0.519025i \(0.173705\pi\)
−0.854759 + 0.519025i \(0.826295\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) − 8.01639i − 0.338452i
\(562\) 0 0
\(563\) 21.8267 0.919885 0.459943 0.887949i \(-0.347870\pi\)
0.459943 + 0.887949i \(0.347870\pi\)
\(564\) 0 0
\(565\) − 7.67324i − 0.322815i
\(566\) 0 0
\(567\) 1.04892i 0.0440504i
\(568\) 0 0
\(569\) 11.5627 0.484735 0.242367 0.970185i \(-0.422076\pi\)
0.242367 + 0.970185i \(0.422076\pi\)
\(570\) 0 0
\(571\) −24.7614 −1.03623 −0.518116 0.855310i \(-0.673366\pi\)
−0.518116 + 0.855310i \(0.673366\pi\)
\(572\) 0 0
\(573\) 17.0804 0.713543
\(574\) 0 0
\(575\) 27.0388 1.12759
\(576\) 0 0
\(577\) 13.5090i 0.562388i 0.959651 + 0.281194i \(0.0907304\pi\)
−0.959651 + 0.281194i \(0.909270\pi\)
\(578\) 0 0
\(579\) − 14.9758i − 0.622375i
\(580\) 0 0
\(581\) −1.73615 −0.0720278
\(582\) 0 0
\(583\) − 16.3811i − 0.678434i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 6.70304i − 0.276664i −0.990386 0.138332i \(-0.955826\pi\)
0.990386 0.138332i \(-0.0441741\pi\)
\(588\) 0 0
\(589\) 19.3854 0.798760
\(590\) 0 0
\(591\) − 0.192685i − 0.00792602i
\(592\) 0 0
\(593\) 16.0194i 0.657837i 0.944358 + 0.328918i \(0.106684\pi\)
−0.944358 + 0.328918i \(0.893316\pi\)
\(594\) 0 0
\(595\) −1.60255 −0.0656980
\(596\) 0 0
\(597\) 11.8726 0.485914
\(598\) 0 0
\(599\) 19.8243 0.809999 0.404999 0.914317i \(-0.367272\pi\)
0.404999 + 0.914317i \(0.367272\pi\)
\(600\) 0 0
\(601\) 29.1909 1.19072 0.595360 0.803459i \(-0.297009\pi\)
0.595360 + 0.803459i \(0.297009\pi\)
\(602\) 0 0
\(603\) 8.04892i 0.327777i
\(604\) 0 0
\(605\) − 1.39911i − 0.0568818i
\(606\) 0 0
\(607\) −6.36227 −0.258237 −0.129118 0.991629i \(-0.541215\pi\)
−0.129118 + 0.991629i \(0.541215\pi\)
\(608\) 0 0
\(609\) 2.93900i 0.119094i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 30.7711i 1.24283i 0.783481 + 0.621416i \(0.213442\pi\)
−0.783481 + 0.621416i \(0.786558\pi\)
\(614\) 0 0
\(615\) 2.16421 0.0872694
\(616\) 0 0
\(617\) 12.0242i 0.484075i 0.970267 + 0.242037i \(0.0778156\pi\)
−0.970267 + 0.242037i \(0.922184\pi\)
\(618\) 0 0
\(619\) − 9.02715i − 0.362832i −0.983406 0.181416i \(-0.941932\pi\)
0.983406 0.181416i \(-0.0580680\pi\)
\(620\) 0 0
\(621\) −5.76271 −0.231250
\(622\) 0 0
\(623\) 18.8495 0.755190
\(624\) 0 0
\(625\) 20.4752 0.819007
\(626\) 0 0
\(627\) −13.4849 −0.538533
\(628\) 0 0
\(629\) 1.28514i 0.0512420i
\(630\) 0 0
\(631\) − 15.5526i − 0.619138i −0.950877 0.309569i \(-0.899815\pi\)
0.950877 0.309569i \(-0.100185\pi\)
\(632\) 0 0
\(633\) −6.03385 −0.239824
\(634\) 0 0
\(635\) 3.98254i 0.158042i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 13.6920i 0.541648i
\(640\) 0 0
\(641\) 19.4209 0.767079 0.383539 0.923525i \(-0.374705\pi\)
0.383539 + 0.923525i \(0.374705\pi\)
\(642\) 0 0
\(643\) − 26.8267i − 1.05794i −0.848640 0.528971i \(-0.822578\pi\)
0.848640 0.528971i \(-0.177422\pi\)
\(644\) 0 0
\(645\) − 5.10321i − 0.200939i
\(646\) 0 0
\(647\) −5.08815 −0.200036 −0.100018 0.994986i \(-0.531890\pi\)
−0.100018 + 0.994986i \(0.531890\pi\)
\(648\) 0 0
\(649\) −9.05562 −0.355464
\(650\) 0 0
\(651\) −4.39075 −0.172087
\(652\) 0 0
\(653\) −19.7157 −0.771535 −0.385768 0.922596i \(-0.626063\pi\)
−0.385768 + 0.922596i \(0.626063\pi\)
\(654\) 0 0
\(655\) − 7.28680i − 0.284719i
\(656\) 0 0
\(657\) − 9.36658i − 0.365425i
\(658\) 0 0
\(659\) 9.42519 0.367153 0.183577 0.983005i \(-0.441232\pi\)
0.183577 + 0.983005i \(0.441232\pi\)
\(660\) 0 0
\(661\) 29.9946i 1.16666i 0.812237 + 0.583328i \(0.198250\pi\)
−0.812237 + 0.583328i \(0.801750\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.69574i 0.104536i
\(666\) 0 0
\(667\) −16.1468 −0.625205
\(668\) 0 0
\(669\) − 8.52648i − 0.329653i
\(670\) 0 0
\(671\) − 31.7542i − 1.22586i
\(672\) 0 0
\(673\) 47.7294 1.83984 0.919918 0.392112i \(-0.128255\pi\)
0.919918 + 0.392112i \(0.128255\pi\)
\(674\) 0 0
\(675\) −4.69202 −0.180596
\(676\) 0 0
\(677\) −42.9124 −1.64926 −0.824630 0.565673i \(-0.808616\pi\)
−0.824630 + 0.565673i \(0.808616\pi\)
\(678\) 0 0
\(679\) 1.38212 0.0530411
\(680\) 0 0
\(681\) − 11.0000i − 0.421521i
\(682\) 0 0
\(683\) − 0.970460i − 0.0371336i −0.999828 0.0185668i \(-0.994090\pi\)
0.999828 0.0185668i \(-0.00591034\pi\)
\(684\) 0 0
\(685\) −12.1045 −0.462491
\(686\) 0 0
\(687\) − 17.9119i − 0.683380i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.16660i 0.0443797i 0.999754 + 0.0221898i \(0.00706383\pi\)
−0.999754 + 0.0221898i \(0.992936\pi\)
\(692\) 0 0
\(693\) 3.05429 0.116023
\(694\) 0 0
\(695\) 1.64609i 0.0624397i
\(696\) 0 0
\(697\) 10.7362i 0.406661i
\(698\) 0 0
\(699\) 22.8159 0.862978
\(700\) 0 0
\(701\) 17.3274 0.654445 0.327223 0.944947i \(-0.393887\pi\)
0.327223 + 0.944947i \(0.393887\pi\)
\(702\) 0 0
\(703\) 2.16182 0.0815345
\(704\) 0 0
\(705\) 6.39373 0.240802
\(706\) 0 0
\(707\) 15.7597i 0.592705i
\(708\) 0 0
\(709\) − 16.4601i − 0.618172i −0.951034 0.309086i \(-0.899977\pi\)
0.951034 0.309086i \(-0.100023\pi\)
\(710\) 0 0
\(711\) −3.60925 −0.135358
\(712\) 0 0
\(713\) − 24.1226i − 0.903398i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 8.34481i − 0.311643i
\(718\) 0 0
\(719\) −14.1715 −0.528508 −0.264254 0.964453i \(-0.585126\pi\)
−0.264254 + 0.964453i \(0.585126\pi\)
\(720\) 0 0
\(721\) 9.65817i 0.359689i
\(722\) 0 0
\(723\) − 3.75541i − 0.139665i
\(724\) 0 0
\(725\) −13.1468 −0.488258
\(726\) 0 0
\(727\) 37.8810 1.40493 0.702464 0.711719i \(-0.252083\pi\)
0.702464 + 0.711719i \(0.252083\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 25.3159 0.936341
\(732\) 0 0
\(733\) 0.377338i 0.0139373i 0.999976 + 0.00696865i \(0.00221821\pi\)
−0.999976 + 0.00696865i \(0.997782\pi\)
\(734\) 0 0
\(735\) 3.27413i 0.120768i
\(736\) 0 0
\(737\) 23.4373 0.863323
\(738\) 0 0
\(739\) − 1.12631i − 0.0414320i −0.999785 0.0207160i \(-0.993405\pi\)
0.999785 0.0207160i \(-0.00659457\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 22.7047i − 0.832954i −0.909146 0.416477i \(-0.863265\pi\)
0.909146 0.416477i \(-0.136735\pi\)
\(744\) 0 0
\(745\) −3.16123 −0.115818
\(746\) 0 0
\(747\) 1.65519i 0.0605601i
\(748\) 0 0
\(749\) 7.58317i 0.277083i
\(750\) 0 0
\(751\) −13.9282 −0.508249 −0.254124 0.967172i \(-0.581787\pi\)
−0.254124 + 0.967172i \(0.581787\pi\)
\(752\) 0 0
\(753\) −30.3086 −1.10451
\(754\) 0 0
\(755\) −10.6256 −0.386707
\(756\) 0 0
\(757\) 1.16660 0.0424009 0.0212005 0.999775i \(-0.493251\pi\)
0.0212005 + 0.999775i \(0.493251\pi\)
\(758\) 0 0
\(759\) 16.7802i 0.609081i
\(760\) 0 0
\(761\) − 0.821789i − 0.0297898i −0.999889 0.0148949i \(-0.995259\pi\)
0.999889 0.0148949i \(-0.00474137\pi\)
\(762\) 0 0
\(763\) 16.2620 0.588726
\(764\) 0 0
\(765\) 1.52781i 0.0552381i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 33.7017i − 1.21531i −0.794199 0.607657i \(-0.792109\pi\)
0.794199 0.607657i \(-0.207891\pi\)
\(770\) 0 0
\(771\) −20.8412 −0.750576
\(772\) 0 0
\(773\) − 0.764037i − 0.0274805i −0.999906 0.0137403i \(-0.995626\pi\)
0.999906 0.0137403i \(-0.00437380\pi\)
\(774\) 0 0
\(775\) − 19.6407i − 0.705515i
\(776\) 0 0
\(777\) −0.489647 −0.0175660
\(778\) 0 0
\(779\) 18.0599 0.647064
\(780\) 0 0
\(781\) 39.8692 1.42663
\(782\) 0 0
\(783\) 2.80194 0.100133
\(784\) 0 0
\(785\) 4.65279i 0.166065i
\(786\) 0 0
\(787\) − 12.1739i − 0.433953i −0.976177 0.216976i \(-0.930381\pi\)
0.976177 0.216976i \(-0.0696194\pi\)
\(788\) 0 0
\(789\) −8.58642 −0.305685
\(790\) 0 0
\(791\) 14.5031i 0.515669i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 3.12200i 0.110726i
\(796\) 0 0
\(797\) −38.2887 −1.35626 −0.678128 0.734944i \(-0.737209\pi\)
−0.678128 + 0.734944i \(0.737209\pi\)
\(798\) 0 0
\(799\) 31.7178i 1.12210i
\(800\) 0 0
\(801\) − 17.9705i − 0.634955i
\(802\) 0 0
\(803\) −27.2741 −0.962483
\(804\) 0 0
\(805\) 3.35450 0.118231
\(806\) 0 0
\(807\) −14.8267 −0.521924
\(808\) 0 0
\(809\) −29.9638 −1.05347 −0.526735 0.850030i \(-0.676584\pi\)
−0.526735 + 0.850030i \(0.676584\pi\)
\(810\) 0 0
\(811\) − 46.3521i − 1.62764i −0.581115 0.813821i \(-0.697383\pi\)
0.581115 0.813821i \(-0.302617\pi\)
\(812\) 0 0
\(813\) − 7.23490i − 0.253739i
\(814\) 0 0
\(815\) 1.09352 0.0383044
\(816\) 0 0
\(817\) − 42.5854i − 1.48987i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 48.3105i 1.68605i 0.537876 + 0.843024i \(0.319227\pi\)
−0.537876 + 0.843024i \(0.680773\pi\)
\(822\) 0 0
\(823\) 5.31229 0.185175 0.0925874 0.995705i \(-0.470486\pi\)
0.0925874 + 0.995705i \(0.470486\pi\)
\(824\) 0 0
\(825\) 13.6625i 0.475667i
\(826\) 0 0
\(827\) − 22.0968i − 0.768380i −0.923254 0.384190i \(-0.874481\pi\)
0.923254 0.384190i \(-0.125519\pi\)
\(828\) 0 0
\(829\) 1.61655 0.0561450 0.0280725 0.999606i \(-0.491063\pi\)
0.0280725 + 0.999606i \(0.491063\pi\)
\(830\) 0 0
\(831\) 11.2054 0.388710
\(832\) 0 0
\(833\) −16.2422 −0.562759
\(834\) 0 0
\(835\) −13.7627 −0.476278
\(836\) 0 0
\(837\) 4.18598i 0.144689i
\(838\) 0 0
\(839\) 41.0823i 1.41832i 0.705048 + 0.709159i \(0.250925\pi\)
−0.705048 + 0.709159i \(0.749075\pi\)
\(840\) 0 0
\(841\) −21.1491 −0.729281
\(842\) 0 0
\(843\) − 12.3002i − 0.423642i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.64443i 0.0908638i
\(848\) 0 0
\(849\) 24.3521 0.835762
\(850\) 0 0
\(851\) − 2.69010i − 0.0922155i
\(852\) 0 0
\(853\) − 35.0441i − 1.19989i −0.800042 0.599944i \(-0.795189\pi\)
0.800042 0.599944i \(-0.204811\pi\)
\(854\) 0 0
\(855\) 2.57002 0.0878930
\(856\) 0 0
\(857\) 3.76079 0.128466 0.0642331 0.997935i \(-0.479540\pi\)
0.0642331 + 0.997935i \(0.479540\pi\)
\(858\) 0 0
\(859\) 7.11662 0.242816 0.121408 0.992603i \(-0.461259\pi\)
0.121408 + 0.992603i \(0.461259\pi\)
\(860\) 0 0
\(861\) −4.09054 −0.139405
\(862\) 0 0
\(863\) − 57.5900i − 1.96039i −0.198044 0.980193i \(-0.563459\pi\)
0.198044 0.980193i \(-0.436541\pi\)
\(864\) 0 0
\(865\) − 1.42699i − 0.0485192i
\(866\) 0 0
\(867\) 9.42088 0.319950
\(868\) 0 0
\(869\) 10.5096i 0.356514i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 1.31767i − 0.0445963i
\(874\) 0 0
\(875\) 5.64178 0.190727
\(876\) 0 0
\(877\) 19.2150i 0.648846i 0.945912 + 0.324423i \(0.105170\pi\)
−0.945912 + 0.324423i \(0.894830\pi\)
\(878\) 0 0
\(879\) 6.20237i 0.209201i
\(880\) 0 0
\(881\) 11.1444 0.375463 0.187731 0.982220i \(-0.439887\pi\)
0.187731 + 0.982220i \(0.439887\pi\)
\(882\) 0 0
\(883\) 4.28919 0.144343 0.0721714 0.997392i \(-0.477007\pi\)
0.0721714 + 0.997392i \(0.477007\pi\)
\(884\) 0 0
\(885\) 1.72587 0.0580146
\(886\) 0 0
\(887\) −33.1739 −1.11387 −0.556935 0.830556i \(-0.688023\pi\)
−0.556935 + 0.830556i \(0.688023\pi\)
\(888\) 0 0
\(889\) − 7.52734i − 0.252459i
\(890\) 0 0
\(891\) − 2.91185i − 0.0975508i
\(892\) 0 0
\(893\) 53.3545 1.78544
\(894\) 0 0
\(895\) − 1.66786i − 0.0557504i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11.7289i 0.391179i
\(900\) 0 0
\(901\) −15.4875 −0.515964
\(902\) 0 0
\(903\) 9.64550i 0.320982i
\(904\) 0 0
\(905\) − 8.14914i − 0.270887i
\(906\) 0 0
\(907\) 40.6282 1.34904 0.674518 0.738259i \(-0.264352\pi\)
0.674518 + 0.738259i \(0.264352\pi\)
\(908\) 0 0
\(909\) 15.0248 0.498340
\(910\) 0 0
\(911\) 46.2731 1.53309 0.766547 0.642188i \(-0.221973\pi\)
0.766547 + 0.642188i \(0.221973\pi\)
\(912\) 0 0
\(913\) 4.81966 0.159507
\(914\) 0 0
\(915\) 6.05190i 0.200070i
\(916\) 0 0
\(917\) 13.7727i 0.454813i
\(918\) 0 0
\(919\) 50.4674 1.66477 0.832383 0.554201i \(-0.186976\pi\)
0.832383 + 0.554201i \(0.186976\pi\)
\(920\) 0 0
\(921\) − 26.4795i − 0.872529i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 2.19029i − 0.0720164i
\(926\) 0 0
\(927\) 9.20775 0.302422
\(928\) 0 0
\(929\) 17.9250i 0.588100i 0.955790 + 0.294050i \(0.0950033\pi\)
−0.955790 + 0.294050i \(0.904997\pi\)
\(930\) 0 0
\(931\) 27.3220i 0.895442i
\(932\) 0 0
\(933\) 15.5308 0.508455
\(934\) 0 0
\(935\) 4.44876 0.145490
\(936\) 0 0
\(937\) 5.85325 0.191217 0.0956086 0.995419i \(-0.469520\pi\)
0.0956086 + 0.995419i \(0.469520\pi\)
\(938\) 0 0
\(939\) −16.9681 −0.553732
\(940\) 0 0
\(941\) − 56.7958i − 1.85149i −0.378147 0.925745i \(-0.623439\pi\)
0.378147 0.925745i \(-0.376561\pi\)
\(942\) 0 0
\(943\) − 22.4733i − 0.731830i
\(944\) 0 0
\(945\) −0.582105 −0.0189359
\(946\) 0 0
\(947\) 6.14974i 0.199840i 0.994995 + 0.0999198i \(0.0318586\pi\)
−0.994995 + 0.0999198i \(0.968141\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 25.5066i − 0.827109i
\(952\) 0 0
\(953\) −48.9778 −1.58655 −0.793273 0.608867i \(-0.791624\pi\)
−0.793273 + 0.608867i \(0.791624\pi\)
\(954\) 0 0
\(955\) 9.47889i 0.306730i
\(956\) 0 0
\(957\) − 8.15883i − 0.263738i
\(958\) 0 0
\(959\) 22.8786 0.738788
\(960\) 0 0
\(961\) 13.4776 0.434760
\(962\) 0 0
\(963\) 7.22952 0.232968
\(964\) 0 0
\(965\) 8.31096 0.267539
\(966\) 0 0
\(967\) 54.2616i 1.74493i 0.488673 + 0.872467i \(0.337481\pi\)
−0.488673 + 0.872467i \(0.662519\pi\)
\(968\) 0 0
\(969\) 12.7493i 0.409567i
\(970\) 0 0
\(971\) −36.3142 −1.16538 −0.582689 0.812695i \(-0.698000\pi\)
−0.582689 + 0.812695i \(0.698000\pi\)
\(972\) 0 0
\(973\) − 3.11124i − 0.0997419i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 49.7375i 1.59124i 0.605794 + 0.795621i \(0.292856\pi\)
−0.605794 + 0.795621i \(0.707144\pi\)
\(978\) 0 0
\(979\) −52.3274 −1.67239
\(980\) 0 0
\(981\) − 15.5036i − 0.494993i
\(982\) 0 0
\(983\) 10.9981i 0.350784i 0.984499 + 0.175392i \(0.0561193\pi\)
−0.984499 + 0.175392i \(0.943881\pi\)
\(984\) 0 0
\(985\) 0.106932 0.00340715
\(986\) 0 0
\(987\) −12.0847 −0.384660
\(988\) 0 0
\(989\) −52.9920 −1.68505
\(990\) 0 0
\(991\) 6.73078 0.213810 0.106905 0.994269i \(-0.465906\pi\)
0.106905 + 0.994269i \(0.465906\pi\)
\(992\) 0 0
\(993\) − 10.6136i − 0.336811i
\(994\) 0 0
\(995\) 6.58881i 0.208879i
\(996\) 0 0
\(997\) 43.3497 1.37290 0.686450 0.727177i \(-0.259168\pi\)
0.686450 + 0.727177i \(0.259168\pi\)
\(998\) 0 0
\(999\) 0.466812i 0.0147693i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.2.b.f.337.3 6
3.2 odd 2 6084.2.b.r.4393.4 6
13.2 odd 12 2028.2.i.l.529.2 6
13.3 even 3 2028.2.q.j.1837.3 12
13.4 even 6 2028.2.q.j.361.4 12
13.5 odd 4 2028.2.a.i.1.2 3
13.6 odd 12 2028.2.i.l.2005.2 6
13.7 odd 12 2028.2.i.m.2005.2 6
13.8 odd 4 2028.2.a.j.1.2 yes 3
13.9 even 3 2028.2.q.j.361.3 12
13.10 even 6 2028.2.q.j.1837.4 12
13.11 odd 12 2028.2.i.m.529.2 6
13.12 even 2 inner 2028.2.b.f.337.4 6
39.5 even 4 6084.2.a.bb.1.2 3
39.8 even 4 6084.2.a.y.1.2 3
39.38 odd 2 6084.2.b.r.4393.3 6
52.31 even 4 8112.2.a.ch.1.2 3
52.47 even 4 8112.2.a.co.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2028.2.a.i.1.2 3 13.5 odd 4
2028.2.a.j.1.2 yes 3 13.8 odd 4
2028.2.b.f.337.3 6 1.1 even 1 trivial
2028.2.b.f.337.4 6 13.12 even 2 inner
2028.2.i.l.529.2 6 13.2 odd 12
2028.2.i.l.2005.2 6 13.6 odd 12
2028.2.i.m.529.2 6 13.11 odd 12
2028.2.i.m.2005.2 6 13.7 odd 12
2028.2.q.j.361.3 12 13.9 even 3
2028.2.q.j.361.4 12 13.4 even 6
2028.2.q.j.1837.3 12 13.3 even 3
2028.2.q.j.1837.4 12 13.10 even 6
6084.2.a.y.1.2 3 39.8 even 4
6084.2.a.bb.1.2 3 39.5 even 4
6084.2.b.r.4393.3 6 39.38 odd 2
6084.2.b.r.4393.4 6 3.2 odd 2
8112.2.a.ch.1.2 3 52.31 even 4
8112.2.a.co.1.2 3 52.47 even 4