Properties

Label 2028.2.i.c.2005.1
Level $2028$
Weight $2$
Character 2028.2005
Analytic conductor $16.194$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2028,2,Mod(529,2028)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2028.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,0,0,2,0,-1,0,0,0,0,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2005.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2028.2005
Dual form 2028.2.i.c.529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(1.00000 - 1.73205i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(3.00000 - 5.19615i) q^{17} +(1.00000 - 1.73205i) q^{19} -2.00000 q^{21} -5.00000 q^{25} +1.00000 q^{27} +(3.00000 + 5.19615i) q^{29} -2.00000 q^{31} +(1.00000 + 1.73205i) q^{37} +(-6.00000 - 10.3923i) q^{41} +(2.00000 - 3.46410i) q^{43} +(1.50000 + 2.59808i) q^{49} -6.00000 q^{51} +6.00000 q^{53} -2.00000 q^{57} +(6.00000 - 10.3923i) q^{59} +(-1.00000 + 1.73205i) q^{61} +(1.00000 + 1.73205i) q^{63} +(-5.00000 - 8.66025i) q^{67} +(6.00000 - 10.3923i) q^{71} -14.0000 q^{73} +(2.50000 + 4.33013i) q^{75} +8.00000 q^{79} +(-0.500000 - 0.866025i) q^{81} -12.0000 q^{83} +(3.00000 - 5.19615i) q^{87} +(1.00000 + 1.73205i) q^{93} +(-5.00000 + 8.66025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 2 q^{7} - q^{9} + 6 q^{17} + 2 q^{19} - 4 q^{21} - 10 q^{25} + 2 q^{27} + 6 q^{29} - 4 q^{31} + 2 q^{37} - 12 q^{41} + 4 q^{43} + 3 q^{49} - 12 q^{51} + 12 q^{53} - 4 q^{57} + 12 q^{59}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 1.00000 1.73205i 0.377964 0.654654i −0.612801 0.790237i \(-0.709957\pi\)
0.990766 + 0.135583i \(0.0432908\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 5.19615i 0.727607 1.26025i −0.230285 0.973123i \(-0.573966\pi\)
0.957892 0.287129i \(-0.0927008\pi\)
\(18\) 0 0
\(19\) 1.00000 1.73205i 0.229416 0.397360i −0.728219 0.685344i \(-0.759652\pi\)
0.957635 + 0.287984i \(0.0929851\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 + 1.73205i 0.164399 + 0.284747i 0.936442 0.350823i \(-0.114098\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 10.3923i −0.937043 1.62301i −0.770950 0.636895i \(-0.780218\pi\)
−0.166092 0.986110i \(-0.553115\pi\)
\(42\) 0 0
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 0 0
\(59\) 6.00000 10.3923i 0.781133 1.35296i −0.150148 0.988663i \(-0.547975\pi\)
0.931282 0.364299i \(-0.118692\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.73205i −0.128037 + 0.221766i −0.922916 0.385002i \(-0.874201\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 0 0
\(63\) 1.00000 + 1.73205i 0.125988 + 0.218218i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.00000 8.66025i −0.610847 1.05802i −0.991098 0.133135i \(-0.957496\pi\)
0.380251 0.924883i \(-0.375838\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 10.3923i 0.712069 1.23334i −0.252010 0.967725i \(-0.581092\pi\)
0.964079 0.265615i \(-0.0855750\pi\)
\(72\) 0 0
\(73\) −14.0000 −1.63858 −0.819288 0.573382i \(-0.805631\pi\)
−0.819288 + 0.573382i \(0.805631\pi\)
\(74\) 0 0
\(75\) 2.50000 + 4.33013i 0.288675 + 0.500000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.00000 5.19615i 0.321634 0.557086i
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.00000 + 1.73205i 0.103695 + 0.179605i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.00000 + 8.66025i −0.507673 + 0.879316i 0.492287 + 0.870433i \(0.336161\pi\)
−0.999961 + 0.00888289i \(0.997172\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.00000 15.5885i −0.895533 1.55111i −0.833143 0.553058i \(-0.813461\pi\)
−0.0623905 0.998052i \(-0.519872\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 + 10.3923i 0.580042 + 1.00466i 0.995474 + 0.0950377i \(0.0302972\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 1.00000 1.73205i 0.0949158 0.164399i
\(112\) 0 0
\(113\) −3.00000 + 5.19615i −0.282216 + 0.488813i −0.971930 0.235269i \(-0.924403\pi\)
0.689714 + 0.724082i \(0.257736\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.00000 10.3923i −0.550019 0.952661i
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 0 0
\(123\) −6.00000 + 10.3923i −0.541002 + 0.937043i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000 + 3.46410i 0.177471 + 0.307389i 0.941014 0.338368i \(-0.109875\pi\)
−0.763542 + 0.645758i \(0.776542\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) −2.00000 3.46410i −0.173422 0.300376i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 + 10.3923i −0.512615 + 0.887875i 0.487278 + 0.873247i \(0.337990\pi\)
−0.999893 + 0.0146279i \(0.995344\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.50000 2.59808i 0.123718 0.214286i
\(148\) 0 0
\(149\) 6.00000 10.3923i 0.491539 0.851371i −0.508413 0.861113i \(-0.669768\pi\)
0.999953 + 0.00974235i \(0.00310113\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 0 0
\(153\) 3.00000 + 5.19615i 0.242536 + 0.420084i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) −3.00000 5.19615i −0.237915 0.412082i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 7.00000 12.1244i 0.548282 0.949653i −0.450110 0.892973i \(-0.648615\pi\)
0.998392 0.0566798i \(-0.0180514\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 20.7846i −0.928588 1.60836i −0.785687 0.618624i \(-0.787690\pi\)
−0.142901 0.989737i \(-0.545643\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 1.00000 + 1.73205i 0.0764719 + 0.132453i
\(172\) 0 0
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 0 0
\(175\) −5.00000 + 8.66025i −0.377964 + 0.654654i
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) −6.00000 10.3923i −0.448461 0.776757i 0.549825 0.835280i \(-0.314694\pi\)
−0.998286 + 0.0585225i \(0.981361\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.00000 1.73205i 0.0727393 0.125988i
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) 1.00000 + 1.73205i 0.0719816 + 0.124676i 0.899770 0.436365i \(-0.143734\pi\)
−0.827788 + 0.561041i \(0.810401\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.0000 20.7846i −0.854965 1.48084i −0.876678 0.481078i \(-0.840245\pi\)
0.0217133 0.999764i \(-0.493088\pi\)
\(198\) 0 0
\(199\) −10.0000 + 17.3205i −0.708881 + 1.22782i 0.256391 + 0.966573i \(0.417466\pi\)
−0.965272 + 0.261245i \(0.915867\pi\)
\(200\) 0 0
\(201\) −5.00000 + 8.66025i −0.352673 + 0.610847i
\(202\) 0 0
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000 + 3.46410i 0.137686 + 0.238479i 0.926620 0.375999i \(-0.122700\pi\)
−0.788935 + 0.614477i \(0.789367\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.00000 + 3.46410i −0.135769 + 0.235159i
\(218\) 0 0
\(219\) 7.00000 + 12.1244i 0.473016 + 0.819288i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 13.0000 + 22.5167i 0.870544 + 1.50783i 0.861435 + 0.507869i \(0.169566\pi\)
0.00910984 + 0.999959i \(0.497100\pi\)
\(224\) 0 0
\(225\) 2.50000 4.33013i 0.166667 0.288675i
\(226\) 0 0
\(227\) 12.0000 20.7846i 0.796468 1.37952i −0.125435 0.992102i \(-0.540033\pi\)
0.921903 0.387421i \(-0.126634\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −4.00000 6.92820i −0.259828 0.450035i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −5.00000 + 8.66025i −0.322078 + 0.557856i −0.980917 0.194429i \(-0.937715\pi\)
0.658838 + 0.752285i \(0.271048\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 6.00000 + 10.3923i 0.380235 + 0.658586i
\(250\) 0 0
\(251\) −6.00000 + 10.3923i −0.378717 + 0.655956i −0.990876 0.134778i \(-0.956968\pi\)
0.612159 + 0.790735i \(0.290301\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.00000 5.19615i −0.187135 0.324127i 0.757159 0.653231i \(-0.226587\pi\)
−0.944294 + 0.329104i \(0.893253\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 12.0000 + 20.7846i 0.739952 + 1.28163i 0.952517 + 0.304487i \(0.0984850\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.00000 + 15.5885i −0.548740 + 0.950445i 0.449622 + 0.893219i \(0.351559\pi\)
−0.998361 + 0.0572259i \(0.981774\pi\)
\(270\) 0 0
\(271\) 13.0000 + 22.5167i 0.789694 + 1.36779i 0.926155 + 0.377144i \(0.123094\pi\)
−0.136461 + 0.990645i \(0.543573\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.00000 8.66025i 0.300421 0.520344i −0.675810 0.737075i \(-0.736206\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 0 0
\(279\) 1.00000 1.73205i 0.0598684 0.103695i
\(280\) 0 0
\(281\) 12.0000 0.715860 0.357930 0.933748i \(-0.383483\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) 0 0
\(283\) 8.00000 + 13.8564i 0.475551 + 0.823678i 0.999608 0.0280052i \(-0.00891551\pi\)
−0.524057 + 0.851683i \(0.675582\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.0000 −1.41668
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 0 0
\(293\) −6.00000 + 10.3923i −0.350524 + 0.607125i −0.986341 0.164714i \(-0.947330\pi\)
0.635818 + 0.771839i \(0.280663\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −4.00000 6.92820i −0.230556 0.399335i
\(302\) 0 0
\(303\) −9.00000 + 15.5885i −0.517036 + 0.895533i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) 0 0
\(309\) 8.00000 + 13.8564i 0.455104 + 0.788263i
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.0000 1.34797 0.673987 0.738743i \(-0.264580\pi\)
0.673987 + 0.738743i \(0.264580\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 6.00000 10.3923i 0.334887 0.580042i
\(322\) 0 0
\(323\) −6.00000 10.3923i −0.333849 0.578243i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.00000 + 12.1244i 0.387101 + 0.670478i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −5.00000 + 8.66025i −0.274825 + 0.476011i −0.970091 0.242742i \(-0.921953\pi\)
0.695266 + 0.718752i \(0.255287\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) −11.0000 19.0526i −0.588817 1.01986i −0.994388 0.105797i \(-0.966261\pi\)
0.405571 0.914063i \(-0.367073\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 + 10.3923i 0.319348 + 0.553127i 0.980352 0.197256i \(-0.0632029\pi\)
−0.661004 + 0.750382i \(0.729870\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.00000 + 10.3923i −0.317554 + 0.550019i
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) 0 0
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −10.0000 17.3205i −0.521996 0.904123i −0.999673 0.0255875i \(-0.991854\pi\)
0.477677 0.878536i \(-0.341479\pi\)
\(368\) 0 0
\(369\) 12.0000 0.624695
\(370\) 0 0
\(371\) 6.00000 10.3923i 0.311504 0.539542i
\(372\) 0 0
\(373\) −7.00000 + 12.1244i −0.362446 + 0.627775i −0.988363 0.152115i \(-0.951392\pi\)
0.625917 + 0.779890i \(0.284725\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 13.0000 + 22.5167i 0.667765 + 1.15660i 0.978528 + 0.206116i \(0.0660823\pi\)
−0.310763 + 0.950488i \(0.600584\pi\)
\(380\) 0 0
\(381\) 2.00000 3.46410i 0.102463 0.177471i
\(382\) 0 0
\(383\) 12.0000 20.7846i 0.613171 1.06204i −0.377531 0.925997i \(-0.623227\pi\)
0.990702 0.136047i \(-0.0434398\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.00000 + 3.46410i 0.101666 + 0.176090i
\(388\) 0 0
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −6.00000 10.3923i −0.302660 0.524222i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −11.0000 + 19.0526i −0.552074 + 0.956221i 0.446051 + 0.895008i \(0.352830\pi\)
−0.998125 + 0.0612128i \(0.980503\pi\)
\(398\) 0 0
\(399\) −2.00000 + 3.46410i −0.100125 + 0.173422i
\(400\) 0 0
\(401\) 12.0000 + 20.7846i 0.599251 + 1.03793i 0.992932 + 0.118686i \(0.0378683\pi\)
−0.393680 + 0.919247i \(0.628798\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −5.00000 + 8.66025i −0.247234 + 0.428222i −0.962757 0.270367i \(-0.912855\pi\)
0.715523 + 0.698589i \(0.246188\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) −12.0000 20.7846i −0.590481 1.02274i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −16.0000 −0.783523
\(418\) 0 0
\(419\) 6.00000 + 10.3923i 0.293119 + 0.507697i 0.974546 0.224189i \(-0.0719734\pi\)
−0.681426 + 0.731887i \(0.738640\pi\)
\(420\) 0 0
\(421\) 34.0000 1.65706 0.828529 0.559946i \(-0.189178\pi\)
0.828529 + 0.559946i \(0.189178\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −15.0000 + 25.9808i −0.727607 + 1.26025i
\(426\) 0 0
\(427\) 2.00000 + 3.46410i 0.0967868 + 0.167640i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 + 20.7846i 0.578020 + 1.00116i 0.995706 + 0.0925683i \(0.0295076\pi\)
−0.417687 + 0.908591i \(0.637159\pi\)
\(432\) 0 0
\(433\) −7.00000 + 12.1244i −0.336399 + 0.582659i −0.983752 0.179530i \(-0.942542\pi\)
0.647354 + 0.762190i \(0.275876\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −4.00000 6.92820i −0.190910 0.330665i 0.754642 0.656136i \(-0.227810\pi\)
−0.945552 + 0.325471i \(0.894477\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −12.0000 −0.567581
\(448\) 0 0
\(449\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −5.00000 8.66025i −0.234920 0.406894i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.0000 + 32.9090i 0.888783 + 1.53942i 0.841316 + 0.540544i \(0.181781\pi\)
0.0474665 + 0.998873i \(0.484885\pi\)
\(458\) 0 0
\(459\) 3.00000 5.19615i 0.140028 0.242536i
\(460\) 0 0
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 0 0
\(463\) 22.0000 1.02243 0.511213 0.859454i \(-0.329196\pi\)
0.511213 + 0.859454i \(0.329196\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) −20.0000 −0.923514
\(470\) 0 0
\(471\) −1.00000 1.73205i −0.0460776 0.0798087i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −5.00000 + 8.66025i −0.229416 + 0.397360i
\(476\) 0 0
\(477\) −3.00000 + 5.19615i −0.137361 + 0.237915i
\(478\) 0 0
\(479\) −6.00000 10.3923i −0.274147 0.474837i 0.695773 0.718262i \(-0.255062\pi\)
−0.969920 + 0.243426i \(0.921729\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1.00000 1.73205i 0.0453143 0.0784867i −0.842479 0.538730i \(-0.818904\pi\)
0.887793 + 0.460243i \(0.152238\pi\)
\(488\) 0 0
\(489\) −14.0000 −0.633102
\(490\) 0 0
\(491\) −6.00000 10.3923i −0.270776 0.468998i 0.698285 0.715820i \(-0.253947\pi\)
−0.969061 + 0.246822i \(0.920614\pi\)
\(492\) 0 0
\(493\) 36.0000 1.62136
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 20.7846i −0.538274 0.932317i
\(498\) 0 0
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 0 0
\(501\) −12.0000 + 20.7846i −0.536120 + 0.928588i
\(502\) 0 0
\(503\) 12.0000 20.7846i 0.535054 0.926740i −0.464107 0.885779i \(-0.653625\pi\)
0.999161 0.0409609i \(-0.0130419\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) −14.0000 + 24.2487i −0.619324 + 1.07270i
\(512\) 0 0
\(513\) 1.00000 1.73205i 0.0441511 0.0764719i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 8.00000 + 13.8564i 0.349816 + 0.605898i 0.986216 0.165460i \(-0.0529109\pi\)
−0.636401 + 0.771358i \(0.719578\pi\)
\(524\) 0 0
\(525\) 10.0000 0.436436
\(526\) 0 0
\(527\) −6.00000 + 10.3923i −0.261364 + 0.452696i
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 6.00000 + 10.3923i 0.260378 + 0.450988i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −6.00000 + 10.3923i −0.258919 + 0.448461i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) −1.00000 1.73205i −0.0429141 0.0743294i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) 0 0
\(549\) −1.00000 1.73205i −0.0426790 0.0739221i
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) 8.00000 13.8564i 0.340195 0.589234i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.00000 10.3923i −0.254228 0.440336i 0.710457 0.703740i \(-0.248488\pi\)
−0.964686 + 0.263404i \(0.915155\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.00000 + 10.3923i −0.252870 + 0.437983i −0.964315 0.264758i \(-0.914708\pi\)
0.711445 + 0.702742i \(0.248041\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) 9.00000 + 15.5885i 0.377300 + 0.653502i 0.990668 0.136295i \(-0.0435194\pi\)
−0.613369 + 0.789797i \(0.710186\pi\)
\(570\) 0 0
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) 1.00000 1.73205i 0.0415586 0.0719816i
\(580\) 0 0
\(581\) −12.0000 + 20.7846i −0.497844 + 0.862291i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.00000 10.3923i −0.247647 0.428936i 0.715226 0.698893i \(-0.246324\pi\)
−0.962872 + 0.269957i \(0.912990\pi\)
\(588\) 0 0
\(589\) −2.00000 + 3.46410i −0.0824086 + 0.142736i
\(590\) 0 0
\(591\) −12.0000 + 20.7846i −0.493614 + 0.854965i
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 20.0000 0.818546
\(598\) 0 0
\(599\) −48.0000 −1.96123 −0.980613 0.195952i \(-0.937220\pi\)
−0.980613 + 0.195952i \(0.937220\pi\)
\(600\) 0 0
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 0 0
\(603\) 10.0000 0.407231
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2.00000 3.46410i 0.0811775 0.140604i −0.822578 0.568652i \(-0.807465\pi\)
0.903756 + 0.428048i \(0.140799\pi\)
\(608\) 0 0
\(609\) −6.00000 10.3923i −0.243132 0.421117i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −11.0000 19.0526i −0.444286 0.769526i 0.553716 0.832705i \(-0.313209\pi\)
−0.998002 + 0.0631797i \(0.979876\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0000 + 31.1769i −0.724653 + 1.25514i 0.234464 + 0.972125i \(0.424666\pi\)
−0.959117 + 0.283011i \(0.908667\pi\)
\(618\) 0 0
\(619\) 22.0000 0.884255 0.442127 0.896952i \(-0.354224\pi\)
0.442127 + 0.896952i \(0.354224\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −5.00000 + 8.66025i −0.199047 + 0.344759i −0.948220 0.317615i \(-0.897118\pi\)
0.749173 + 0.662375i \(0.230451\pi\)
\(632\) 0 0
\(633\) 2.00000 3.46410i 0.0794929 0.137686i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6.00000 + 10.3923i 0.237356 + 0.411113i
\(640\) 0 0
\(641\) −9.00000 + 15.5885i −0.355479 + 0.615707i −0.987200 0.159489i \(-0.949015\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(642\) 0 0
\(643\) 7.00000 12.1244i 0.276053 0.478138i −0.694347 0.719640i \(-0.744307\pi\)
0.970400 + 0.241502i \(0.0776401\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 + 20.7846i 0.471769 + 0.817127i 0.999478 0.0322975i \(-0.0102824\pi\)
−0.527710 + 0.849425i \(0.676949\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 0 0
\(653\) 15.0000 + 25.9808i 0.586995 + 1.01671i 0.994623 + 0.103558i \(0.0330227\pi\)
−0.407628 + 0.913148i \(0.633644\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 7.00000 12.1244i 0.273096 0.473016i
\(658\) 0 0
\(659\) 18.0000 31.1769i 0.701180 1.21448i −0.266872 0.963732i \(-0.585990\pi\)
0.968052 0.250748i \(-0.0806766\pi\)
\(660\) 0 0
\(661\) 1.00000 + 1.73205i 0.0388955 + 0.0673690i 0.884818 0.465937i \(-0.154283\pi\)
−0.845922 + 0.533306i \(0.820949\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 13.0000 22.5167i 0.502609 0.870544i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 5.00000 + 8.66025i 0.192736 + 0.333828i 0.946156 0.323711i \(-0.104931\pi\)
−0.753420 + 0.657539i \(0.771597\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 10.0000 + 17.3205i 0.383765 + 0.664700i
\(680\) 0 0
\(681\) −24.0000 −0.919682
\(682\) 0 0
\(683\) −12.0000 + 20.7846i −0.459167 + 0.795301i −0.998917 0.0465244i \(-0.985185\pi\)
0.539750 + 0.841825i \(0.318519\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 7.00000 + 12.1244i 0.267067 + 0.462573i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 7.00000 + 12.1244i 0.266293 + 0.461232i 0.967901 0.251330i \(-0.0808679\pi\)
−0.701609 + 0.712562i \(0.747535\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −72.0000 −2.72719
\(698\) 0 0
\(699\) −3.00000 5.19615i −0.113470 0.196537i
\(700\) 0 0
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −36.0000 −1.35392
\(708\) 0 0
\(709\) −5.00000 + 8.66025i −0.187779 + 0.325243i −0.944509 0.328484i \(-0.893462\pi\)
0.756730 + 0.653727i \(0.226796\pi\)
\(710\) 0 0
\(711\) −4.00000 + 6.92820i −0.150012 + 0.259828i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −6.00000 10.3923i −0.224074 0.388108i
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) −16.0000 + 27.7128i −0.595871 + 1.03208i
\(722\) 0 0
\(723\) 10.0000 0.371904
\(724\) 0 0
\(725\) −15.0000 25.9808i −0.557086 0.964901i
\(726\) 0 0
\(727\) 44.0000 1.63187 0.815935 0.578144i \(-0.196223\pi\)
0.815935 + 0.578144i \(0.196223\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.0000 20.7846i −0.443836 0.768747i
\(732\) 0 0
\(733\) −38.0000 −1.40356 −0.701781 0.712393i \(-0.747612\pi\)
−0.701781 + 0.712393i \(0.747612\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.00000 + 1.73205i 0.0367856 + 0.0637145i 0.883832 0.467804i \(-0.154955\pi\)
−0.847046 + 0.531519i \(0.821621\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.00000 + 10.3923i 0.220119 + 0.381257i 0.954844 0.297108i \(-0.0960222\pi\)
−0.734725 + 0.678365i \(0.762689\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.00000 10.3923i 0.219529 0.380235i
\(748\) 0 0
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) −16.0000 27.7128i −0.583848 1.01125i −0.995018 0.0996961i \(-0.968213\pi\)
0.411170 0.911559i \(-0.365120\pi\)
\(752\) 0 0
\(753\) 12.0000 0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.00000 1.73205i −0.0363456 0.0629525i 0.847280 0.531146i \(-0.178238\pi\)
−0.883626 + 0.468193i \(0.844905\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 + 10.3923i −0.217500 + 0.376721i −0.954043 0.299670i \(-0.903123\pi\)
0.736543 + 0.676391i \(0.236457\pi\)
\(762\) 0 0
\(763\) −14.0000 + 24.2487i −0.506834 + 0.877862i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −11.0000 19.0526i −0.396670 0.687053i 0.596643 0.802507i \(-0.296501\pi\)
−0.993313 + 0.115454i \(0.963168\pi\)
\(770\) 0 0
\(771\) −3.00000 + 5.19615i −0.108042 + 0.187135i
\(772\) 0 0
\(773\) 6.00000 10.3923i 0.215805 0.373785i −0.737716 0.675111i \(-0.764096\pi\)
0.953521 + 0.301326i \(0.0974291\pi\)
\(774\) 0 0
\(775\) 10.0000 0.359211
\(776\) 0 0
\(777\) −2.00000 3.46410i −0.0717496 0.124274i
\(778\) 0 0
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 3.00000 + 5.19615i 0.107211 + 0.185695i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 13.0000 22.5167i 0.463400 0.802632i −0.535728 0.844391i \(-0.679963\pi\)
0.999128 + 0.0417585i \(0.0132960\pi\)
\(788\) 0 0
\(789\) 12.0000 20.7846i 0.427211 0.739952i
\(790\) 0 0
\(791\) 6.00000 + 10.3923i 0.213335 + 0.369508i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.00000 15.5885i 0.318796 0.552171i −0.661441 0.749997i \(-0.730055\pi\)
0.980237 + 0.197826i \(0.0633881\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.0000 0.633630
\(808\) 0 0
\(809\) −3.00000 5.19615i −0.105474 0.182687i 0.808458 0.588555i \(-0.200303\pi\)
−0.913932 + 0.405868i \(0.866969\pi\)
\(810\) 0 0
\(811\) 22.0000 0.772524 0.386262 0.922389i \(-0.373766\pi\)
0.386262 + 0.922389i \(0.373766\pi\)
\(812\) 0 0
\(813\) 13.0000 22.5167i 0.455930 0.789694i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4.00000 6.92820i −0.139942 0.242387i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.00000 10.3923i −0.209401 0.362694i 0.742125 0.670262i \(-0.233818\pi\)
−0.951526 + 0.307568i \(0.900485\pi\)
\(822\) 0 0
\(823\) 20.0000 34.6410i 0.697156 1.20751i −0.272292 0.962215i \(-0.587782\pi\)
0.969448 0.245295i \(-0.0788849\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) 0 0
\(829\) −1.00000 1.73205i −0.0347314 0.0601566i 0.848137 0.529777i \(-0.177724\pi\)
−0.882869 + 0.469620i \(0.844391\pi\)
\(830\) 0 0
\(831\) −10.0000 −0.346896
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.00000 −0.0691301
\(838\) 0 0
\(839\) 18.0000 31.1769i 0.621429 1.07635i −0.367791 0.929909i \(-0.619886\pi\)
0.989220 0.146438i \(-0.0467809\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) −6.00000 10.3923i −0.206651 0.357930i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −11.0000 19.0526i −0.377964 0.654654i
\(848\) 0 0
\(849\) 8.00000 13.8564i 0.274559 0.475551i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 22.0000 0.753266 0.376633 0.926363i \(-0.377082\pi\)
0.376633 + 0.926363i \(0.377082\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −42.0000 −1.43469 −0.717346 0.696717i \(-0.754643\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) 0 0
\(859\) 44.0000 1.50126 0.750630 0.660722i \(-0.229750\pi\)
0.750630 + 0.660722i \(0.229750\pi\)
\(860\) 0 0
\(861\) 12.0000 + 20.7846i 0.408959 + 0.708338i
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −9.50000 + 16.4545i −0.322637 + 0.558824i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −5.00000 8.66025i −0.169224 0.293105i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 25.0000 43.3013i 0.844190 1.46218i −0.0421327 0.999112i \(-0.513415\pi\)
0.886323 0.463068i \(-0.153251\pi\)
\(878\) 0 0
\(879\) 12.0000 0.404750
\(880\) 0 0
\(881\) 21.0000 + 36.3731i 0.707508 + 1.22544i 0.965779 + 0.259367i \(0.0835140\pi\)
−0.258271 + 0.966073i \(0.583153\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.0000 20.7846i −0.402921 0.697879i 0.591156 0.806557i \(-0.298672\pi\)
−0.994077 + 0.108678i \(0.965338\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.00000 10.3923i −0.200111 0.346603i
\(900\) 0 0
\(901\) 18.0000 31.1769i 0.599667 1.03865i
\(902\) 0 0
\(903\) −4.00000 + 6.92820i −0.133112 + 0.230556i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −4.00000 6.92820i −0.132818 0.230047i 0.791944 0.610594i \(-0.209069\pi\)
−0.924762 + 0.380547i \(0.875736\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.0000 20.7846i 0.396275 0.686368i
\(918\) 0 0
\(919\) 8.00000 13.8564i 0.263896 0.457081i −0.703378 0.710816i \(-0.748326\pi\)
0.967274 + 0.253735i \(0.0816592\pi\)
\(920\) 0 0
\(921\) 1.00000 + 1.73205i 0.0329511 + 0.0570730i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −5.00000 8.66025i −0.164399 0.284747i
\(926\) 0 0
\(927\) 8.00000 13.8564i 0.262754 0.455104i
\(928\) 0 0
\(929\) −18.0000 + 31.1769i −0.590561 + 1.02288i 0.403596 + 0.914937i \(0.367760\pi\)
−0.994157 + 0.107944i \(0.965573\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) −12.0000 20.7846i −0.392862 0.680458i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0 0
\(939\) 11.0000 + 19.0526i 0.358971 + 0.621757i
\(940\) 0 0
\(941\) 12.0000 0.391189 0.195594 0.980685i \(-0.437336\pi\)
0.195594 + 0.980685i \(0.437336\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.0000 31.1769i −0.584921 1.01311i −0.994885 0.101012i \(-0.967792\pi\)
0.409964 0.912102i \(-0.365541\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −12.0000 20.7846i −0.389127 0.673987i
\(952\) 0 0
\(953\) 9.00000 15.5885i 0.291539 0.504960i −0.682635 0.730759i \(-0.739166\pi\)
0.974174 + 0.225800i \(0.0724995\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.0000 + 20.7846i 0.387500 + 0.671170i
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −12.0000 −0.386695
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −50.0000 −1.60789 −0.803946 0.594703i \(-0.797270\pi\)
−0.803946 + 0.594703i \(0.797270\pi\)
\(968\) 0 0
\(969\) −6.00000 + 10.3923i −0.192748 + 0.333849i
\(970\) 0 0
\(971\) −6.00000 + 10.3923i −0.192549 + 0.333505i −0.946094 0.323891i \(-0.895009\pi\)
0.753545 + 0.657396i \(0.228342\pi\)
\(972\) 0 0
\(973\) −16.0000 27.7128i −0.512936 0.888432i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.0000 + 20.7846i 0.383914 + 0.664959i 0.991618 0.129205i \(-0.0412426\pi\)
−0.607704 + 0.794164i \(0.707909\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 7.00000 12.1244i 0.223493 0.387101i
\(982\) 0 0
\(983\) −60.0000 −1.91370 −0.956851 0.290578i \(-0.906153\pi\)
−0.956851 + 0.290578i \(0.906153\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 26.0000 + 45.0333i 0.825917 + 1.43053i 0.901216 + 0.433370i \(0.142676\pi\)
−0.0752991 + 0.997161i \(0.523991\pi\)
\(992\) 0 0
\(993\) 10.0000 0.317340
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5.00000 8.66025i 0.158352 0.274273i −0.775923 0.630828i \(-0.782715\pi\)
0.934274 + 0.356555i \(0.116049\pi\)
\(998\) 0 0
\(999\) 1.00000 + 1.73205i 0.0316386 + 0.0547997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.2.i.c.2005.1 2
13.2 odd 12 2028.2.b.d.337.1 2
13.3 even 3 2028.2.a.e.1.1 1
13.4 even 6 2028.2.i.b.529.1 2
13.5 odd 4 2028.2.q.d.361.2 4
13.6 odd 12 2028.2.q.d.1837.1 4
13.7 odd 12 2028.2.q.d.1837.2 4
13.8 odd 4 2028.2.q.d.361.1 4
13.9 even 3 inner 2028.2.i.c.529.1 2
13.10 even 6 156.2.a.b.1.1 1
13.11 odd 12 2028.2.b.d.337.2 2
13.12 even 2 2028.2.i.b.2005.1 2
39.2 even 12 6084.2.b.a.4393.1 2
39.11 even 12 6084.2.b.a.4393.2 2
39.23 odd 6 468.2.a.c.1.1 1
39.29 odd 6 6084.2.a.h.1.1 1
52.3 odd 6 8112.2.a.i.1.1 1
52.23 odd 6 624.2.a.b.1.1 1
65.23 odd 12 3900.2.h.e.1249.2 2
65.49 even 6 3900.2.a.a.1.1 1
65.62 odd 12 3900.2.h.e.1249.1 2
91.62 odd 6 7644.2.a.a.1.1 1
104.75 odd 6 2496.2.a.v.1.1 1
104.101 even 6 2496.2.a.h.1.1 1
117.23 odd 6 4212.2.i.g.2809.1 2
117.49 even 6 4212.2.i.f.2809.1 2
117.88 even 6 4212.2.i.f.1405.1 2
117.101 odd 6 4212.2.i.g.1405.1 2
156.23 even 6 1872.2.a.i.1.1 1
312.101 odd 6 7488.2.a.bf.1.1 1
312.179 even 6 7488.2.a.bb.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.a.b.1.1 1 13.10 even 6
468.2.a.c.1.1 1 39.23 odd 6
624.2.a.b.1.1 1 52.23 odd 6
1872.2.a.i.1.1 1 156.23 even 6
2028.2.a.e.1.1 1 13.3 even 3
2028.2.b.d.337.1 2 13.2 odd 12
2028.2.b.d.337.2 2 13.11 odd 12
2028.2.i.b.529.1 2 13.4 even 6
2028.2.i.b.2005.1 2 13.12 even 2
2028.2.i.c.529.1 2 13.9 even 3 inner
2028.2.i.c.2005.1 2 1.1 even 1 trivial
2028.2.q.d.361.1 4 13.8 odd 4
2028.2.q.d.361.2 4 13.5 odd 4
2028.2.q.d.1837.1 4 13.6 odd 12
2028.2.q.d.1837.2 4 13.7 odd 12
2496.2.a.h.1.1 1 104.101 even 6
2496.2.a.v.1.1 1 104.75 odd 6
3900.2.a.a.1.1 1 65.49 even 6
3900.2.h.e.1249.1 2 65.62 odd 12
3900.2.h.e.1249.2 2 65.23 odd 12
4212.2.i.f.1405.1 2 117.88 even 6
4212.2.i.f.2809.1 2 117.49 even 6
4212.2.i.g.1405.1 2 117.101 odd 6
4212.2.i.g.2809.1 2 117.23 odd 6
6084.2.a.h.1.1 1 39.29 odd 6
6084.2.b.a.4393.1 2 39.2 even 12
6084.2.b.a.4393.2 2 39.11 even 12
7488.2.a.bb.1.1 1 312.179 even 6
7488.2.a.bf.1.1 1 312.101 odd 6
7644.2.a.a.1.1 1 91.62 odd 6
8112.2.a.i.1.1 1 52.3 odd 6