L(s) = 1 | + (−0.5 − 0.866i)3-s + (1 − 1.73i)7-s + (−0.499 + 0.866i)9-s + (3 − 5.19i)17-s + (1 − 1.73i)19-s − 1.99·21-s − 5·25-s + 0.999·27-s + (3 + 5.19i)29-s − 2·31-s + (1 + 1.73i)37-s + (−6 − 10.3i)41-s + (2 − 3.46i)43-s + (1.50 + 2.59i)49-s − 6·51-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (0.377 − 0.654i)7-s + (−0.166 + 0.288i)9-s + (0.727 − 1.26i)17-s + (0.229 − 0.397i)19-s − 0.436·21-s − 25-s + 0.192·27-s + (0.557 + 0.964i)29-s − 0.359·31-s + (0.164 + 0.284i)37-s + (−0.937 − 1.62i)41-s + (0.304 − 0.528i)43-s + (0.214 + 0.371i)49-s − 0.840·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.477 + 0.878i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.477 + 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.322161762\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.322161762\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + 5T^{2} \) |
| 7 | \( 1 + (-1 + 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3 + 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 - 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2T + 31T^{2} \) |
| 37 | \( 1 + (-1 - 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (6 + 10.3i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (-6 + 10.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5 + 8.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-6 + 10.3i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 14T + 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 12T + 83T^{2} \) |
| 89 | \( 1 + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5 - 8.66i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.855392949908671382398169944737, −7.922470784541478746940733653123, −7.28806576741047158165687735811, −6.74148830585652666458761979340, −5.58300596188313059253934211348, −5.01017830832325605017387808174, −3.94175298666595464156501267267, −2.90210210365423575400946996874, −1.68059838730049651040167192149, −0.51412935942636217901115293525,
1.39948204759831846211740226576, 2.61256076316698456969614148543, 3.75131768004363465432950239100, 4.47634040036931869886842646176, 5.66417264987268362089296624161, 5.86099930707404484695664078826, 7.02789847919226127353579598533, 8.125264509234280050430023591540, 8.452159378971536963249481942154, 9.578678100228117679164423842465