Properties

Label 2025.4.a.bk.1.6
Level $2025$
Weight $4$
Character 2025.1
Self dual yes
Analytic conductor $119.479$
Analytic rank $1$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2025,4,Mod(1,2025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2025.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,54,0,0,0,0,0,0,-90,0,0,-102] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(1\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 91 x^{14} + 3268 x^{12} - 59128 x^{10} + 571975 x^{8} - 2881141 x^{6} + 6555196 x^{4} + \cdots + 614656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{12}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.46385\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.46385 q^{2} -1.92944 q^{4} -19.2401 q^{7} +24.4647 q^{8} +39.8548 q^{11} +1.00910 q^{13} +47.4048 q^{14} -44.8417 q^{16} +52.6170 q^{17} -49.5371 q^{19} -98.1964 q^{22} +27.4019 q^{23} -2.48626 q^{26} +37.1228 q^{28} -254.953 q^{29} -168.656 q^{31} -85.2341 q^{32} -129.640 q^{34} -419.938 q^{37} +122.052 q^{38} +398.570 q^{41} +358.828 q^{43} -76.8977 q^{44} -67.5141 q^{46} +141.302 q^{47} +27.1829 q^{49} -1.94699 q^{52} +290.878 q^{53} -470.703 q^{56} +628.166 q^{58} +28.7319 q^{59} +732.727 q^{61} +415.544 q^{62} +568.737 q^{64} -176.546 q^{67} -101.522 q^{68} -802.814 q^{71} +512.820 q^{73} +1034.66 q^{74} +95.5791 q^{76} -766.813 q^{77} +612.348 q^{79} -982.017 q^{82} +80.8162 q^{83} -884.098 q^{86} +975.035 q^{88} +24.0097 q^{89} -19.4151 q^{91} -52.8704 q^{92} -348.147 q^{94} +1367.92 q^{97} -66.9747 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 54 q^{4} - 90 q^{11} - 102 q^{14} + 146 q^{16} + 4 q^{19} - 468 q^{26} - 516 q^{29} + 38 q^{31} + 212 q^{34} - 576 q^{41} - 1644 q^{44} - 290 q^{46} - 4 q^{49} - 2430 q^{56} - 2202 q^{59} + 20 q^{61}+ \cdots - 1078 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.46385 −0.871102 −0.435551 0.900164i \(-0.643447\pi\)
−0.435551 + 0.900164i \(0.643447\pi\)
\(3\) 0 0
\(4\) −1.92944 −0.241181
\(5\) 0 0
\(6\) 0 0
\(7\) −19.2401 −1.03887 −0.519435 0.854510i \(-0.673858\pi\)
−0.519435 + 0.854510i \(0.673858\pi\)
\(8\) 24.4647 1.08120
\(9\) 0 0
\(10\) 0 0
\(11\) 39.8548 1.09243 0.546213 0.837646i \(-0.316069\pi\)
0.546213 + 0.837646i \(0.316069\pi\)
\(12\) 0 0
\(13\) 1.00910 0.0215287 0.0107643 0.999942i \(-0.496574\pi\)
0.0107643 + 0.999942i \(0.496574\pi\)
\(14\) 47.4048 0.904962
\(15\) 0 0
\(16\) −44.8417 −0.700651
\(17\) 52.6170 0.750676 0.375338 0.926888i \(-0.377527\pi\)
0.375338 + 0.926888i \(0.377527\pi\)
\(18\) 0 0
\(19\) −49.5371 −0.598136 −0.299068 0.954232i \(-0.596676\pi\)
−0.299068 + 0.954232i \(0.596676\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −98.1964 −0.951615
\(23\) 27.4019 0.248421 0.124210 0.992256i \(-0.460360\pi\)
0.124210 + 0.992256i \(0.460360\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.48626 −0.0187537
\(27\) 0 0
\(28\) 37.1228 0.250555
\(29\) −254.953 −1.63254 −0.816269 0.577672i \(-0.803961\pi\)
−0.816269 + 0.577672i \(0.803961\pi\)
\(30\) 0 0
\(31\) −168.656 −0.977147 −0.488574 0.872523i \(-0.662483\pi\)
−0.488574 + 0.872523i \(0.662483\pi\)
\(32\) −85.2341 −0.470856
\(33\) 0 0
\(34\) −129.640 −0.653916
\(35\) 0 0
\(36\) 0 0
\(37\) −419.938 −1.86588 −0.932938 0.360038i \(-0.882764\pi\)
−0.932938 + 0.360038i \(0.882764\pi\)
\(38\) 122.052 0.521038
\(39\) 0 0
\(40\) 0 0
\(41\) 398.570 1.51820 0.759100 0.650974i \(-0.225639\pi\)
0.759100 + 0.650974i \(0.225639\pi\)
\(42\) 0 0
\(43\) 358.828 1.27258 0.636288 0.771452i \(-0.280469\pi\)
0.636288 + 0.771452i \(0.280469\pi\)
\(44\) −76.8977 −0.263472
\(45\) 0 0
\(46\) −67.5141 −0.216400
\(47\) 141.302 0.438532 0.219266 0.975665i \(-0.429634\pi\)
0.219266 + 0.975665i \(0.429634\pi\)
\(48\) 0 0
\(49\) 27.1829 0.0792505
\(50\) 0 0
\(51\) 0 0
\(52\) −1.94699 −0.00519230
\(53\) 290.878 0.753872 0.376936 0.926239i \(-0.376978\pi\)
0.376936 + 0.926239i \(0.376978\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −470.703 −1.12322
\(57\) 0 0
\(58\) 628.166 1.42211
\(59\) 28.7319 0.0633995 0.0316998 0.999497i \(-0.489908\pi\)
0.0316998 + 0.999497i \(0.489908\pi\)
\(60\) 0 0
\(61\) 732.727 1.53797 0.768985 0.639267i \(-0.220762\pi\)
0.768985 + 0.639267i \(0.220762\pi\)
\(62\) 415.544 0.851195
\(63\) 0 0
\(64\) 568.737 1.11082
\(65\) 0 0
\(66\) 0 0
\(67\) −176.546 −0.321918 −0.160959 0.986961i \(-0.551459\pi\)
−0.160959 + 0.986961i \(0.551459\pi\)
\(68\) −101.522 −0.181049
\(69\) 0 0
\(70\) 0 0
\(71\) −802.814 −1.34192 −0.670961 0.741493i \(-0.734118\pi\)
−0.670961 + 0.741493i \(0.734118\pi\)
\(72\) 0 0
\(73\) 512.820 0.822205 0.411103 0.911589i \(-0.365144\pi\)
0.411103 + 0.911589i \(0.365144\pi\)
\(74\) 1034.66 1.62537
\(75\) 0 0
\(76\) 95.5791 0.144259
\(77\) −766.813 −1.13489
\(78\) 0 0
\(79\) 612.348 0.872082 0.436041 0.899927i \(-0.356380\pi\)
0.436041 + 0.899927i \(0.356380\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −982.017 −1.32251
\(83\) 80.8162 0.106876 0.0534382 0.998571i \(-0.482982\pi\)
0.0534382 + 0.998571i \(0.482982\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −884.098 −1.10854
\(87\) 0 0
\(88\) 975.035 1.18113
\(89\) 24.0097 0.0285957 0.0142979 0.999898i \(-0.495449\pi\)
0.0142979 + 0.999898i \(0.495449\pi\)
\(90\) 0 0
\(91\) −19.4151 −0.0223655
\(92\) −52.8704 −0.0599143
\(93\) 0 0
\(94\) −348.147 −0.382006
\(95\) 0 0
\(96\) 0 0
\(97\) 1367.92 1.43187 0.715934 0.698168i \(-0.246001\pi\)
0.715934 + 0.698168i \(0.246001\pi\)
\(98\) −66.9747 −0.0690353
\(99\) 0 0
\(100\) 0 0
\(101\) 568.413 0.559992 0.279996 0.960001i \(-0.409667\pi\)
0.279996 + 0.960001i \(0.409667\pi\)
\(102\) 0 0
\(103\) 475.159 0.454551 0.227276 0.973830i \(-0.427018\pi\)
0.227276 + 0.973830i \(0.427018\pi\)
\(104\) 24.6872 0.0232767
\(105\) 0 0
\(106\) −716.680 −0.656700
\(107\) 1452.60 1.31242 0.656208 0.754580i \(-0.272159\pi\)
0.656208 + 0.754580i \(0.272159\pi\)
\(108\) 0 0
\(109\) −1962.92 −1.72490 −0.862448 0.506146i \(-0.831070\pi\)
−0.862448 + 0.506146i \(0.831070\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 862.760 0.727886
\(113\) −978.286 −0.814419 −0.407210 0.913335i \(-0.633498\pi\)
−0.407210 + 0.913335i \(0.633498\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 491.918 0.393736
\(117\) 0 0
\(118\) −70.7910 −0.0552275
\(119\) −1012.36 −0.779855
\(120\) 0 0
\(121\) 257.409 0.193395
\(122\) −1805.33 −1.33973
\(123\) 0 0
\(124\) 325.413 0.235669
\(125\) 0 0
\(126\) 0 0
\(127\) 865.941 0.605038 0.302519 0.953143i \(-0.402172\pi\)
0.302519 + 0.953143i \(0.402172\pi\)
\(128\) −719.411 −0.496778
\(129\) 0 0
\(130\) 0 0
\(131\) −1468.96 −0.979720 −0.489860 0.871801i \(-0.662952\pi\)
−0.489860 + 0.871801i \(0.662952\pi\)
\(132\) 0 0
\(133\) 953.101 0.621386
\(134\) 434.983 0.280424
\(135\) 0 0
\(136\) 1287.26 0.811628
\(137\) −71.5353 −0.0446108 −0.0223054 0.999751i \(-0.507101\pi\)
−0.0223054 + 0.999751i \(0.507101\pi\)
\(138\) 0 0
\(139\) 229.065 0.139777 0.0698886 0.997555i \(-0.477736\pi\)
0.0698886 + 0.997555i \(0.477736\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1978.01 1.16895
\(143\) 40.2174 0.0235185
\(144\) 0 0
\(145\) 0 0
\(146\) −1263.51 −0.716225
\(147\) 0 0
\(148\) 810.247 0.450013
\(149\) −835.144 −0.459179 −0.229589 0.973288i \(-0.573738\pi\)
−0.229589 + 0.973288i \(0.573738\pi\)
\(150\) 0 0
\(151\) −1866.58 −1.00596 −0.502982 0.864297i \(-0.667764\pi\)
−0.502982 + 0.864297i \(0.667764\pi\)
\(152\) −1211.91 −0.646702
\(153\) 0 0
\(154\) 1889.31 0.988604
\(155\) 0 0
\(156\) 0 0
\(157\) 2299.91 1.16913 0.584563 0.811348i \(-0.301266\pi\)
0.584563 + 0.811348i \(0.301266\pi\)
\(158\) −1508.73 −0.759673
\(159\) 0 0
\(160\) 0 0
\(161\) −527.215 −0.258077
\(162\) 0 0
\(163\) −44.9023 −0.0215768 −0.0107884 0.999942i \(-0.503434\pi\)
−0.0107884 + 0.999942i \(0.503434\pi\)
\(164\) −769.019 −0.366160
\(165\) 0 0
\(166\) −199.119 −0.0931002
\(167\) 1176.56 0.545180 0.272590 0.962130i \(-0.412120\pi\)
0.272590 + 0.962130i \(0.412120\pi\)
\(168\) 0 0
\(169\) −2195.98 −0.999537
\(170\) 0 0
\(171\) 0 0
\(172\) −692.339 −0.306921
\(173\) −1068.09 −0.469396 −0.234698 0.972068i \(-0.575410\pi\)
−0.234698 + 0.972068i \(0.575410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1787.16 −0.765410
\(177\) 0 0
\(178\) −59.1562 −0.0249098
\(179\) −2779.66 −1.16068 −0.580339 0.814375i \(-0.697080\pi\)
−0.580339 + 0.814375i \(0.697080\pi\)
\(180\) 0 0
\(181\) −3568.66 −1.46550 −0.732752 0.680496i \(-0.761764\pi\)
−0.732752 + 0.680496i \(0.761764\pi\)
\(182\) 47.8360 0.0194826
\(183\) 0 0
\(184\) 670.377 0.268592
\(185\) 0 0
\(186\) 0 0
\(187\) 2097.04 0.820059
\(188\) −272.634 −0.105765
\(189\) 0 0
\(190\) 0 0
\(191\) −3338.62 −1.26478 −0.632392 0.774648i \(-0.717927\pi\)
−0.632392 + 0.774648i \(0.717927\pi\)
\(192\) 0 0
\(193\) −1940.87 −0.723868 −0.361934 0.932204i \(-0.617883\pi\)
−0.361934 + 0.932204i \(0.617883\pi\)
\(194\) −3370.35 −1.24730
\(195\) 0 0
\(196\) −52.4480 −0.0191137
\(197\) 1035.75 0.374588 0.187294 0.982304i \(-0.440028\pi\)
0.187294 + 0.982304i \(0.440028\pi\)
\(198\) 0 0
\(199\) 1565.53 0.557675 0.278838 0.960338i \(-0.410051\pi\)
0.278838 + 0.960338i \(0.410051\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1400.48 −0.487810
\(203\) 4905.33 1.69599
\(204\) 0 0
\(205\) 0 0
\(206\) −1170.72 −0.395961
\(207\) 0 0
\(208\) −45.2496 −0.0150841
\(209\) −1974.29 −0.653420
\(210\) 0 0
\(211\) 3385.27 1.10451 0.552255 0.833675i \(-0.313767\pi\)
0.552255 + 0.833675i \(0.313767\pi\)
\(212\) −561.234 −0.181819
\(213\) 0 0
\(214\) −3579.00 −1.14325
\(215\) 0 0
\(216\) 0 0
\(217\) 3244.97 1.01513
\(218\) 4836.34 1.50256
\(219\) 0 0
\(220\) 0 0
\(221\) 53.0956 0.0161611
\(222\) 0 0
\(223\) −2365.54 −0.710352 −0.355176 0.934799i \(-0.615579\pi\)
−0.355176 + 0.934799i \(0.615579\pi\)
\(224\) 1639.92 0.489158
\(225\) 0 0
\(226\) 2410.35 0.709443
\(227\) 976.230 0.285439 0.142720 0.989763i \(-0.454415\pi\)
0.142720 + 0.989763i \(0.454415\pi\)
\(228\) 0 0
\(229\) 1595.28 0.460345 0.230173 0.973150i \(-0.426071\pi\)
0.230173 + 0.973150i \(0.426071\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6237.34 −1.76509
\(233\) 943.571 0.265302 0.132651 0.991163i \(-0.457651\pi\)
0.132651 + 0.991163i \(0.457651\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −55.4366 −0.0152907
\(237\) 0 0
\(238\) 2494.30 0.679334
\(239\) 2731.50 0.739271 0.369635 0.929177i \(-0.379483\pi\)
0.369635 + 0.929177i \(0.379483\pi\)
\(240\) 0 0
\(241\) 3417.23 0.913375 0.456687 0.889627i \(-0.349036\pi\)
0.456687 + 0.889627i \(0.349036\pi\)
\(242\) −634.217 −0.168467
\(243\) 0 0
\(244\) −1413.76 −0.370928
\(245\) 0 0
\(246\) 0 0
\(247\) −49.9877 −0.0128771
\(248\) −4126.12 −1.05649
\(249\) 0 0
\(250\) 0 0
\(251\) −3164.50 −0.795782 −0.397891 0.917433i \(-0.630258\pi\)
−0.397891 + 0.917433i \(0.630258\pi\)
\(252\) 0 0
\(253\) 1092.10 0.271382
\(254\) −2133.55 −0.527050
\(255\) 0 0
\(256\) −2777.38 −0.678071
\(257\) 5549.43 1.34694 0.673471 0.739214i \(-0.264803\pi\)
0.673471 + 0.739214i \(0.264803\pi\)
\(258\) 0 0
\(259\) 8079.67 1.93840
\(260\) 0 0
\(261\) 0 0
\(262\) 3619.29 0.853436
\(263\) −4137.64 −0.970106 −0.485053 0.874485i \(-0.661200\pi\)
−0.485053 + 0.874485i \(0.661200\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2348.30 −0.541291
\(267\) 0 0
\(268\) 340.636 0.0776404
\(269\) −1026.74 −0.232719 −0.116359 0.993207i \(-0.537122\pi\)
−0.116359 + 0.993207i \(0.537122\pi\)
\(270\) 0 0
\(271\) 3400.66 0.762270 0.381135 0.924519i \(-0.375533\pi\)
0.381135 + 0.924519i \(0.375533\pi\)
\(272\) −2359.44 −0.525962
\(273\) 0 0
\(274\) 176.252 0.0388605
\(275\) 0 0
\(276\) 0 0
\(277\) −3568.81 −0.774112 −0.387056 0.922056i \(-0.626508\pi\)
−0.387056 + 0.922056i \(0.626508\pi\)
\(278\) −564.381 −0.121760
\(279\) 0 0
\(280\) 0 0
\(281\) −6018.68 −1.27774 −0.638869 0.769316i \(-0.720597\pi\)
−0.638869 + 0.769316i \(0.720597\pi\)
\(282\) 0 0
\(283\) −4578.17 −0.961638 −0.480819 0.876820i \(-0.659661\pi\)
−0.480819 + 0.876820i \(0.659661\pi\)
\(284\) 1548.98 0.323646
\(285\) 0 0
\(286\) −99.0895 −0.0204870
\(287\) −7668.55 −1.57721
\(288\) 0 0
\(289\) −2144.45 −0.436485
\(290\) 0 0
\(291\) 0 0
\(292\) −989.457 −0.198300
\(293\) 6479.73 1.29198 0.645990 0.763346i \(-0.276445\pi\)
0.645990 + 0.763346i \(0.276445\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −10273.6 −2.01738
\(297\) 0 0
\(298\) 2057.67 0.399992
\(299\) 27.6511 0.00534818
\(300\) 0 0
\(301\) −6903.90 −1.32204
\(302\) 4598.98 0.876297
\(303\) 0 0
\(304\) 2221.33 0.419085
\(305\) 0 0
\(306\) 0 0
\(307\) 708.452 0.131705 0.0658526 0.997829i \(-0.479023\pi\)
0.0658526 + 0.997829i \(0.479023\pi\)
\(308\) 1479.52 0.273713
\(309\) 0 0
\(310\) 0 0
\(311\) −6234.64 −1.13676 −0.568382 0.822765i \(-0.692430\pi\)
−0.568382 + 0.822765i \(0.692430\pi\)
\(312\) 0 0
\(313\) −2631.41 −0.475196 −0.237598 0.971364i \(-0.576360\pi\)
−0.237598 + 0.971364i \(0.576360\pi\)
\(314\) −5666.63 −1.01843
\(315\) 0 0
\(316\) −1181.49 −0.210329
\(317\) −502.534 −0.0890383 −0.0445191 0.999009i \(-0.514176\pi\)
−0.0445191 + 0.999009i \(0.514176\pi\)
\(318\) 0 0
\(319\) −10161.1 −1.78343
\(320\) 0 0
\(321\) 0 0
\(322\) 1298.98 0.224812
\(323\) −2606.49 −0.449007
\(324\) 0 0
\(325\) 0 0
\(326\) 110.632 0.0187956
\(327\) 0 0
\(328\) 9750.89 1.64147
\(329\) −2718.67 −0.455578
\(330\) 0 0
\(331\) 3087.14 0.512642 0.256321 0.966592i \(-0.417490\pi\)
0.256321 + 0.966592i \(0.417490\pi\)
\(332\) −155.930 −0.0257765
\(333\) 0 0
\(334\) −2898.87 −0.474908
\(335\) 0 0
\(336\) 0 0
\(337\) −5985.80 −0.967559 −0.483780 0.875190i \(-0.660736\pi\)
−0.483780 + 0.875190i \(0.660736\pi\)
\(338\) 5410.57 0.870699
\(339\) 0 0
\(340\) 0 0
\(341\) −6721.77 −1.06746
\(342\) 0 0
\(343\) 6076.36 0.956539
\(344\) 8778.60 1.37590
\(345\) 0 0
\(346\) 2631.61 0.408892
\(347\) 1006.65 0.155734 0.0778671 0.996964i \(-0.475189\pi\)
0.0778671 + 0.996964i \(0.475189\pi\)
\(348\) 0 0
\(349\) −1949.36 −0.298987 −0.149494 0.988763i \(-0.547764\pi\)
−0.149494 + 0.988763i \(0.547764\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3396.99 −0.514376
\(353\) 2591.73 0.390776 0.195388 0.980726i \(-0.437403\pi\)
0.195388 + 0.980726i \(0.437403\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −46.3253 −0.00689674
\(357\) 0 0
\(358\) 6848.65 1.01107
\(359\) −605.954 −0.0890837 −0.0445418 0.999008i \(-0.514183\pi\)
−0.0445418 + 0.999008i \(0.514183\pi\)
\(360\) 0 0
\(361\) −4405.08 −0.642233
\(362\) 8792.63 1.27660
\(363\) 0 0
\(364\) 37.4604 0.00539412
\(365\) 0 0
\(366\) 0 0
\(367\) −9760.26 −1.38823 −0.694117 0.719863i \(-0.744205\pi\)
−0.694117 + 0.719863i \(0.744205\pi\)
\(368\) −1228.75 −0.174056
\(369\) 0 0
\(370\) 0 0
\(371\) −5596.54 −0.783175
\(372\) 0 0
\(373\) −7823.62 −1.08604 −0.543018 0.839721i \(-0.682719\pi\)
−0.543018 + 0.839721i \(0.682719\pi\)
\(374\) −5166.80 −0.714355
\(375\) 0 0
\(376\) 3456.90 0.474139
\(377\) −257.272 −0.0351464
\(378\) 0 0
\(379\) 2731.46 0.370200 0.185100 0.982720i \(-0.440739\pi\)
0.185100 + 0.982720i \(0.440739\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 8225.85 1.10176
\(383\) −12599.9 −1.68100 −0.840500 0.541812i \(-0.817738\pi\)
−0.840500 + 0.541812i \(0.817738\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4782.00 0.630563
\(387\) 0 0
\(388\) −2639.33 −0.345339
\(389\) −4943.46 −0.644327 −0.322163 0.946684i \(-0.604410\pi\)
−0.322163 + 0.946684i \(0.604410\pi\)
\(390\) 0 0
\(391\) 1441.80 0.186484
\(392\) 665.021 0.0856853
\(393\) 0 0
\(394\) −2551.92 −0.326305
\(395\) 0 0
\(396\) 0 0
\(397\) 7067.06 0.893415 0.446707 0.894680i \(-0.352597\pi\)
0.446707 + 0.894680i \(0.352597\pi\)
\(398\) −3857.23 −0.485792
\(399\) 0 0
\(400\) 0 0
\(401\) −917.584 −0.114269 −0.0571346 0.998366i \(-0.518196\pi\)
−0.0571346 + 0.998366i \(0.518196\pi\)
\(402\) 0 0
\(403\) −170.190 −0.0210367
\(404\) −1096.72 −0.135059
\(405\) 0 0
\(406\) −12086.0 −1.47738
\(407\) −16736.6 −2.03833
\(408\) 0 0
\(409\) 14735.5 1.78148 0.890739 0.454515i \(-0.150187\pi\)
0.890739 + 0.454515i \(0.150187\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −916.792 −0.109629
\(413\) −552.805 −0.0658638
\(414\) 0 0
\(415\) 0 0
\(416\) −86.0094 −0.0101369
\(417\) 0 0
\(418\) 4864.36 0.569196
\(419\) −9254.92 −1.07907 −0.539537 0.841962i \(-0.681401\pi\)
−0.539537 + 0.841962i \(0.681401\pi\)
\(420\) 0 0
\(421\) −10202.0 −1.18103 −0.590514 0.807027i \(-0.701075\pi\)
−0.590514 + 0.807027i \(0.701075\pi\)
\(422\) −8340.80 −0.962142
\(423\) 0 0
\(424\) 7116.24 0.815083
\(425\) 0 0
\(426\) 0 0
\(427\) −14097.8 −1.59775
\(428\) −2802.72 −0.316529
\(429\) 0 0
\(430\) 0 0
\(431\) 8057.20 0.900468 0.450234 0.892911i \(-0.351341\pi\)
0.450234 + 0.892911i \(0.351341\pi\)
\(432\) 0 0
\(433\) −4306.26 −0.477935 −0.238967 0.971028i \(-0.576809\pi\)
−0.238967 + 0.971028i \(0.576809\pi\)
\(434\) −7995.12 −0.884281
\(435\) 0 0
\(436\) 3787.34 0.416011
\(437\) −1357.41 −0.148590
\(438\) 0 0
\(439\) −4721.79 −0.513346 −0.256673 0.966498i \(-0.582626\pi\)
−0.256673 + 0.966498i \(0.582626\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −130.820 −0.0140779
\(443\) −15354.4 −1.64675 −0.823373 0.567501i \(-0.807910\pi\)
−0.823373 + 0.567501i \(0.807910\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 5828.35 0.618790
\(447\) 0 0
\(448\) −10942.6 −1.15399
\(449\) 5448.64 0.572688 0.286344 0.958127i \(-0.407560\pi\)
0.286344 + 0.958127i \(0.407560\pi\)
\(450\) 0 0
\(451\) 15885.0 1.65852
\(452\) 1887.55 0.196422
\(453\) 0 0
\(454\) −2405.28 −0.248647
\(455\) 0 0
\(456\) 0 0
\(457\) 52.7307 0.00539746 0.00269873 0.999996i \(-0.499141\pi\)
0.00269873 + 0.999996i \(0.499141\pi\)
\(458\) −3930.53 −0.401008
\(459\) 0 0
\(460\) 0 0
\(461\) −3167.02 −0.319963 −0.159982 0.987120i \(-0.551143\pi\)
−0.159982 + 0.987120i \(0.551143\pi\)
\(462\) 0 0
\(463\) −13092.4 −1.31416 −0.657081 0.753820i \(-0.728209\pi\)
−0.657081 + 0.753820i \(0.728209\pi\)
\(464\) 11432.5 1.14384
\(465\) 0 0
\(466\) −2324.82 −0.231105
\(467\) 13225.4 1.31049 0.655246 0.755416i \(-0.272565\pi\)
0.655246 + 0.755416i \(0.272565\pi\)
\(468\) 0 0
\(469\) 3396.77 0.334431
\(470\) 0 0
\(471\) 0 0
\(472\) 702.915 0.0685473
\(473\) 14301.0 1.39020
\(474\) 0 0
\(475\) 0 0
\(476\) 1953.29 0.188086
\(477\) 0 0
\(478\) −6729.99 −0.643981
\(479\) −8558.59 −0.816393 −0.408196 0.912894i \(-0.633842\pi\)
−0.408196 + 0.912894i \(0.633842\pi\)
\(480\) 0 0
\(481\) −423.758 −0.0401698
\(482\) −8419.55 −0.795643
\(483\) 0 0
\(484\) −496.656 −0.0466432
\(485\) 0 0
\(486\) 0 0
\(487\) −19531.3 −1.81735 −0.908674 0.417506i \(-0.862904\pi\)
−0.908674 + 0.417506i \(0.862904\pi\)
\(488\) 17925.9 1.66285
\(489\) 0 0
\(490\) 0 0
\(491\) −19488.2 −1.79122 −0.895612 0.444835i \(-0.853262\pi\)
−0.895612 + 0.444835i \(0.853262\pi\)
\(492\) 0 0
\(493\) −13414.9 −1.22551
\(494\) 123.162 0.0112173
\(495\) 0 0
\(496\) 7562.83 0.684640
\(497\) 15446.2 1.39408
\(498\) 0 0
\(499\) −339.530 −0.0304598 −0.0152299 0.999884i \(-0.504848\pi\)
−0.0152299 + 0.999884i \(0.504848\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 7796.84 0.693208
\(503\) 5550.25 0.491995 0.245998 0.969270i \(-0.420884\pi\)
0.245998 + 0.969270i \(0.420884\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −2690.76 −0.236401
\(507\) 0 0
\(508\) −1670.79 −0.145923
\(509\) 5648.99 0.491920 0.245960 0.969280i \(-0.420897\pi\)
0.245960 + 0.969280i \(0.420897\pi\)
\(510\) 0 0
\(511\) −9866.72 −0.854164
\(512\) 12598.3 1.08745
\(513\) 0 0
\(514\) −13673.0 −1.17332
\(515\) 0 0
\(516\) 0 0
\(517\) 5631.57 0.479064
\(518\) −19907.1 −1.68855
\(519\) 0 0
\(520\) 0 0
\(521\) −11159.0 −0.938359 −0.469180 0.883103i \(-0.655450\pi\)
−0.469180 + 0.883103i \(0.655450\pi\)
\(522\) 0 0
\(523\) −9476.61 −0.792320 −0.396160 0.918182i \(-0.629657\pi\)
−0.396160 + 0.918182i \(0.629657\pi\)
\(524\) 2834.27 0.236289
\(525\) 0 0
\(526\) 10194.5 0.845062
\(527\) −8874.19 −0.733521
\(528\) 0 0
\(529\) −11416.1 −0.938287
\(530\) 0 0
\(531\) 0 0
\(532\) −1838.95 −0.149866
\(533\) 402.196 0.0326849
\(534\) 0 0
\(535\) 0 0
\(536\) −4319.14 −0.348057
\(537\) 0 0
\(538\) 2529.73 0.202722
\(539\) 1083.37 0.0865754
\(540\) 0 0
\(541\) 8285.40 0.658442 0.329221 0.944253i \(-0.393214\pi\)
0.329221 + 0.944253i \(0.393214\pi\)
\(542\) −8378.71 −0.664015
\(543\) 0 0
\(544\) −4484.76 −0.353461
\(545\) 0 0
\(546\) 0 0
\(547\) 6918.30 0.540777 0.270389 0.962751i \(-0.412848\pi\)
0.270389 + 0.962751i \(0.412848\pi\)
\(548\) 138.023 0.0107593
\(549\) 0 0
\(550\) 0 0
\(551\) 12629.6 0.976480
\(552\) 0 0
\(553\) −11781.7 −0.905980
\(554\) 8793.01 0.674331
\(555\) 0 0
\(556\) −441.968 −0.0337115
\(557\) −15622.7 −1.18843 −0.594216 0.804305i \(-0.702538\pi\)
−0.594216 + 0.804305i \(0.702538\pi\)
\(558\) 0 0
\(559\) 362.092 0.0273969
\(560\) 0 0
\(561\) 0 0
\(562\) 14829.1 1.11304
\(563\) 8129.30 0.608542 0.304271 0.952585i \(-0.401587\pi\)
0.304271 + 0.952585i \(0.401587\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 11279.9 0.837686
\(567\) 0 0
\(568\) −19640.6 −1.45088
\(569\) 8175.67 0.602359 0.301179 0.953568i \(-0.402620\pi\)
0.301179 + 0.953568i \(0.402620\pi\)
\(570\) 0 0
\(571\) 7878.84 0.577442 0.288721 0.957413i \(-0.406770\pi\)
0.288721 + 0.957413i \(0.406770\pi\)
\(572\) −77.5972 −0.00567220
\(573\) 0 0
\(574\) 18894.1 1.37391
\(575\) 0 0
\(576\) 0 0
\(577\) −16673.4 −1.20299 −0.601493 0.798878i \(-0.705427\pi\)
−0.601493 + 0.798878i \(0.705427\pi\)
\(578\) 5283.60 0.380223
\(579\) 0 0
\(580\) 0 0
\(581\) −1554.92 −0.111031
\(582\) 0 0
\(583\) 11592.9 0.823549
\(584\) 12546.0 0.888965
\(585\) 0 0
\(586\) −15965.1 −1.12545
\(587\) 3012.18 0.211799 0.105900 0.994377i \(-0.466228\pi\)
0.105900 + 0.994377i \(0.466228\pi\)
\(588\) 0 0
\(589\) 8354.74 0.584467
\(590\) 0 0
\(591\) 0 0
\(592\) 18830.7 1.30733
\(593\) 7922.71 0.548645 0.274323 0.961638i \(-0.411546\pi\)
0.274323 + 0.961638i \(0.411546\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1611.36 0.110745
\(597\) 0 0
\(598\) −68.1282 −0.00465881
\(599\) −22578.5 −1.54012 −0.770061 0.637970i \(-0.779774\pi\)
−0.770061 + 0.637970i \(0.779774\pi\)
\(600\) 0 0
\(601\) 10618.7 0.720709 0.360354 0.932815i \(-0.382656\pi\)
0.360354 + 0.932815i \(0.382656\pi\)
\(602\) 17010.2 1.15163
\(603\) 0 0
\(604\) 3601.47 0.242619
\(605\) 0 0
\(606\) 0 0
\(607\) −13590.6 −0.908771 −0.454385 0.890805i \(-0.650141\pi\)
−0.454385 + 0.890805i \(0.650141\pi\)
\(608\) 4222.25 0.281636
\(609\) 0 0
\(610\) 0 0
\(611\) 142.587 0.00944102
\(612\) 0 0
\(613\) −5457.57 −0.359591 −0.179796 0.983704i \(-0.557544\pi\)
−0.179796 + 0.983704i \(0.557544\pi\)
\(614\) −1745.52 −0.114729
\(615\) 0 0
\(616\) −18759.8 −1.22704
\(617\) −5972.10 −0.389672 −0.194836 0.980836i \(-0.562417\pi\)
−0.194836 + 0.980836i \(0.562417\pi\)
\(618\) 0 0
\(619\) −839.633 −0.0545197 −0.0272598 0.999628i \(-0.508678\pi\)
−0.0272598 + 0.999628i \(0.508678\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 15361.2 0.990238
\(623\) −461.949 −0.0297072
\(624\) 0 0
\(625\) 0 0
\(626\) 6483.41 0.413944
\(627\) 0 0
\(628\) −4437.55 −0.281970
\(629\) −22095.9 −1.40067
\(630\) 0 0
\(631\) −13699.4 −0.864284 −0.432142 0.901806i \(-0.642242\pi\)
−0.432142 + 0.901806i \(0.642242\pi\)
\(632\) 14980.9 0.942892
\(633\) 0 0
\(634\) 1238.17 0.0775615
\(635\) 0 0
\(636\) 0 0
\(637\) 27.4302 0.00170616
\(638\) 25035.5 1.55355
\(639\) 0 0
\(640\) 0 0
\(641\) −7939.36 −0.489214 −0.244607 0.969622i \(-0.578659\pi\)
−0.244607 + 0.969622i \(0.578659\pi\)
\(642\) 0 0
\(643\) 7635.95 0.468324 0.234162 0.972198i \(-0.424765\pi\)
0.234162 + 0.972198i \(0.424765\pi\)
\(644\) 1017.23 0.0622432
\(645\) 0 0
\(646\) 6422.01 0.391131
\(647\) 22084.3 1.34192 0.670962 0.741491i \(-0.265881\pi\)
0.670962 + 0.741491i \(0.265881\pi\)
\(648\) 0 0
\(649\) 1145.10 0.0692593
\(650\) 0 0
\(651\) 0 0
\(652\) 86.6364 0.00520390
\(653\) −6637.97 −0.397801 −0.198900 0.980020i \(-0.563737\pi\)
−0.198900 + 0.980020i \(0.563737\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −17872.6 −1.06373
\(657\) 0 0
\(658\) 6698.39 0.396855
\(659\) 23812.3 1.40758 0.703789 0.710409i \(-0.251490\pi\)
0.703789 + 0.710409i \(0.251490\pi\)
\(660\) 0 0
\(661\) −999.824 −0.0588330 −0.0294165 0.999567i \(-0.509365\pi\)
−0.0294165 + 0.999567i \(0.509365\pi\)
\(662\) −7606.24 −0.446563
\(663\) 0 0
\(664\) 1977.14 0.115554
\(665\) 0 0
\(666\) 0 0
\(667\) −6986.19 −0.405557
\(668\) −2270.11 −0.131487
\(669\) 0 0
\(670\) 0 0
\(671\) 29202.7 1.68012
\(672\) 0 0
\(673\) −10622.1 −0.608396 −0.304198 0.952609i \(-0.598388\pi\)
−0.304198 + 0.952609i \(0.598388\pi\)
\(674\) 14748.1 0.842843
\(675\) 0 0
\(676\) 4237.02 0.241069
\(677\) −24907.8 −1.41401 −0.707005 0.707209i \(-0.749954\pi\)
−0.707005 + 0.707209i \(0.749954\pi\)
\(678\) 0 0
\(679\) −26319.0 −1.48753
\(680\) 0 0
\(681\) 0 0
\(682\) 16561.4 0.929868
\(683\) −17115.6 −0.958874 −0.479437 0.877576i \(-0.659159\pi\)
−0.479437 + 0.877576i \(0.659159\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −14971.2 −0.833243
\(687\) 0 0
\(688\) −16090.5 −0.891632
\(689\) 293.524 0.0162299
\(690\) 0 0
\(691\) 28899.8 1.59103 0.795514 0.605935i \(-0.207201\pi\)
0.795514 + 0.605935i \(0.207201\pi\)
\(692\) 2060.82 0.113209
\(693\) 0 0
\(694\) −2480.23 −0.135660
\(695\) 0 0
\(696\) 0 0
\(697\) 20971.6 1.13968
\(698\) 4802.92 0.260449
\(699\) 0 0
\(700\) 0 0
\(701\) 576.680 0.0310712 0.0155356 0.999879i \(-0.495055\pi\)
0.0155356 + 0.999879i \(0.495055\pi\)
\(702\) 0 0
\(703\) 20802.5 1.11605
\(704\) 22666.9 1.21348
\(705\) 0 0
\(706\) −6385.63 −0.340406
\(707\) −10936.3 −0.581759
\(708\) 0 0
\(709\) 5717.55 0.302859 0.151430 0.988468i \(-0.451612\pi\)
0.151430 + 0.988468i \(0.451612\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 587.389 0.0309176
\(713\) −4621.50 −0.242744
\(714\) 0 0
\(715\) 0 0
\(716\) 5363.19 0.279933
\(717\) 0 0
\(718\) 1492.98 0.0776010
\(719\) −14799.9 −0.767655 −0.383827 0.923405i \(-0.625394\pi\)
−0.383827 + 0.923405i \(0.625394\pi\)
\(720\) 0 0
\(721\) −9142.12 −0.472219
\(722\) 10853.4 0.559451
\(723\) 0 0
\(724\) 6885.52 0.353451
\(725\) 0 0
\(726\) 0 0
\(727\) −6410.40 −0.327027 −0.163513 0.986541i \(-0.552283\pi\)
−0.163513 + 0.986541i \(0.552283\pi\)
\(728\) −474.985 −0.0241815
\(729\) 0 0
\(730\) 0 0
\(731\) 18880.5 0.955292
\(732\) 0 0
\(733\) 17869.2 0.900431 0.450215 0.892920i \(-0.351347\pi\)
0.450215 + 0.892920i \(0.351347\pi\)
\(734\) 24047.8 1.20929
\(735\) 0 0
\(736\) −2335.57 −0.116971
\(737\) −7036.21 −0.351672
\(738\) 0 0
\(739\) 11099.7 0.552516 0.276258 0.961084i \(-0.410906\pi\)
0.276258 + 0.961084i \(0.410906\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 13789.0 0.682225
\(743\) −10857.6 −0.536107 −0.268053 0.963404i \(-0.586380\pi\)
−0.268053 + 0.963404i \(0.586380\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 19276.2 0.946049
\(747\) 0 0
\(748\) −4046.13 −0.197782
\(749\) −27948.3 −1.36343
\(750\) 0 0
\(751\) −32233.9 −1.56622 −0.783111 0.621882i \(-0.786368\pi\)
−0.783111 + 0.621882i \(0.786368\pi\)
\(752\) −6336.22 −0.307258
\(753\) 0 0
\(754\) 633.880 0.0306161
\(755\) 0 0
\(756\) 0 0
\(757\) 9410.28 0.451813 0.225906 0.974149i \(-0.427466\pi\)
0.225906 + 0.974149i \(0.427466\pi\)
\(758\) −6729.91 −0.322482
\(759\) 0 0
\(760\) 0 0
\(761\) 34767.1 1.65612 0.828060 0.560640i \(-0.189445\pi\)
0.828060 + 0.560640i \(0.189445\pi\)
\(762\) 0 0
\(763\) 37766.8 1.79194
\(764\) 6441.68 0.305042
\(765\) 0 0
\(766\) 31044.2 1.46432
\(767\) 28.9932 0.00136491
\(768\) 0 0
\(769\) −29086.5 −1.36396 −0.681980 0.731371i \(-0.738881\pi\)
−0.681980 + 0.731371i \(0.738881\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3744.79 0.174583
\(773\) 2942.77 0.136927 0.0684633 0.997654i \(-0.478190\pi\)
0.0684633 + 0.997654i \(0.478190\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 33465.7 1.54813
\(777\) 0 0
\(778\) 12179.9 0.561275
\(779\) −19744.0 −0.908091
\(780\) 0 0
\(781\) −31996.0 −1.46595
\(782\) −3552.39 −0.162446
\(783\) 0 0
\(784\) −1218.93 −0.0555270
\(785\) 0 0
\(786\) 0 0
\(787\) −33829.1 −1.53225 −0.766124 0.642693i \(-0.777817\pi\)
−0.766124 + 0.642693i \(0.777817\pi\)
\(788\) −1998.41 −0.0903434
\(789\) 0 0
\(790\) 0 0
\(791\) 18822.4 0.846076
\(792\) 0 0
\(793\) 739.392 0.0331105
\(794\) −17412.2 −0.778256
\(795\) 0 0
\(796\) −3020.60 −0.134500
\(797\) 22904.7 1.01797 0.508987 0.860774i \(-0.330020\pi\)
0.508987 + 0.860774i \(0.330020\pi\)
\(798\) 0 0
\(799\) 7434.89 0.329196
\(800\) 0 0
\(801\) 0 0
\(802\) 2260.79 0.0995402
\(803\) 20438.3 0.898199
\(804\) 0 0
\(805\) 0 0
\(806\) 419.324 0.0183251
\(807\) 0 0
\(808\) 13906.0 0.605461
\(809\) −30665.7 −1.33269 −0.666347 0.745642i \(-0.732143\pi\)
−0.666347 + 0.745642i \(0.732143\pi\)
\(810\) 0 0
\(811\) −35135.2 −1.52129 −0.760644 0.649169i \(-0.775117\pi\)
−0.760644 + 0.649169i \(0.775117\pi\)
\(812\) −9464.57 −0.409041
\(813\) 0 0
\(814\) 41236.4 1.77560
\(815\) 0 0
\(816\) 0 0
\(817\) −17775.3 −0.761174
\(818\) −36306.1 −1.55185
\(819\) 0 0
\(820\) 0 0
\(821\) 34437.0 1.46390 0.731948 0.681361i \(-0.238611\pi\)
0.731948 + 0.681361i \(0.238611\pi\)
\(822\) 0 0
\(823\) 42801.8 1.81285 0.906426 0.422365i \(-0.138800\pi\)
0.906426 + 0.422365i \(0.138800\pi\)
\(824\) 11624.6 0.491459
\(825\) 0 0
\(826\) 1362.03 0.0573742
\(827\) −23589.1 −0.991868 −0.495934 0.868360i \(-0.665174\pi\)
−0.495934 + 0.868360i \(0.665174\pi\)
\(828\) 0 0
\(829\) −26766.2 −1.12139 −0.560693 0.828024i \(-0.689465\pi\)
−0.560693 + 0.828024i \(0.689465\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 573.911 0.0239144
\(833\) 1430.28 0.0594915
\(834\) 0 0
\(835\) 0 0
\(836\) 3809.29 0.157592
\(837\) 0 0
\(838\) 22802.7 0.939985
\(839\) −30334.3 −1.24822 −0.624110 0.781336i \(-0.714538\pi\)
−0.624110 + 0.781336i \(0.714538\pi\)
\(840\) 0 0
\(841\) 40612.1 1.66518
\(842\) 25136.1 1.02880
\(843\) 0 0
\(844\) −6531.69 −0.266386
\(845\) 0 0
\(846\) 0 0
\(847\) −4952.58 −0.200912
\(848\) −13043.5 −0.528201
\(849\) 0 0
\(850\) 0 0
\(851\) −11507.1 −0.463523
\(852\) 0 0
\(853\) 6533.77 0.262265 0.131133 0.991365i \(-0.458139\pi\)
0.131133 + 0.991365i \(0.458139\pi\)
\(854\) 34734.8 1.39180
\(855\) 0 0
\(856\) 35537.5 1.41898
\(857\) 37553.0 1.49683 0.748417 0.663228i \(-0.230814\pi\)
0.748417 + 0.663228i \(0.230814\pi\)
\(858\) 0 0
\(859\) 36637.9 1.45526 0.727631 0.685969i \(-0.240621\pi\)
0.727631 + 0.685969i \(0.240621\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −19851.7 −0.784400
\(863\) 14614.7 0.576467 0.288233 0.957560i \(-0.406932\pi\)
0.288233 + 0.957560i \(0.406932\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 10610.0 0.416330
\(867\) 0 0
\(868\) −6260.99 −0.244829
\(869\) 24405.0 0.952686
\(870\) 0 0
\(871\) −178.152 −0.00693047
\(872\) −48022.2 −1.86495
\(873\) 0 0
\(874\) 3344.45 0.129437
\(875\) 0 0
\(876\) 0 0
\(877\) 1388.56 0.0534646 0.0267323 0.999643i \(-0.491490\pi\)
0.0267323 + 0.999643i \(0.491490\pi\)
\(878\) 11633.8 0.447177
\(879\) 0 0
\(880\) 0 0
\(881\) 23664.2 0.904957 0.452478 0.891775i \(-0.350540\pi\)
0.452478 + 0.891775i \(0.350540\pi\)
\(882\) 0 0
\(883\) 49607.6 1.89063 0.945317 0.326152i \(-0.105752\pi\)
0.945317 + 0.326152i \(0.105752\pi\)
\(884\) −102.445 −0.00389774
\(885\) 0 0
\(886\) 37830.9 1.43448
\(887\) 11477.0 0.434454 0.217227 0.976121i \(-0.430299\pi\)
0.217227 + 0.976121i \(0.430299\pi\)
\(888\) 0 0
\(889\) −16660.8 −0.628556
\(890\) 0 0
\(891\) 0 0
\(892\) 4564.19 0.171323
\(893\) −6999.69 −0.262302
\(894\) 0 0
\(895\) 0 0
\(896\) 13841.6 0.516087
\(897\) 0 0
\(898\) −13424.6 −0.498870
\(899\) 42999.4 1.59523
\(900\) 0 0
\(901\) 15305.1 0.565914
\(902\) −39138.1 −1.44474
\(903\) 0 0
\(904\) −23933.4 −0.880547
\(905\) 0 0
\(906\) 0 0
\(907\) −11733.8 −0.429563 −0.214782 0.976662i \(-0.568904\pi\)
−0.214782 + 0.976662i \(0.568904\pi\)
\(908\) −1883.58 −0.0688424
\(909\) 0 0
\(910\) 0 0
\(911\) −35013.4 −1.27338 −0.636688 0.771122i \(-0.719696\pi\)
−0.636688 + 0.771122i \(0.719696\pi\)
\(912\) 0 0
\(913\) 3220.92 0.116755
\(914\) −129.920 −0.00470174
\(915\) 0 0
\(916\) −3078.00 −0.111026
\(917\) 28262.9 1.01780
\(918\) 0 0
\(919\) 16026.6 0.575264 0.287632 0.957741i \(-0.407132\pi\)
0.287632 + 0.957741i \(0.407132\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 7803.07 0.278721
\(923\) −810.116 −0.0288898
\(924\) 0 0
\(925\) 0 0
\(926\) 32257.8 1.14477
\(927\) 0 0
\(928\) 21730.7 0.768691
\(929\) 25886.8 0.914229 0.457114 0.889408i \(-0.348883\pi\)
0.457114 + 0.889408i \(0.348883\pi\)
\(930\) 0 0
\(931\) −1346.56 −0.0474026
\(932\) −1820.57 −0.0639857
\(933\) 0 0
\(934\) −32585.5 −1.14157
\(935\) 0 0
\(936\) 0 0
\(937\) 6331.15 0.220736 0.110368 0.993891i \(-0.464797\pi\)
0.110368 + 0.993891i \(0.464797\pi\)
\(938\) −8369.13 −0.291324
\(939\) 0 0
\(940\) 0 0
\(941\) −28754.7 −0.996149 −0.498075 0.867134i \(-0.665959\pi\)
−0.498075 + 0.867134i \(0.665959\pi\)
\(942\) 0 0
\(943\) 10921.6 0.377153
\(944\) −1288.39 −0.0444210
\(945\) 0 0
\(946\) −35235.6 −1.21100
\(947\) −29240.7 −1.00337 −0.501687 0.865049i \(-0.667287\pi\)
−0.501687 + 0.865049i \(0.667287\pi\)
\(948\) 0 0
\(949\) 517.484 0.0177010
\(950\) 0 0
\(951\) 0 0
\(952\) −24767.0 −0.843176
\(953\) −28758.3 −0.977517 −0.488758 0.872419i \(-0.662550\pi\)
−0.488758 + 0.872419i \(0.662550\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −5270.27 −0.178298
\(957\) 0 0
\(958\) 21087.1 0.711161
\(959\) 1376.35 0.0463448
\(960\) 0 0
\(961\) −1346.05 −0.0451831
\(962\) 1044.08 0.0349920
\(963\) 0 0
\(964\) −6593.36 −0.220288
\(965\) 0 0
\(966\) 0 0
\(967\) −44695.1 −1.48635 −0.743174 0.669099i \(-0.766680\pi\)
−0.743174 + 0.669099i \(0.766680\pi\)
\(968\) 6297.42 0.209098
\(969\) 0 0
\(970\) 0 0
\(971\) −30462.4 −1.00678 −0.503391 0.864059i \(-0.667914\pi\)
−0.503391 + 0.864059i \(0.667914\pi\)
\(972\) 0 0
\(973\) −4407.24 −0.145210
\(974\) 48122.2 1.58310
\(975\) 0 0
\(976\) −32856.7 −1.07758
\(977\) −11808.0 −0.386665 −0.193332 0.981133i \(-0.561930\pi\)
−0.193332 + 0.981133i \(0.561930\pi\)
\(978\) 0 0
\(979\) 956.902 0.0312387
\(980\) 0 0
\(981\) 0 0
\(982\) 48016.1 1.56034
\(983\) −24702.9 −0.801526 −0.400763 0.916182i \(-0.631255\pi\)
−0.400763 + 0.916182i \(0.631255\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 33052.2 1.06754
\(987\) 0 0
\(988\) 96.4485 0.00310570
\(989\) 9832.55 0.316134
\(990\) 0 0
\(991\) 14443.0 0.462965 0.231482 0.972839i \(-0.425642\pi\)
0.231482 + 0.972839i \(0.425642\pi\)
\(992\) 14375.3 0.460096
\(993\) 0 0
\(994\) −38057.2 −1.21439
\(995\) 0 0
\(996\) 0 0
\(997\) −47669.3 −1.51425 −0.757123 0.653273i \(-0.773396\pi\)
−0.757123 + 0.653273i \(0.773396\pi\)
\(998\) 836.551 0.0265336
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.4.a.bk.1.6 16
3.2 odd 2 2025.4.a.bl.1.11 16
5.2 odd 4 405.4.b.e.244.6 16
5.3 odd 4 405.4.b.e.244.11 16
5.4 even 2 inner 2025.4.a.bk.1.11 16
9.4 even 3 225.4.e.g.151.11 32
9.7 even 3 225.4.e.g.76.11 32
15.2 even 4 405.4.b.f.244.11 16
15.8 even 4 405.4.b.f.244.6 16
15.14 odd 2 2025.4.a.bl.1.6 16
45.2 even 12 135.4.j.a.64.11 32
45.4 even 6 225.4.e.g.151.6 32
45.7 odd 12 45.4.j.a.4.6 32
45.13 odd 12 45.4.j.a.34.6 yes 32
45.22 odd 12 45.4.j.a.34.11 yes 32
45.23 even 12 135.4.j.a.19.11 32
45.32 even 12 135.4.j.a.19.6 32
45.34 even 6 225.4.e.g.76.6 32
45.38 even 12 135.4.j.a.64.6 32
45.43 odd 12 45.4.j.a.4.11 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.j.a.4.6 32 45.7 odd 12
45.4.j.a.4.11 yes 32 45.43 odd 12
45.4.j.a.34.6 yes 32 45.13 odd 12
45.4.j.a.34.11 yes 32 45.22 odd 12
135.4.j.a.19.6 32 45.32 even 12
135.4.j.a.19.11 32 45.23 even 12
135.4.j.a.64.6 32 45.38 even 12
135.4.j.a.64.11 32 45.2 even 12
225.4.e.g.76.6 32 45.34 even 6
225.4.e.g.76.11 32 9.7 even 3
225.4.e.g.151.6 32 45.4 even 6
225.4.e.g.151.11 32 9.4 even 3
405.4.b.e.244.6 16 5.2 odd 4
405.4.b.e.244.11 16 5.3 odd 4
405.4.b.f.244.6 16 15.8 even 4
405.4.b.f.244.11 16 15.2 even 4
2025.4.a.bk.1.6 16 1.1 even 1 trivial
2025.4.a.bk.1.11 16 5.4 even 2 inner
2025.4.a.bl.1.6 16 15.14 odd 2
2025.4.a.bl.1.11 16 3.2 odd 2