Properties

Label 2-45e2-1.1-c3-0-120
Degree $2$
Conductor $2025$
Sign $-1$
Analytic cond. $119.478$
Root an. cond. $10.9306$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.46·2-s − 1.92·4-s − 19.2·7-s + 24.4·8-s + 39.8·11-s + 1.00·13-s + 47.4·14-s − 44.8·16-s + 52.6·17-s − 49.5·19-s − 98.1·22-s + 27.4·23-s − 2.48·26-s + 37.1·28-s − 254.·29-s − 168.·31-s − 85.2·32-s − 129.·34-s − 419.·37-s + 122.·38-s + 398.·41-s + 358.·43-s − 76.8·44-s − 67.5·46-s + 141.·47-s + 27.1·49-s − 1.94·52-s + ⋯
L(s)  = 1  − 0.871·2-s − 0.241·4-s − 1.03·7-s + 1.08·8-s + 1.09·11-s + 0.0215·13-s + 0.904·14-s − 0.700·16-s + 0.750·17-s − 0.598·19-s − 0.951·22-s + 0.248·23-s − 0.0187·26-s + 0.250·28-s − 1.63·29-s − 0.977·31-s − 0.470·32-s − 0.653·34-s − 1.86·37-s + 0.521·38-s + 1.51·41-s + 1.27·43-s − 0.263·44-s − 0.216·46-s + 0.438·47-s + 0.0792·49-s − 0.00519·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(119.478\)
Root analytic conductor: \(10.9306\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2025,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 2.46T + 8T^{2} \)
7 \( 1 + 19.2T + 343T^{2} \)
11 \( 1 - 39.8T + 1.33e3T^{2} \)
13 \( 1 - 1.00T + 2.19e3T^{2} \)
17 \( 1 - 52.6T + 4.91e3T^{2} \)
19 \( 1 + 49.5T + 6.85e3T^{2} \)
23 \( 1 - 27.4T + 1.21e4T^{2} \)
29 \( 1 + 254.T + 2.43e4T^{2} \)
31 \( 1 + 168.T + 2.97e4T^{2} \)
37 \( 1 + 419.T + 5.06e4T^{2} \)
41 \( 1 - 398.T + 6.89e4T^{2} \)
43 \( 1 - 358.T + 7.95e4T^{2} \)
47 \( 1 - 141.T + 1.03e5T^{2} \)
53 \( 1 - 290.T + 1.48e5T^{2} \)
59 \( 1 - 28.7T + 2.05e5T^{2} \)
61 \( 1 - 732.T + 2.26e5T^{2} \)
67 \( 1 + 176.T + 3.00e5T^{2} \)
71 \( 1 + 802.T + 3.57e5T^{2} \)
73 \( 1 - 512.T + 3.89e5T^{2} \)
79 \( 1 - 612.T + 4.93e5T^{2} \)
83 \( 1 - 80.8T + 5.71e5T^{2} \)
89 \( 1 - 24.0T + 7.04e5T^{2} \)
97 \( 1 - 1.36e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.731221171581268668889664226321, −7.58724801377701528016916880769, −7.08619552602457123502233448608, −6.12857088796005941089062106986, −5.29777075769963748271853839064, −4.03769231792029038535950663614, −3.55342701116802880321805743148, −2.09346905993720968761119938402, −1.00451559682531319899016030355, 0, 1.00451559682531319899016030355, 2.09346905993720968761119938402, 3.55342701116802880321805743148, 4.03769231792029038535950663614, 5.29777075769963748271853839064, 6.12857088796005941089062106986, 7.08619552602457123502233448608, 7.58724801377701528016916880769, 8.731221171581268668889664226321

Graph of the $Z$-function along the critical line