Properties

Label 2025.2.b.a
Level $2025$
Weight $2$
Character orbit 2025.b
Analytic conductor $16.170$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2025,2,Mod(649,2025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2025.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2025.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1697064093\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 405)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} - 2 q^{4} - 5 q^{11} + 2 \beta q^{13} - 4 q^{16} - 2 \beta q^{17} + 5 q^{19} - 5 \beta q^{22} - 3 \beta q^{23} - 8 q^{26} - 5 q^{29} - 9 q^{31} - 4 \beta q^{32} + 8 q^{34} + 5 \beta q^{37} + 5 \beta q^{38} - 7 q^{41} - \beta q^{43} + 10 q^{44} + 12 q^{46} + \beta q^{47} + 7 q^{49} - 4 \beta q^{52} - 4 \beta q^{53} - 5 \beta q^{58} - q^{59} - 2 q^{61} - 9 \beta q^{62} + 8 q^{64} - 3 \beta q^{67} + 4 \beta q^{68} - q^{71} - 4 \beta q^{73} - 20 q^{74} - 10 q^{76} - 12 q^{79} - 7 \beta q^{82} - 3 \beta q^{83} + 4 q^{86} - 9 q^{89} + 6 \beta q^{92} - 4 q^{94} - 7 \beta q^{97} + 7 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{4} - 10 q^{11} - 8 q^{16} + 10 q^{19} - 16 q^{26} - 10 q^{29} - 18 q^{31} + 16 q^{34} - 14 q^{41} + 20 q^{44} + 24 q^{46} + 14 q^{49} - 2 q^{59} - 4 q^{61} + 16 q^{64} - 2 q^{71} - 40 q^{74} - 20 q^{76} - 24 q^{79} + 8 q^{86} - 18 q^{89} - 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2025\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(1702\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.00000i
1.00000i
2.00000i 0 −2.00000 0 0 0 0 0 0
649.2 2.00000i 0 −2.00000 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2025.2.b.a 2
3.b odd 2 1 2025.2.b.b 2
5.b even 2 1 inner 2025.2.b.a 2
5.c odd 4 1 405.2.a.a 1
5.c odd 4 1 2025.2.a.f 1
15.d odd 2 1 2025.2.b.b 2
15.e even 4 1 405.2.a.f yes 1
15.e even 4 1 2025.2.a.a 1
20.e even 4 1 6480.2.a.f 1
45.k odd 12 2 405.2.e.g 2
45.l even 12 2 405.2.e.a 2
60.l odd 4 1 6480.2.a.r 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
405.2.a.a 1 5.c odd 4 1
405.2.a.f yes 1 15.e even 4 1
405.2.e.a 2 45.l even 12 2
405.2.e.g 2 45.k odd 12 2
2025.2.a.a 1 15.e even 4 1
2025.2.a.f 1 5.c odd 4 1
2025.2.b.a 2 1.a even 1 1 trivial
2025.2.b.a 2 5.b even 2 1 inner
2025.2.b.b 2 3.b odd 2 1
2025.2.b.b 2 15.d odd 2 1
6480.2.a.f 1 20.e even 4 1
6480.2.a.r 1 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2025, [\chi])\):

\( T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T - 5)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T + 5)^{2} \) Copy content Toggle raw display
$31$ \( (T + 9)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 100 \) Copy content Toggle raw display
$41$ \( (T + 7)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 4 \) Copy content Toggle raw display
$47$ \( T^{2} + 4 \) Copy content Toggle raw display
$53$ \( T^{2} + 64 \) Copy content Toggle raw display
$59$ \( (T + 1)^{2} \) Copy content Toggle raw display
$61$ \( (T + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 36 \) Copy content Toggle raw display
$71$ \( (T + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 64 \) Copy content Toggle raw display
$79$ \( (T + 12)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 36 \) Copy content Toggle raw display
$89$ \( (T + 9)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 196 \) Copy content Toggle raw display
show more
show less