Properties

Label 2025.2.b
Level $2025$
Weight $2$
Character orbit 2025.b
Rep. character $\chi_{2025}(649,\cdot)$
Character field $\Q$
Dimension $68$
Newform subspaces $16$
Sturm bound $540$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2025.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(540\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2025, [\chi])\).

Total New Old
Modular forms 306 76 230
Cusp forms 234 68 166
Eisenstein series 72 8 64

Trace form

\( 68 q - 68 q^{4} + 68 q^{16} + 8 q^{19} + 16 q^{31} + 24 q^{34} - 48 q^{46} - 56 q^{61} - 32 q^{64} - 92 q^{76} - 4 q^{79} + 44 q^{91} - 60 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2025, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2025.2.b.a 2025.b 5.b $2$ $16.170$ \(\Q(\sqrt{-1}) \) None 405.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}-2 q^{4}-5 q^{11}+2\beta q^{13}+\cdots\)
2025.2.b.b 2025.b 5.b $2$ $16.170$ \(\Q(\sqrt{-1}) \) None 405.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}-2 q^{4}+5 q^{11}-2\beta q^{13}+\cdots\)
2025.2.b.c 2025.b 5.b $2$ $16.170$ \(\Q(\sqrt{-1}) \) None 45.2.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}-3 i q^{7}+3 i q^{8}-2 q^{11}+\cdots\)
2025.2.b.d 2025.b 5.b $2$ $16.170$ \(\Q(\sqrt{-1}) \) None 45.2.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}+3 i q^{7}+3 i q^{8}+2 q^{11}+\cdots\)
2025.2.b.e 2025.b 5.b $2$ $16.170$ \(\Q(\sqrt{-1}) \) None 405.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 q^{4}-\beta q^{7}-3 q^{11}-2\beta q^{13}+\cdots\)
2025.2.b.f 2025.b 5.b $2$ $16.170$ \(\Q(\sqrt{-1}) \) None 405.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 q^{4}-\beta q^{7}+3 q^{11}-2\beta q^{13}+\cdots\)
2025.2.b.g 2025.b 5.b $4$ $16.170$ \(\Q(\zeta_{12})\) None 405.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{3} q^{2}+(2\beta_1-2)q^{4}+(\beta_{3}+2\beta_{2})q^{7}+\cdots\)
2025.2.b.h 2025.b 5.b $4$ $16.170$ \(\Q(\zeta_{12})\) None 405.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{3} q^{2}+(2\beta_1-2)q^{4}+(-\beta_{3}-2\beta_{2})q^{7}+\cdots\)
2025.2.b.i 2025.b 5.b $4$ $16.170$ \(\Q(i, \sqrt{13})\) None 2025.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-2+\beta _{3})q^{4}+(-\beta _{1}+2\beta _{2}+\cdots)q^{7}+\cdots\)
2025.2.b.j 2025.b 5.b $4$ $16.170$ \(\Q(i, \sqrt{13})\) None 2025.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-2+\beta _{3})q^{4}+(\beta _{1}-2\beta _{2}+\cdots)q^{7}+\cdots\)
2025.2.b.k 2025.b 5.b $4$ $16.170$ \(\Q(\zeta_{12})\) None 81.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{2} q^{2}-q^{4}-2\beta_1 q^{7}+\beta_{2} q^{8}+\cdots\)
2025.2.b.l 2025.b 5.b $6$ $16.170$ 6.0.5089536.1 None 45.2.e.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}+(-2+\beta _{3})q^{4}+(-\beta _{4}-\beta _{5})q^{7}+\cdots\)
2025.2.b.m 2025.b 5.b $6$ $16.170$ 6.0.5089536.1 None 45.2.e.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}+(-2+\beta _{3})q^{4}+(\beta _{4}+\beta _{5})q^{7}+\cdots\)
2025.2.b.n 2025.b 5.b $8$ $16.170$ 8.0.\(\cdots\).6 None 225.2.e.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{4}-\beta _{6})q^{4}+(-\beta _{2}+\cdots)q^{7}+\cdots\)
2025.2.b.o 2025.b 5.b $8$ $16.170$ 8.0.\(\cdots\).6 None 225.2.e.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{4}-\beta _{6})q^{4}+(\beta _{2}+\cdots)q^{7}+\cdots\)
2025.2.b.p 2025.b 5.b $8$ $16.170$ 8.0.49787136.1 None 2025.2.a.u \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{2}+\beta _{4}q^{4}+(-\beta _{1}+2\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2025, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2025, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 2}\)