Defining parameters
Level: | \( N \) | \(=\) | \( 2025 = 3^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2025.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 16 \) | ||
Sturm bound: | \(540\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2025, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 306 | 76 | 230 |
Cusp forms | 234 | 68 | 166 |
Eisenstein series | 72 | 8 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2025, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2025, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2025, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 2}\)