Properties

Label 2023.4.a.l.1.12
Level $2023$
Weight $4$
Character 2023.1
Self dual yes
Analytic conductor $119.361$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,3,3,65,-12,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 76 x^{10} + 195 x^{9} + 2126 x^{8} - 4299 x^{7} - 26508 x^{6} + 35641 x^{5} + \cdots + 17280 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(5.43473\) of defining polynomial
Character \(\chi\) \(=\) 2023.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.43473 q^{2} +5.22551 q^{3} +21.5363 q^{4} -10.5392 q^{5} +28.3992 q^{6} -7.00000 q^{7} +73.5664 q^{8} +0.305909 q^{9} -57.2779 q^{10} +64.6024 q^{11} +112.538 q^{12} +66.6746 q^{13} -38.0431 q^{14} -55.0728 q^{15} +227.523 q^{16} +1.66253 q^{18} +34.1490 q^{19} -226.976 q^{20} -36.5785 q^{21} +351.097 q^{22} -180.191 q^{23} +384.422 q^{24} -13.9245 q^{25} +362.359 q^{26} -139.490 q^{27} -150.754 q^{28} +85.0745 q^{29} -299.306 q^{30} +175.861 q^{31} +647.996 q^{32} +337.580 q^{33} +73.7746 q^{35} +6.58815 q^{36} -247.618 q^{37} +185.591 q^{38} +348.409 q^{39} -775.333 q^{40} +148.720 q^{41} -198.795 q^{42} +186.861 q^{43} +1391.30 q^{44} -3.22404 q^{45} -979.288 q^{46} +199.660 q^{47} +1188.92 q^{48} +49.0000 q^{49} -75.6762 q^{50} +1435.93 q^{52} +425.750 q^{53} -758.092 q^{54} -680.859 q^{55} -514.965 q^{56} +178.446 q^{57} +462.357 q^{58} +551.016 q^{59} -1186.07 q^{60} -558.213 q^{61} +955.760 q^{62} -2.14136 q^{63} +1701.50 q^{64} -702.700 q^{65} +1834.66 q^{66} +490.599 q^{67} -941.587 q^{69} +400.946 q^{70} -341.890 q^{71} +22.5046 q^{72} +932.646 q^{73} -1345.74 q^{74} -72.7628 q^{75} +735.445 q^{76} -452.217 q^{77} +1893.51 q^{78} +96.3239 q^{79} -2397.92 q^{80} -737.166 q^{81} +808.253 q^{82} -191.735 q^{83} -787.768 q^{84} +1015.54 q^{86} +444.557 q^{87} +4752.56 q^{88} +21.0193 q^{89} -17.5218 q^{90} -466.723 q^{91} -3880.64 q^{92} +918.965 q^{93} +1085.10 q^{94} -359.905 q^{95} +3386.11 q^{96} +779.904 q^{97} +266.302 q^{98} +19.7624 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} + 3 q^{3} + 65 q^{4} - 12 q^{5} - 22 q^{6} - 84 q^{7} + 78 q^{8} + 233 q^{9} + 36 q^{10} + 4 q^{11} + 6 q^{12} + 98 q^{13} - 21 q^{14} - 196 q^{15} + 429 q^{16} + 603 q^{18} - 37 q^{19} + 54 q^{20}+ \cdots + 5140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.43473 1.92147 0.960734 0.277470i \(-0.0894959\pi\)
0.960734 + 0.277470i \(0.0894959\pi\)
\(3\) 5.22551 1.00565 0.502825 0.864389i \(-0.332294\pi\)
0.502825 + 0.864389i \(0.332294\pi\)
\(4\) 21.5363 2.69204
\(5\) −10.5392 −0.942658 −0.471329 0.881958i \(-0.656226\pi\)
−0.471329 + 0.881958i \(0.656226\pi\)
\(6\) 28.3992 1.93232
\(7\) −7.00000 −0.377964
\(8\) 73.5664 3.25121
\(9\) 0.305909 0.0113300
\(10\) −57.2779 −1.81129
\(11\) 64.6024 1.77076 0.885379 0.464869i \(-0.153899\pi\)
0.885379 + 0.464869i \(0.153899\pi\)
\(12\) 112.538 2.70725
\(13\) 66.6746 1.42248 0.711239 0.702950i \(-0.248134\pi\)
0.711239 + 0.702950i \(0.248134\pi\)
\(14\) −38.0431 −0.726247
\(15\) −55.0728 −0.947983
\(16\) 227.523 3.55505
\(17\) 0 0
\(18\) 1.66253 0.0217701
\(19\) 34.1490 0.412333 0.206166 0.978517i \(-0.433901\pi\)
0.206166 + 0.978517i \(0.433901\pi\)
\(20\) −226.976 −2.53767
\(21\) −36.5785 −0.380100
\(22\) 351.097 3.40246
\(23\) −180.191 −1.63358 −0.816790 0.576936i \(-0.804248\pi\)
−0.816790 + 0.576936i \(0.804248\pi\)
\(24\) 384.422 3.26957
\(25\) −13.9245 −0.111396
\(26\) 362.359 2.73325
\(27\) −139.490 −0.994255
\(28\) −150.754 −1.01750
\(29\) 85.0745 0.544756 0.272378 0.962190i \(-0.412190\pi\)
0.272378 + 0.962190i \(0.412190\pi\)
\(30\) −299.306 −1.82152
\(31\) 175.861 1.01889 0.509446 0.860503i \(-0.329850\pi\)
0.509446 + 0.860503i \(0.329850\pi\)
\(32\) 647.996 3.57971
\(33\) 337.580 1.78076
\(34\) 0 0
\(35\) 73.7746 0.356291
\(36\) 6.58815 0.0305007
\(37\) −247.618 −1.10022 −0.550111 0.835091i \(-0.685415\pi\)
−0.550111 + 0.835091i \(0.685415\pi\)
\(38\) 185.591 0.792285
\(39\) 348.409 1.43051
\(40\) −775.333 −3.06477
\(41\) 148.720 0.566492 0.283246 0.959047i \(-0.408589\pi\)
0.283246 + 0.959047i \(0.408589\pi\)
\(42\) −198.795 −0.730349
\(43\) 186.861 0.662698 0.331349 0.943508i \(-0.392496\pi\)
0.331349 + 0.943508i \(0.392496\pi\)
\(44\) 1391.30 4.76696
\(45\) −3.22404 −0.0106803
\(46\) −979.288 −3.13887
\(47\) 199.660 0.619648 0.309824 0.950794i \(-0.399730\pi\)
0.309824 + 0.950794i \(0.399730\pi\)
\(48\) 1188.92 3.57513
\(49\) 49.0000 0.142857
\(50\) −75.6762 −0.214045
\(51\) 0 0
\(52\) 1435.93 3.82937
\(53\) 425.750 1.10342 0.551710 0.834036i \(-0.313975\pi\)
0.551710 + 0.834036i \(0.313975\pi\)
\(54\) −758.092 −1.91043
\(55\) −680.859 −1.66922
\(56\) −514.965 −1.22884
\(57\) 178.446 0.414662
\(58\) 462.357 1.04673
\(59\) 551.016 1.21587 0.607934 0.793987i \(-0.291998\pi\)
0.607934 + 0.793987i \(0.291998\pi\)
\(60\) −1186.07 −2.55201
\(61\) −558.213 −1.17167 −0.585835 0.810430i \(-0.699233\pi\)
−0.585835 + 0.810430i \(0.699233\pi\)
\(62\) 955.760 1.95777
\(63\) −2.14136 −0.00428232
\(64\) 1701.50 3.32325
\(65\) −702.700 −1.34091
\(66\) 1834.66 3.42168
\(67\) 490.599 0.894570 0.447285 0.894392i \(-0.352391\pi\)
0.447285 + 0.894392i \(0.352391\pi\)
\(68\) 0 0
\(69\) −941.587 −1.64281
\(70\) 400.946 0.684602
\(71\) −341.890 −0.571477 −0.285739 0.958308i \(-0.592239\pi\)
−0.285739 + 0.958308i \(0.592239\pi\)
\(72\) 22.5046 0.0368360
\(73\) 932.646 1.49531 0.747657 0.664085i \(-0.231179\pi\)
0.747657 + 0.664085i \(0.231179\pi\)
\(74\) −1345.74 −2.11404
\(75\) −72.7628 −0.112026
\(76\) 735.445 1.11002
\(77\) −452.217 −0.669284
\(78\) 1893.51 2.74869
\(79\) 96.3239 0.137181 0.0685904 0.997645i \(-0.478150\pi\)
0.0685904 + 0.997645i \(0.478150\pi\)
\(80\) −2397.92 −3.35119
\(81\) −737.166 −1.01120
\(82\) 808.253 1.08850
\(83\) −191.735 −0.253562 −0.126781 0.991931i \(-0.540464\pi\)
−0.126781 + 0.991931i \(0.540464\pi\)
\(84\) −787.768 −1.02324
\(85\) 0 0
\(86\) 1015.54 1.27335
\(87\) 444.557 0.547834
\(88\) 4752.56 5.75710
\(89\) 21.0193 0.0250342 0.0125171 0.999922i \(-0.496016\pi\)
0.0125171 + 0.999922i \(0.496016\pi\)
\(90\) −17.5218 −0.0205218
\(91\) −466.723 −0.537646
\(92\) −3880.64 −4.39766
\(93\) 918.965 1.02465
\(94\) 1085.10 1.19063
\(95\) −359.905 −0.388689
\(96\) 3386.11 3.59993
\(97\) 779.904 0.816364 0.408182 0.912901i \(-0.366163\pi\)
0.408182 + 0.912901i \(0.366163\pi\)
\(98\) 266.302 0.274496
\(99\) 19.7624 0.0200626
\(100\) −299.884 −0.299884
\(101\) −1732.11 −1.70645 −0.853225 0.521543i \(-0.825357\pi\)
−0.853225 + 0.521543i \(0.825357\pi\)
\(102\) 0 0
\(103\) −1046.93 −1.00153 −0.500764 0.865584i \(-0.666948\pi\)
−0.500764 + 0.865584i \(0.666948\pi\)
\(104\) 4905.01 4.62477
\(105\) 385.510 0.358304
\(106\) 2313.84 2.12019
\(107\) −1039.89 −0.939532 −0.469766 0.882791i \(-0.655662\pi\)
−0.469766 + 0.882791i \(0.655662\pi\)
\(108\) −3004.11 −2.67658
\(109\) −1692.55 −1.48731 −0.743654 0.668565i \(-0.766909\pi\)
−0.743654 + 0.668565i \(0.766909\pi\)
\(110\) −3700.29 −3.20735
\(111\) −1293.93 −1.10644
\(112\) −1592.66 −1.34368
\(113\) −1061.03 −0.883300 −0.441650 0.897188i \(-0.645607\pi\)
−0.441650 + 0.897188i \(0.645607\pi\)
\(114\) 969.806 0.796760
\(115\) 1899.07 1.53991
\(116\) 1832.19 1.46651
\(117\) 20.3964 0.0161166
\(118\) 2994.63 2.33625
\(119\) 0 0
\(120\) −4051.51 −3.08209
\(121\) 2842.47 2.13559
\(122\) −3033.74 −2.25133
\(123\) 777.137 0.569692
\(124\) 3787.41 2.74290
\(125\) 1464.16 1.04767
\(126\) −11.6377 −0.00822834
\(127\) −1218.82 −0.851599 −0.425800 0.904817i \(-0.640007\pi\)
−0.425800 + 0.904817i \(0.640007\pi\)
\(128\) 4063.24 2.80581
\(129\) 976.443 0.666442
\(130\) −3818.99 −2.57652
\(131\) 2147.01 1.43195 0.715975 0.698126i \(-0.245983\pi\)
0.715975 + 0.698126i \(0.245983\pi\)
\(132\) 7270.24 4.79389
\(133\) −239.043 −0.155847
\(134\) 2666.27 1.71889
\(135\) 1470.12 0.937242
\(136\) 0 0
\(137\) −880.855 −0.549318 −0.274659 0.961542i \(-0.588565\pi\)
−0.274659 + 0.961542i \(0.588565\pi\)
\(138\) −5117.27 −3.15660
\(139\) −604.930 −0.369133 −0.184567 0.982820i \(-0.559088\pi\)
−0.184567 + 0.982820i \(0.559088\pi\)
\(140\) 1588.84 0.959151
\(141\) 1043.33 0.623148
\(142\) −1858.08 −1.09808
\(143\) 4307.34 2.51887
\(144\) 69.6013 0.0402785
\(145\) −896.620 −0.513519
\(146\) 5068.68 2.87320
\(147\) 256.050 0.143664
\(148\) −5332.79 −2.96184
\(149\) 832.868 0.457928 0.228964 0.973435i \(-0.426466\pi\)
0.228964 + 0.973435i \(0.426466\pi\)
\(150\) −395.446 −0.215254
\(151\) −2031.83 −1.09502 −0.547510 0.836799i \(-0.684424\pi\)
−0.547510 + 0.836799i \(0.684424\pi\)
\(152\) 2512.22 1.34058
\(153\) 0 0
\(154\) −2457.68 −1.28601
\(155\) −1853.44 −0.960466
\(156\) 7503.45 3.85100
\(157\) 2464.96 1.25303 0.626513 0.779411i \(-0.284481\pi\)
0.626513 + 0.779411i \(0.284481\pi\)
\(158\) 523.495 0.263589
\(159\) 2224.76 1.10965
\(160\) −6829.38 −3.37444
\(161\) 1261.33 0.617435
\(162\) −4006.30 −1.94299
\(163\) −343.866 −0.165237 −0.0826185 0.996581i \(-0.526328\pi\)
−0.0826185 + 0.996581i \(0.526328\pi\)
\(164\) 3202.88 1.52502
\(165\) −3557.84 −1.67865
\(166\) −1042.03 −0.487211
\(167\) −304.776 −0.141223 −0.0706116 0.997504i \(-0.522495\pi\)
−0.0706116 + 0.997504i \(0.522495\pi\)
\(168\) −2690.95 −1.23578
\(169\) 2248.51 1.02345
\(170\) 0 0
\(171\) 10.4465 0.00467171
\(172\) 4024.30 1.78401
\(173\) −164.827 −0.0724368 −0.0362184 0.999344i \(-0.511531\pi\)
−0.0362184 + 0.999344i \(0.511531\pi\)
\(174\) 2416.05 1.05264
\(175\) 97.4718 0.0421039
\(176\) 14698.5 6.29513
\(177\) 2879.34 1.22274
\(178\) 114.234 0.0481024
\(179\) −1523.97 −0.636350 −0.318175 0.948032i \(-0.603070\pi\)
−0.318175 + 0.948032i \(0.603070\pi\)
\(180\) −69.4341 −0.0287517
\(181\) −276.555 −0.113570 −0.0567849 0.998386i \(-0.518085\pi\)
−0.0567849 + 0.998386i \(0.518085\pi\)
\(182\) −2536.51 −1.03307
\(183\) −2916.95 −1.17829
\(184\) −13256.0 −5.31110
\(185\) 2609.71 1.03713
\(186\) 4994.33 1.96883
\(187\) 0 0
\(188\) 4299.95 1.66812
\(189\) 976.431 0.375793
\(190\) −1955.99 −0.746853
\(191\) −802.057 −0.303847 −0.151924 0.988392i \(-0.548547\pi\)
−0.151924 + 0.988392i \(0.548547\pi\)
\(192\) 8891.21 3.34202
\(193\) −1915.04 −0.714238 −0.357119 0.934059i \(-0.616241\pi\)
−0.357119 + 0.934059i \(0.616241\pi\)
\(194\) 4238.57 1.56862
\(195\) −3671.96 −1.34849
\(196\) 1055.28 0.384577
\(197\) −2996.23 −1.08362 −0.541809 0.840502i \(-0.682260\pi\)
−0.541809 + 0.840502i \(0.682260\pi\)
\(198\) 107.404 0.0385497
\(199\) 454.246 0.161812 0.0809062 0.996722i \(-0.474219\pi\)
0.0809062 + 0.996722i \(0.474219\pi\)
\(200\) −1024.38 −0.362172
\(201\) 2563.63 0.899623
\(202\) −9413.56 −3.27889
\(203\) −595.521 −0.205898
\(204\) 0 0
\(205\) −1567.39 −0.534008
\(206\) −5689.81 −1.92441
\(207\) −55.1218 −0.0185084
\(208\) 15170.0 5.05698
\(209\) 2206.11 0.730142
\(210\) 2095.14 0.688470
\(211\) 1323.79 0.431912 0.215956 0.976403i \(-0.430713\pi\)
0.215956 + 0.976403i \(0.430713\pi\)
\(212\) 9169.10 2.97045
\(213\) −1786.55 −0.574706
\(214\) −5651.52 −1.80528
\(215\) −1969.37 −0.624698
\(216\) −10261.8 −3.23253
\(217\) −1231.03 −0.385105
\(218\) −9198.54 −2.85781
\(219\) 4873.54 1.50376
\(220\) −14663.2 −4.49361
\(221\) 0 0
\(222\) −7032.17 −2.12598
\(223\) −5389.26 −1.61835 −0.809174 0.587569i \(-0.800085\pi\)
−0.809174 + 0.587569i \(0.800085\pi\)
\(224\) −4535.97 −1.35300
\(225\) −4.25964 −0.00126212
\(226\) −5766.39 −1.69723
\(227\) −3973.06 −1.16168 −0.580839 0.814018i \(-0.697276\pi\)
−0.580839 + 0.814018i \(0.697276\pi\)
\(228\) 3843.07 1.11629
\(229\) 6571.66 1.89637 0.948183 0.317725i \(-0.102919\pi\)
0.948183 + 0.317725i \(0.102919\pi\)
\(230\) 10320.9 2.95888
\(231\) −2363.06 −0.673065
\(232\) 6258.62 1.77111
\(233\) −2089.69 −0.587554 −0.293777 0.955874i \(-0.594912\pi\)
−0.293777 + 0.955874i \(0.594912\pi\)
\(234\) 110.849 0.0309676
\(235\) −2104.27 −0.584116
\(236\) 11866.9 3.27317
\(237\) 503.341 0.137956
\(238\) 0 0
\(239\) 5242.27 1.41880 0.709402 0.704804i \(-0.248965\pi\)
0.709402 + 0.704804i \(0.248965\pi\)
\(240\) −12530.3 −3.37012
\(241\) −2572.51 −0.687592 −0.343796 0.939044i \(-0.611713\pi\)
−0.343796 + 0.939044i \(0.611713\pi\)
\(242\) 15448.0 4.10346
\(243\) −85.8315 −0.0226588
\(244\) −12021.9 −3.15419
\(245\) −516.422 −0.134665
\(246\) 4223.53 1.09464
\(247\) 2276.87 0.586535
\(248\) 12937.5 3.31263
\(249\) −1001.91 −0.254994
\(250\) 7957.31 2.01306
\(251\) 591.174 0.148664 0.0743318 0.997234i \(-0.476318\pi\)
0.0743318 + 0.997234i \(0.476318\pi\)
\(252\) −46.1171 −0.0115282
\(253\) −11640.7 −2.89267
\(254\) −6623.98 −1.63632
\(255\) 0 0
\(256\) 8470.63 2.06802
\(257\) 4304.04 1.04466 0.522332 0.852742i \(-0.325062\pi\)
0.522332 + 0.852742i \(0.325062\pi\)
\(258\) 5306.71 1.28055
\(259\) 1733.33 0.415845
\(260\) −15133.6 −3.60979
\(261\) 26.0250 0.00617206
\(262\) 11668.4 2.75145
\(263\) −8028.67 −1.88239 −0.941196 0.337860i \(-0.890297\pi\)
−0.941196 + 0.337860i \(0.890297\pi\)
\(264\) 24834.5 5.78962
\(265\) −4487.08 −1.04015
\(266\) −1299.14 −0.299456
\(267\) 109.836 0.0251756
\(268\) 10565.7 2.40822
\(269\) −6063.95 −1.37444 −0.687222 0.726447i \(-0.741170\pi\)
−0.687222 + 0.726447i \(0.741170\pi\)
\(270\) 7989.71 1.80088
\(271\) −7777.74 −1.74341 −0.871705 0.490032i \(-0.836985\pi\)
−0.871705 + 0.490032i \(0.836985\pi\)
\(272\) 0 0
\(273\) −2438.86 −0.540684
\(274\) −4787.21 −1.05550
\(275\) −899.559 −0.197256
\(276\) −20278.3 −4.42251
\(277\) 2547.88 0.552661 0.276330 0.961063i \(-0.410882\pi\)
0.276330 + 0.961063i \(0.410882\pi\)
\(278\) −3287.63 −0.709278
\(279\) 53.7975 0.0115440
\(280\) 5427.33 1.15838
\(281\) −1463.24 −0.310639 −0.155320 0.987864i \(-0.549641\pi\)
−0.155320 + 0.987864i \(0.549641\pi\)
\(282\) 5670.20 1.19736
\(283\) −798.572 −0.167739 −0.0838696 0.996477i \(-0.526728\pi\)
−0.0838696 + 0.996477i \(0.526728\pi\)
\(284\) −7363.06 −1.53844
\(285\) −1880.68 −0.390885
\(286\) 23409.2 4.83992
\(287\) −1041.04 −0.214114
\(288\) 198.228 0.0405579
\(289\) 0 0
\(290\) −4872.89 −0.986710
\(291\) 4075.39 0.820975
\(292\) 20085.8 4.02545
\(293\) −687.871 −0.137153 −0.0685766 0.997646i \(-0.521846\pi\)
−0.0685766 + 0.997646i \(0.521846\pi\)
\(294\) 1391.56 0.276046
\(295\) −5807.29 −1.14615
\(296\) −18216.4 −3.57705
\(297\) −9011.39 −1.76059
\(298\) 4526.42 0.879894
\(299\) −12014.1 −2.32373
\(300\) −1567.04 −0.301578
\(301\) −1308.03 −0.250476
\(302\) −11042.5 −2.10405
\(303\) −9051.15 −1.71609
\(304\) 7769.69 1.46586
\(305\) 5883.14 1.10448
\(306\) 0 0
\(307\) −2898.89 −0.538920 −0.269460 0.963012i \(-0.586845\pi\)
−0.269460 + 0.963012i \(0.586845\pi\)
\(308\) −9739.09 −1.80174
\(309\) −5470.76 −1.00719
\(310\) −10073.0 −1.84551
\(311\) 10436.9 1.90297 0.951484 0.307698i \(-0.0995585\pi\)
0.951484 + 0.307698i \(0.0995585\pi\)
\(312\) 25631.2 4.65089
\(313\) −2156.11 −0.389362 −0.194681 0.980867i \(-0.562367\pi\)
−0.194681 + 0.980867i \(0.562367\pi\)
\(314\) 13396.4 2.40765
\(315\) 22.5683 0.00403676
\(316\) 2074.46 0.369297
\(317\) 5739.94 1.01699 0.508497 0.861064i \(-0.330201\pi\)
0.508497 + 0.861064i \(0.330201\pi\)
\(318\) 12091.0 2.13216
\(319\) 5496.01 0.964632
\(320\) −17932.5 −3.13268
\(321\) −5433.95 −0.944839
\(322\) 6855.01 1.18638
\(323\) 0 0
\(324\) −15875.9 −2.72220
\(325\) −928.414 −0.158459
\(326\) −1868.82 −0.317498
\(327\) −8844.41 −1.49571
\(328\) 10940.8 1.84178
\(329\) −1397.62 −0.234205
\(330\) −19335.9 −3.22547
\(331\) −400.586 −0.0665202 −0.0332601 0.999447i \(-0.510589\pi\)
−0.0332601 + 0.999447i \(0.510589\pi\)
\(332\) −4129.26 −0.682598
\(333\) −75.7486 −0.0124655
\(334\) −1656.38 −0.271356
\(335\) −5170.54 −0.843273
\(336\) −8322.46 −1.35127
\(337\) 1857.70 0.300283 0.150142 0.988665i \(-0.452027\pi\)
0.150142 + 0.988665i \(0.452027\pi\)
\(338\) 12220.0 1.96652
\(339\) −5544.39 −0.888289
\(340\) 0 0
\(341\) 11361.1 1.80421
\(342\) 56.7739 0.00897655
\(343\) −343.000 −0.0539949
\(344\) 13746.7 2.15457
\(345\) 9923.60 1.54861
\(346\) −895.792 −0.139185
\(347\) 6879.42 1.06428 0.532142 0.846655i \(-0.321387\pi\)
0.532142 + 0.846655i \(0.321387\pi\)
\(348\) 9574.13 1.47479
\(349\) −8937.02 −1.37074 −0.685369 0.728196i \(-0.740359\pi\)
−0.685369 + 0.728196i \(0.740359\pi\)
\(350\) 529.733 0.0809013
\(351\) −9300.45 −1.41431
\(352\) 41862.1 6.33880
\(353\) 5562.13 0.838646 0.419323 0.907837i \(-0.362267\pi\)
0.419323 + 0.907837i \(0.362267\pi\)
\(354\) 15648.4 2.34945
\(355\) 3603.26 0.538708
\(356\) 452.678 0.0673930
\(357\) 0 0
\(358\) −8282.35 −1.22273
\(359\) −12245.0 −1.80018 −0.900090 0.435703i \(-0.856500\pi\)
−0.900090 + 0.435703i \(0.856500\pi\)
\(360\) −237.181 −0.0347237
\(361\) −5692.84 −0.829982
\(362\) −1503.00 −0.218221
\(363\) 14853.3 2.14765
\(364\) −10051.5 −1.44737
\(365\) −9829.37 −1.40957
\(366\) −15852.8 −2.26405
\(367\) 5493.09 0.781299 0.390650 0.920539i \(-0.372250\pi\)
0.390650 + 0.920539i \(0.372250\pi\)
\(368\) −40997.5 −5.80745
\(369\) 45.4947 0.00641832
\(370\) 14183.1 1.99282
\(371\) −2980.25 −0.417054
\(372\) 19791.1 2.75839
\(373\) −6030.22 −0.837086 −0.418543 0.908197i \(-0.637459\pi\)
−0.418543 + 0.908197i \(0.637459\pi\)
\(374\) 0 0
\(375\) 7650.97 1.05358
\(376\) 14688.3 2.01460
\(377\) 5672.31 0.774904
\(378\) 5306.64 0.722075
\(379\) −4622.40 −0.626482 −0.313241 0.949674i \(-0.601415\pi\)
−0.313241 + 0.949674i \(0.601415\pi\)
\(380\) −7751.03 −1.04637
\(381\) −6368.97 −0.856410
\(382\) −4358.97 −0.583833
\(383\) −8035.87 −1.07210 −0.536049 0.844187i \(-0.680084\pi\)
−0.536049 + 0.844187i \(0.680084\pi\)
\(384\) 21232.5 2.82166
\(385\) 4766.02 0.630906
\(386\) −10407.8 −1.37239
\(387\) 57.1624 0.00750834
\(388\) 16796.3 2.19768
\(389\) 8420.03 1.09746 0.548730 0.835999i \(-0.315111\pi\)
0.548730 + 0.835999i \(0.315111\pi\)
\(390\) −19956.1 −2.59107
\(391\) 0 0
\(392\) 3604.75 0.464458
\(393\) 11219.2 1.44004
\(394\) −16283.7 −2.08214
\(395\) −1015.18 −0.129315
\(396\) 425.610 0.0540094
\(397\) −6130.85 −0.775060 −0.387530 0.921857i \(-0.626672\pi\)
−0.387530 + 0.921857i \(0.626672\pi\)
\(398\) 2468.71 0.310917
\(399\) −1249.12 −0.156728
\(400\) −3168.15 −0.396019
\(401\) −7963.78 −0.991751 −0.495875 0.868394i \(-0.665153\pi\)
−0.495875 + 0.868394i \(0.665153\pi\)
\(402\) 13932.6 1.72860
\(403\) 11725.5 1.44935
\(404\) −37303.3 −4.59383
\(405\) 7769.16 0.953217
\(406\) −3236.50 −0.395627
\(407\) −15996.7 −1.94823
\(408\) 0 0
\(409\) −4182.03 −0.505594 −0.252797 0.967519i \(-0.581351\pi\)
−0.252797 + 0.967519i \(0.581351\pi\)
\(410\) −8518.37 −1.02608
\(411\) −4602.91 −0.552421
\(412\) −22547.1 −2.69616
\(413\) −3857.12 −0.459555
\(414\) −299.573 −0.0355633
\(415\) 2020.74 0.239022
\(416\) 43204.9 5.09206
\(417\) −3161.07 −0.371218
\(418\) 11989.6 1.40295
\(419\) 2117.96 0.246943 0.123472 0.992348i \(-0.460597\pi\)
0.123472 + 0.992348i \(0.460597\pi\)
\(420\) 8302.47 0.964569
\(421\) −13463.8 −1.55863 −0.779316 0.626631i \(-0.784433\pi\)
−0.779316 + 0.626631i \(0.784433\pi\)
\(422\) 7194.45 0.829906
\(423\) 61.0778 0.00702058
\(424\) 31320.9 3.58745
\(425\) 0 0
\(426\) −9709.42 −1.10428
\(427\) 3907.49 0.442850
\(428\) −22395.4 −2.52926
\(429\) 22508.0 2.53310
\(430\) −10703.0 −1.20034
\(431\) −7789.96 −0.870601 −0.435301 0.900285i \(-0.643358\pi\)
−0.435301 + 0.900285i \(0.643358\pi\)
\(432\) −31737.2 −3.53462
\(433\) −14741.8 −1.63614 −0.818068 0.575122i \(-0.804955\pi\)
−0.818068 + 0.575122i \(0.804955\pi\)
\(434\) −6690.32 −0.739967
\(435\) −4685.29 −0.516419
\(436\) −36451.2 −4.00389
\(437\) −6153.33 −0.673579
\(438\) 26486.4 2.88943
\(439\) 9291.43 1.01015 0.505075 0.863076i \(-0.331465\pi\)
0.505075 + 0.863076i \(0.331465\pi\)
\(440\) −50088.4 −5.42698
\(441\) 14.9895 0.00161856
\(442\) 0 0
\(443\) −1971.56 −0.211449 −0.105724 0.994395i \(-0.533716\pi\)
−0.105724 + 0.994395i \(0.533716\pi\)
\(444\) −27866.5 −2.97858
\(445\) −221.527 −0.0235986
\(446\) −29289.2 −3.10961
\(447\) 4352.16 0.460515
\(448\) −11910.5 −1.25607
\(449\) −13088.4 −1.37568 −0.687838 0.725864i \(-0.741440\pi\)
−0.687838 + 0.725864i \(0.741440\pi\)
\(450\) −23.1500 −0.00242512
\(451\) 9607.66 1.00312
\(452\) −22850.6 −2.37788
\(453\) −10617.3 −1.10121
\(454\) −21592.5 −2.23213
\(455\) 4918.90 0.506816
\(456\) 13127.6 1.34815
\(457\) 13830.5 1.41568 0.707839 0.706374i \(-0.249670\pi\)
0.707839 + 0.706374i \(0.249670\pi\)
\(458\) 35715.2 3.64381
\(459\) 0 0
\(460\) 40899.0 4.14549
\(461\) 3116.28 0.314837 0.157418 0.987532i \(-0.449683\pi\)
0.157418 + 0.987532i \(0.449683\pi\)
\(462\) −12842.6 −1.29327
\(463\) 10225.4 1.02638 0.513190 0.858275i \(-0.328463\pi\)
0.513190 + 0.858275i \(0.328463\pi\)
\(464\) 19356.4 1.93663
\(465\) −9685.18 −0.965892
\(466\) −11356.9 −1.12897
\(467\) 6707.56 0.664644 0.332322 0.943166i \(-0.392168\pi\)
0.332322 + 0.943166i \(0.392168\pi\)
\(468\) 439.263 0.0433866
\(469\) −3434.19 −0.338116
\(470\) −11436.1 −1.12236
\(471\) 12880.7 1.26010
\(472\) 40536.3 3.95304
\(473\) 12071.7 1.17348
\(474\) 2735.53 0.265078
\(475\) −475.510 −0.0459324
\(476\) 0 0
\(477\) 130.241 0.0125017
\(478\) 28490.3 2.72619
\(479\) 17403.2 1.66007 0.830036 0.557710i \(-0.188320\pi\)
0.830036 + 0.557710i \(0.188320\pi\)
\(480\) −35687.0 −3.39350
\(481\) −16509.9 −1.56504
\(482\) −13980.9 −1.32119
\(483\) 6591.11 0.620923
\(484\) 61216.3 5.74909
\(485\) −8219.59 −0.769551
\(486\) −466.471 −0.0435382
\(487\) 14643.4 1.36254 0.681268 0.732034i \(-0.261429\pi\)
0.681268 + 0.732034i \(0.261429\pi\)
\(488\) −41065.7 −3.80934
\(489\) −1796.87 −0.166170
\(490\) −2806.62 −0.258755
\(491\) 160.937 0.0147923 0.00739613 0.999973i \(-0.497646\pi\)
0.00739613 + 0.999973i \(0.497646\pi\)
\(492\) 16736.7 1.53363
\(493\) 0 0
\(494\) 12374.2 1.12701
\(495\) −208.281 −0.0189122
\(496\) 40012.5 3.62221
\(497\) 2393.23 0.215998
\(498\) −5445.12 −0.489963
\(499\) −719.655 −0.0645615 −0.0322807 0.999479i \(-0.510277\pi\)
−0.0322807 + 0.999479i \(0.510277\pi\)
\(500\) 31532.6 2.82036
\(501\) −1592.61 −0.142021
\(502\) 3212.87 0.285652
\(503\) −3554.49 −0.315084 −0.157542 0.987512i \(-0.550357\pi\)
−0.157542 + 0.987512i \(0.550357\pi\)
\(504\) −157.532 −0.0139227
\(505\) 18255.1 1.60860
\(506\) −63264.3 −5.55818
\(507\) 11749.6 1.02923
\(508\) −26249.0 −2.29254
\(509\) −4737.28 −0.412527 −0.206263 0.978497i \(-0.566130\pi\)
−0.206263 + 0.978497i \(0.566130\pi\)
\(510\) 0 0
\(511\) −6528.52 −0.565176
\(512\) 13529.7 1.16784
\(513\) −4763.45 −0.409964
\(514\) 23391.3 2.00729
\(515\) 11033.9 0.944099
\(516\) 21029.0 1.79409
\(517\) 12898.5 1.09725
\(518\) 9420.18 0.799033
\(519\) −861.305 −0.0728460
\(520\) −51695.1 −4.35957
\(521\) 558.439 0.0469590 0.0234795 0.999724i \(-0.492526\pi\)
0.0234795 + 0.999724i \(0.492526\pi\)
\(522\) 141.439 0.0118594
\(523\) −20801.7 −1.73919 −0.869593 0.493769i \(-0.835619\pi\)
−0.869593 + 0.493769i \(0.835619\pi\)
\(524\) 46238.8 3.85487
\(525\) 509.340 0.0423417
\(526\) −43633.7 −3.61696
\(527\) 0 0
\(528\) 76807.2 6.33069
\(529\) 20301.6 1.66858
\(530\) −24386.1 −1.99861
\(531\) 168.561 0.0137757
\(532\) −5148.12 −0.419547
\(533\) 9915.85 0.805822
\(534\) 596.932 0.0483741
\(535\) 10959.6 0.885657
\(536\) 36091.6 2.90843
\(537\) −7963.50 −0.639945
\(538\) −32955.9 −2.64095
\(539\) 3165.52 0.252966
\(540\) 31661.0 2.52310
\(541\) 14320.8 1.13808 0.569038 0.822311i \(-0.307316\pi\)
0.569038 + 0.822311i \(0.307316\pi\)
\(542\) −42269.9 −3.34991
\(543\) −1445.14 −0.114211
\(544\) 0 0
\(545\) 17838.1 1.40202
\(546\) −13254.6 −1.03891
\(547\) 12017.1 0.939334 0.469667 0.882844i \(-0.344374\pi\)
0.469667 + 0.882844i \(0.344374\pi\)
\(548\) −18970.4 −1.47879
\(549\) −170.762 −0.0132750
\(550\) −4888.86 −0.379021
\(551\) 2905.21 0.224621
\(552\) −69269.1 −5.34110
\(553\) −674.267 −0.0518495
\(554\) 13847.0 1.06192
\(555\) 13637.0 1.04299
\(556\) −13028.0 −0.993722
\(557\) −1072.46 −0.0815826 −0.0407913 0.999168i \(-0.512988\pi\)
−0.0407913 + 0.999168i \(0.512988\pi\)
\(558\) 292.375 0.0221814
\(559\) 12458.9 0.942674
\(560\) 16785.4 1.26663
\(561\) 0 0
\(562\) −7952.33 −0.596884
\(563\) −8076.90 −0.604620 −0.302310 0.953210i \(-0.597758\pi\)
−0.302310 + 0.953210i \(0.597758\pi\)
\(564\) 22469.4 1.67754
\(565\) 11182.4 0.832649
\(566\) −4340.03 −0.322306
\(567\) 5160.16 0.382198
\(568\) −25151.6 −1.85799
\(569\) −1762.48 −0.129854 −0.0649271 0.997890i \(-0.520681\pi\)
−0.0649271 + 0.997890i \(0.520681\pi\)
\(570\) −10221.0 −0.751072
\(571\) 2378.41 0.174314 0.0871569 0.996195i \(-0.472222\pi\)
0.0871569 + 0.996195i \(0.472222\pi\)
\(572\) 92764.3 6.78089
\(573\) −4191.15 −0.305564
\(574\) −5657.77 −0.411413
\(575\) 2509.07 0.181975
\(576\) 520.504 0.0376522
\(577\) −10838.1 −0.781970 −0.390985 0.920397i \(-0.627866\pi\)
−0.390985 + 0.920397i \(0.627866\pi\)
\(578\) 0 0
\(579\) −10007.1 −0.718273
\(580\) −19309.9 −1.38241
\(581\) 1342.14 0.0958373
\(582\) 22148.7 1.57748
\(583\) 27504.5 1.95389
\(584\) 68611.4 4.86157
\(585\) −214.962 −0.0151924
\(586\) −3738.40 −0.263536
\(587\) 6455.58 0.453919 0.226959 0.973904i \(-0.427122\pi\)
0.226959 + 0.973904i \(0.427122\pi\)
\(588\) 5514.37 0.386750
\(589\) 6005.50 0.420123
\(590\) −31561.1 −2.20229
\(591\) −15656.8 −1.08974
\(592\) −56338.9 −3.91134
\(593\) −11556.4 −0.800274 −0.400137 0.916455i \(-0.631037\pi\)
−0.400137 + 0.916455i \(0.631037\pi\)
\(594\) −48974.5 −3.38291
\(595\) 0 0
\(596\) 17936.9 1.23276
\(597\) 2373.67 0.162727
\(598\) −65293.7 −4.46498
\(599\) 20334.5 1.38705 0.693526 0.720431i \(-0.256056\pi\)
0.693526 + 0.720431i \(0.256056\pi\)
\(600\) −5352.90 −0.364218
\(601\) 13583.9 0.921964 0.460982 0.887409i \(-0.347497\pi\)
0.460982 + 0.887409i \(0.347497\pi\)
\(602\) −7108.78 −0.481283
\(603\) 150.078 0.0101354
\(604\) −43758.2 −2.94784
\(605\) −29957.4 −2.01313
\(606\) −49190.6 −3.29741
\(607\) 19329.7 1.29253 0.646267 0.763111i \(-0.276329\pi\)
0.646267 + 0.763111i \(0.276329\pi\)
\(608\) 22128.4 1.47603
\(609\) −3111.90 −0.207062
\(610\) 31973.3 2.12223
\(611\) 13312.3 0.881436
\(612\) 0 0
\(613\) −1472.93 −0.0970490 −0.0485245 0.998822i \(-0.515452\pi\)
−0.0485245 + 0.998822i \(0.515452\pi\)
\(614\) −15754.7 −1.03552
\(615\) −8190.43 −0.537024
\(616\) −33267.9 −2.17598
\(617\) 6443.07 0.420402 0.210201 0.977658i \(-0.432588\pi\)
0.210201 + 0.977658i \(0.432588\pi\)
\(618\) −29732.1 −1.93528
\(619\) −7397.28 −0.480326 −0.240163 0.970733i \(-0.577201\pi\)
−0.240163 + 0.970733i \(0.577201\pi\)
\(620\) −39916.4 −2.58561
\(621\) 25134.8 1.62419
\(622\) 56721.9 3.65649
\(623\) −147.135 −0.00946202
\(624\) 79271.0 5.08554
\(625\) −13690.5 −0.876194
\(626\) −11717.9 −0.748148
\(627\) 11528.0 0.734267
\(628\) 53086.2 3.37320
\(629\) 0 0
\(630\) 122.653 0.00775651
\(631\) −24685.2 −1.55737 −0.778686 0.627414i \(-0.784113\pi\)
−0.778686 + 0.627414i \(0.784113\pi\)
\(632\) 7086.20 0.446003
\(633\) 6917.48 0.434352
\(634\) 31195.0 1.95412
\(635\) 12845.5 0.802767
\(636\) 47913.2 2.98723
\(637\) 3267.06 0.203211
\(638\) 29869.4 1.85351
\(639\) −104.587 −0.00647481
\(640\) −42823.5 −2.64492
\(641\) −15914.8 −0.980649 −0.490324 0.871540i \(-0.663122\pi\)
−0.490324 + 0.871540i \(0.663122\pi\)
\(642\) −29532.1 −1.81548
\(643\) 14705.4 0.901901 0.450951 0.892549i \(-0.351085\pi\)
0.450951 + 0.892549i \(0.351085\pi\)
\(644\) 27164.5 1.66216
\(645\) −10291.0 −0.628227
\(646\) 0 0
\(647\) −4403.14 −0.267551 −0.133775 0.991012i \(-0.542710\pi\)
−0.133775 + 0.991012i \(0.542710\pi\)
\(648\) −54230.6 −3.28762
\(649\) 35597.0 2.15301
\(650\) −5045.68 −0.304474
\(651\) −6432.75 −0.387280
\(652\) −7405.60 −0.444825
\(653\) −2775.10 −0.166306 −0.0831531 0.996537i \(-0.526499\pi\)
−0.0831531 + 0.996537i \(0.526499\pi\)
\(654\) −48067.0 −2.87396
\(655\) −22627.9 −1.34984
\(656\) 33837.2 2.01390
\(657\) 285.304 0.0169418
\(658\) −7595.70 −0.450017
\(659\) −10531.7 −0.622546 −0.311273 0.950321i \(-0.600755\pi\)
−0.311273 + 0.950321i \(0.600755\pi\)
\(660\) −76622.7 −4.51899
\(661\) −12767.3 −0.751270 −0.375635 0.926768i \(-0.622575\pi\)
−0.375635 + 0.926768i \(0.622575\pi\)
\(662\) −2177.08 −0.127817
\(663\) 0 0
\(664\) −14105.2 −0.824381
\(665\) 2519.33 0.146911
\(666\) −411.674 −0.0239520
\(667\) −15329.6 −0.889902
\(668\) −6563.75 −0.380179
\(669\) −28161.6 −1.62749
\(670\) −28100.5 −1.62032
\(671\) −36061.9 −2.07475
\(672\) −23702.7 −1.36064
\(673\) −14462.9 −0.828384 −0.414192 0.910190i \(-0.635936\pi\)
−0.414192 + 0.910190i \(0.635936\pi\)
\(674\) 10096.1 0.576985
\(675\) 1942.34 0.110756
\(676\) 48424.6 2.75516
\(677\) 9503.00 0.539483 0.269742 0.962933i \(-0.413062\pi\)
0.269742 + 0.962933i \(0.413062\pi\)
\(678\) −30132.3 −1.70682
\(679\) −5459.33 −0.308556
\(680\) 0 0
\(681\) −20761.2 −1.16824
\(682\) 61744.4 3.46674
\(683\) 11291.7 0.632600 0.316300 0.948659i \(-0.397559\pi\)
0.316300 + 0.948659i \(0.397559\pi\)
\(684\) 224.979 0.0125764
\(685\) 9283.54 0.517819
\(686\) −1864.11 −0.103750
\(687\) 34340.3 1.90708
\(688\) 42515.2 2.35592
\(689\) 28386.7 1.56959
\(690\) 53932.1 2.97560
\(691\) 8279.56 0.455817 0.227908 0.973683i \(-0.426811\pi\)
0.227908 + 0.973683i \(0.426811\pi\)
\(692\) −3549.77 −0.195003
\(693\) −138.337 −0.00758295
\(694\) 37387.8 2.04499
\(695\) 6375.50 0.347966
\(696\) 32704.4 1.78112
\(697\) 0 0
\(698\) −48570.3 −2.63383
\(699\) −10919.7 −0.590874
\(700\) 2099.19 0.113345
\(701\) −15744.7 −0.848315 −0.424157 0.905589i \(-0.639430\pi\)
−0.424157 + 0.905589i \(0.639430\pi\)
\(702\) −50545.5 −2.71755
\(703\) −8455.93 −0.453658
\(704\) 109921. 5.88467
\(705\) −10995.9 −0.587415
\(706\) 30228.7 1.61143
\(707\) 12124.8 0.644977
\(708\) 62010.4 3.29166
\(709\) −28550.2 −1.51231 −0.756154 0.654394i \(-0.772924\pi\)
−0.756154 + 0.654394i \(0.772924\pi\)
\(710\) 19582.8 1.03511
\(711\) 29.4663 0.00155425
\(712\) 1546.31 0.0813912
\(713\) −31688.6 −1.66444
\(714\) 0 0
\(715\) −45396.1 −2.37443
\(716\) −32820.7 −1.71308
\(717\) 27393.5 1.42682
\(718\) −66548.2 −3.45899
\(719\) 27719.6 1.43778 0.718891 0.695123i \(-0.244650\pi\)
0.718891 + 0.695123i \(0.244650\pi\)
\(720\) −733.544 −0.0379688
\(721\) 7328.54 0.378542
\(722\) −30939.1 −1.59478
\(723\) −13442.7 −0.691477
\(724\) −5955.98 −0.305735
\(725\) −1184.62 −0.0606839
\(726\) 80723.9 4.12664
\(727\) 10694.7 0.545590 0.272795 0.962072i \(-0.412052\pi\)
0.272795 + 0.962072i \(0.412052\pi\)
\(728\) −34335.1 −1.74800
\(729\) 19455.0 0.988415
\(730\) −53420.0 −2.70844
\(731\) 0 0
\(732\) −62820.4 −3.17200
\(733\) 15531.0 0.782608 0.391304 0.920261i \(-0.372024\pi\)
0.391304 + 0.920261i \(0.372024\pi\)
\(734\) 29853.5 1.50124
\(735\) −2698.57 −0.135426
\(736\) −116763. −5.84773
\(737\) 31693.8 1.58407
\(738\) 247.252 0.0123326
\(739\) 7026.05 0.349740 0.174870 0.984592i \(-0.444050\pi\)
0.174870 + 0.984592i \(0.444050\pi\)
\(740\) 56203.6 2.79201
\(741\) 11897.8 0.589848
\(742\) −16196.9 −0.801356
\(743\) 23896.5 1.17992 0.589958 0.807434i \(-0.299144\pi\)
0.589958 + 0.807434i \(0.299144\pi\)
\(744\) 67604.9 3.33134
\(745\) −8777.79 −0.431669
\(746\) −32772.6 −1.60843
\(747\) −58.6533 −0.00287284
\(748\) 0 0
\(749\) 7279.23 0.355110
\(750\) 41581.0 2.02443
\(751\) −5576.12 −0.270939 −0.135470 0.990781i \(-0.543254\pi\)
−0.135470 + 0.990781i \(0.543254\pi\)
\(752\) 45427.3 2.20288
\(753\) 3089.18 0.149503
\(754\) 30827.5 1.48895
\(755\) 21413.9 1.03223
\(756\) 21028.7 1.01165
\(757\) −8472.56 −0.406791 −0.203395 0.979097i \(-0.565198\pi\)
−0.203395 + 0.979097i \(0.565198\pi\)
\(758\) −25121.5 −1.20377
\(759\) −60828.7 −2.90902
\(760\) −26476.9 −1.26371
\(761\) 12055.8 0.574273 0.287137 0.957890i \(-0.407297\pi\)
0.287137 + 0.957890i \(0.407297\pi\)
\(762\) −34613.7 −1.64557
\(763\) 11847.8 0.562149
\(764\) −17273.4 −0.817969
\(765\) 0 0
\(766\) −43672.8 −2.06000
\(767\) 36738.8 1.72955
\(768\) 44263.3 2.07971
\(769\) 3250.06 0.152406 0.0762030 0.997092i \(-0.475720\pi\)
0.0762030 + 0.997092i \(0.475720\pi\)
\(770\) 25902.0 1.21227
\(771\) 22490.8 1.05057
\(772\) −41243.0 −1.92276
\(773\) 36682.0 1.70681 0.853403 0.521252i \(-0.174535\pi\)
0.853403 + 0.521252i \(0.174535\pi\)
\(774\) 310.662 0.0144270
\(775\) −2448.79 −0.113501
\(776\) 57374.7 2.65417
\(777\) 9057.52 0.418194
\(778\) 45760.6 2.10874
\(779\) 5078.64 0.233583
\(780\) −79080.6 −3.63018
\(781\) −22086.9 −1.01195
\(782\) 0 0
\(783\) −11867.0 −0.541627
\(784\) 11148.6 0.507864
\(785\) −25978.8 −1.18118
\(786\) 60973.5 2.76699
\(787\) −4957.43 −0.224540 −0.112270 0.993678i \(-0.535812\pi\)
−0.112270 + 0.993678i \(0.535812\pi\)
\(788\) −64527.9 −2.91715
\(789\) −41953.9 −1.89303
\(790\) −5517.24 −0.248474
\(791\) 7427.18 0.333856
\(792\) 1453.85 0.0652277
\(793\) −37218.7 −1.66668
\(794\) −33319.6 −1.48925
\(795\) −23447.3 −1.04602
\(796\) 9782.80 0.435606
\(797\) 1587.25 0.0705435 0.0352718 0.999378i \(-0.488770\pi\)
0.0352718 + 0.999378i \(0.488770\pi\)
\(798\) −6788.64 −0.301147
\(799\) 0 0
\(800\) −9023.05 −0.398766
\(801\) 6.42998 0.000283636 0
\(802\) −43281.0 −1.90562
\(803\) 60251.1 2.64784
\(804\) 55211.1 2.42182
\(805\) −13293.5 −0.582030
\(806\) 63725.0 2.78488
\(807\) −31687.2 −1.38221
\(808\) −127425. −5.54802
\(809\) −39593.5 −1.72068 −0.860342 0.509717i \(-0.829750\pi\)
−0.860342 + 0.509717i \(0.829750\pi\)
\(810\) 42223.3 1.83158
\(811\) −24364.8 −1.05495 −0.527475 0.849571i \(-0.676861\pi\)
−0.527475 + 0.849571i \(0.676861\pi\)
\(812\) −12825.3 −0.554287
\(813\) −40642.6 −1.75326
\(814\) −86938.0 −3.74346
\(815\) 3624.08 0.155762
\(816\) 0 0
\(817\) 6381.12 0.273252
\(818\) −22728.2 −0.971484
\(819\) −142.774 −0.00609151
\(820\) −33755.9 −1.43757
\(821\) −3226.74 −0.137167 −0.0685833 0.997645i \(-0.521848\pi\)
−0.0685833 + 0.997645i \(0.521848\pi\)
\(822\) −25015.6 −1.06146
\(823\) 32631.1 1.38208 0.691038 0.722818i \(-0.257154\pi\)
0.691038 + 0.722818i \(0.257154\pi\)
\(824\) −77019.1 −3.25618
\(825\) −4700.65 −0.198370
\(826\) −20962.4 −0.883021
\(827\) 21602.3 0.908326 0.454163 0.890919i \(-0.349938\pi\)
0.454163 + 0.890919i \(0.349938\pi\)
\(828\) −1187.12 −0.0498253
\(829\) 1356.54 0.0568329 0.0284164 0.999596i \(-0.490954\pi\)
0.0284164 + 0.999596i \(0.490954\pi\)
\(830\) 10982.2 0.459273
\(831\) 13313.9 0.555783
\(832\) 113447. 4.72725
\(833\) 0 0
\(834\) −17179.6 −0.713284
\(835\) 3212.10 0.133125
\(836\) 47511.5 1.96557
\(837\) −24530.9 −1.01304
\(838\) 11510.6 0.474494
\(839\) −27957.8 −1.15043 −0.575216 0.818002i \(-0.695082\pi\)
−0.575216 + 0.818002i \(0.695082\pi\)
\(840\) 28360.6 1.16492
\(841\) −17151.3 −0.703241
\(842\) −73172.0 −2.99486
\(843\) −7646.17 −0.312394
\(844\) 28509.6 1.16273
\(845\) −23697.6 −0.964758
\(846\) 331.942 0.0134898
\(847\) −19897.3 −0.807176
\(848\) 96868.0 3.92271
\(849\) −4172.94 −0.168687
\(850\) 0 0
\(851\) 44618.5 1.79730
\(852\) −38475.7 −1.54713
\(853\) 22197.0 0.890987 0.445494 0.895285i \(-0.353028\pi\)
0.445494 + 0.895285i \(0.353028\pi\)
\(854\) 21236.2 0.850922
\(855\) −110.098 −0.00440383
\(856\) −76500.9 −3.05461
\(857\) 28620.6 1.14079 0.570397 0.821369i \(-0.306790\pi\)
0.570397 + 0.821369i \(0.306790\pi\)
\(858\) 122325. 4.86726
\(859\) −20146.1 −0.800207 −0.400103 0.916470i \(-0.631026\pi\)
−0.400103 + 0.916470i \(0.631026\pi\)
\(860\) −42413.0 −1.68171
\(861\) −5439.96 −0.215323
\(862\) −42336.4 −1.67283
\(863\) −18676.5 −0.736680 −0.368340 0.929691i \(-0.620074\pi\)
−0.368340 + 0.929691i \(0.620074\pi\)
\(864\) −90389.1 −3.55914
\(865\) 1737.15 0.0682832
\(866\) −80117.9 −3.14378
\(867\) 0 0
\(868\) −26511.9 −1.03672
\(869\) 6222.75 0.242914
\(870\) −25463.3 −0.992284
\(871\) 32710.5 1.27251
\(872\) −124514. −4.83554
\(873\) 238.579 0.00924936
\(874\) −33441.7 −1.29426
\(875\) −10249.1 −0.395981
\(876\) 104958. 4.04819
\(877\) 26947.5 1.03757 0.518786 0.854904i \(-0.326384\pi\)
0.518786 + 0.854904i \(0.326384\pi\)
\(878\) 50496.4 1.94097
\(879\) −3594.48 −0.137928
\(880\) −154911. −5.93415
\(881\) −35309.6 −1.35030 −0.675148 0.737683i \(-0.735920\pi\)
−0.675148 + 0.737683i \(0.735920\pi\)
\(882\) 81.4641 0.00311002
\(883\) 42421.3 1.61675 0.808374 0.588669i \(-0.200348\pi\)
0.808374 + 0.588669i \(0.200348\pi\)
\(884\) 0 0
\(885\) −30346.0 −1.15262
\(886\) −10714.9 −0.406292
\(887\) −31687.1 −1.19949 −0.599745 0.800191i \(-0.704731\pi\)
−0.599745 + 0.800191i \(0.704731\pi\)
\(888\) −95189.9 −3.59725
\(889\) 8531.77 0.321874
\(890\) −1203.94 −0.0453441
\(891\) −47622.7 −1.79059
\(892\) −116065. −4.35666
\(893\) 6818.21 0.255501
\(894\) 23652.8 0.884864
\(895\) 16061.4 0.599860
\(896\) −28442.7 −1.06050
\(897\) −62780.0 −2.33686
\(898\) −71131.8 −2.64332
\(899\) 14961.3 0.555047
\(900\) −91.7370 −0.00339767
\(901\) 0 0
\(902\) 52215.1 1.92746
\(903\) −6835.10 −0.251891
\(904\) −78055.8 −2.87179
\(905\) 2914.68 0.107058
\(906\) −57702.4 −2.11593
\(907\) 5302.73 0.194128 0.0970640 0.995278i \(-0.469055\pi\)
0.0970640 + 0.995278i \(0.469055\pi\)
\(908\) −85565.1 −3.12729
\(909\) −529.868 −0.0193340
\(910\) 26732.9 0.973832
\(911\) 12477.8 0.453797 0.226899 0.973918i \(-0.427141\pi\)
0.226899 + 0.973918i \(0.427141\pi\)
\(912\) 40600.6 1.47414
\(913\) −12386.5 −0.448996
\(914\) 75165.2 2.72018
\(915\) 30742.4 1.11072
\(916\) 141530. 5.10510
\(917\) −15029.1 −0.541226
\(918\) 0 0
\(919\) 42043.4 1.50912 0.754561 0.656230i \(-0.227850\pi\)
0.754561 + 0.656230i \(0.227850\pi\)
\(920\) 139708. 5.00655
\(921\) −15148.2 −0.541964
\(922\) 16936.2 0.604949
\(923\) −22795.4 −0.812914
\(924\) −50891.7 −1.81192
\(925\) 3447.97 0.122561
\(926\) 55572.3 1.97216
\(927\) −320.266 −0.0113473
\(928\) 55127.9 1.95007
\(929\) −10450.4 −0.369071 −0.184535 0.982826i \(-0.559078\pi\)
−0.184535 + 0.982826i \(0.559078\pi\)
\(930\) −52636.4 −1.85593
\(931\) 1673.30 0.0589047
\(932\) −45004.3 −1.58172
\(933\) 54538.2 1.91372
\(934\) 36453.8 1.27709
\(935\) 0 0
\(936\) 1500.49 0.0523984
\(937\) 855.668 0.0298329 0.0149165 0.999889i \(-0.495252\pi\)
0.0149165 + 0.999889i \(0.495252\pi\)
\(938\) −18663.9 −0.649679
\(939\) −11266.8 −0.391562
\(940\) −45318.2 −1.57246
\(941\) 53778.5 1.86305 0.931525 0.363678i \(-0.118479\pi\)
0.931525 + 0.363678i \(0.118479\pi\)
\(942\) 70003.0 2.42125
\(943\) −26797.9 −0.925409
\(944\) 125369. 4.32247
\(945\) −10290.8 −0.354244
\(946\) 65606.3 2.25480
\(947\) 8730.15 0.299569 0.149784 0.988719i \(-0.452142\pi\)
0.149784 + 0.988719i \(0.452142\pi\)
\(948\) 10840.1 0.371383
\(949\) 62183.8 2.12705
\(950\) −2584.27 −0.0882577
\(951\) 29994.1 1.02274
\(952\) 0 0
\(953\) 39579.2 1.34533 0.672664 0.739948i \(-0.265150\pi\)
0.672664 + 0.739948i \(0.265150\pi\)
\(954\) 707.823 0.0240216
\(955\) 8453.07 0.286424
\(956\) 112899. 3.81948
\(957\) 28719.4 0.970081
\(958\) 94582.0 3.18978
\(959\) 6165.99 0.207623
\(960\) −93706.5 −3.15038
\(961\) 1136.23 0.0381401
\(962\) −89726.8 −3.00718
\(963\) −318.111 −0.0106448
\(964\) −55402.4 −1.85103
\(965\) 20183.1 0.673282
\(966\) 35820.9 1.19308
\(967\) 10343.2 0.343965 0.171983 0.985100i \(-0.444983\pi\)
0.171983 + 0.985100i \(0.444983\pi\)
\(968\) 209110. 6.94323
\(969\) 0 0
\(970\) −44671.3 −1.47867
\(971\) 38341.3 1.26718 0.633590 0.773669i \(-0.281581\pi\)
0.633590 + 0.773669i \(0.281581\pi\)
\(972\) −1848.50 −0.0609985
\(973\) 4234.51 0.139519
\(974\) 79582.9 2.61807
\(975\) −4851.43 −0.159354
\(976\) −127006. −4.16534
\(977\) 26902.6 0.880952 0.440476 0.897764i \(-0.354810\pi\)
0.440476 + 0.897764i \(0.354810\pi\)
\(978\) −9765.52 −0.319291
\(979\) 1357.90 0.0443295
\(980\) −11121.8 −0.362525
\(981\) −517.764 −0.0168511
\(982\) 874.651 0.0284229
\(983\) 46559.6 1.51070 0.755351 0.655320i \(-0.227466\pi\)
0.755351 + 0.655320i \(0.227466\pi\)
\(984\) 57171.2 1.85218
\(985\) 31578.0 1.02148
\(986\) 0 0
\(987\) −7303.28 −0.235528
\(988\) 49035.5 1.57898
\(989\) −33670.6 −1.08257
\(990\) −1131.95 −0.0363392
\(991\) −2533.96 −0.0812250 −0.0406125 0.999175i \(-0.512931\pi\)
−0.0406125 + 0.999175i \(0.512931\pi\)
\(992\) 113957. 3.64733
\(993\) −2093.26 −0.0668960
\(994\) 13006.6 0.415034
\(995\) −4787.41 −0.152534
\(996\) −21577.5 −0.686454
\(997\) −21324.1 −0.677374 −0.338687 0.940899i \(-0.609983\pi\)
−0.338687 + 0.940899i \(0.609983\pi\)
\(998\) −3911.13 −0.124053
\(999\) 34540.3 1.09390
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.4.a.l.1.12 yes 12
17.16 even 2 2023.4.a.k.1.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2023.4.a.k.1.12 12 17.16 even 2
2023.4.a.l.1.12 yes 12 1.1 even 1 trivial