Properties

Label 2023.4.a.l.1.10
Level $2023$
Weight $4$
Character 2023.1
Self dual yes
Analytic conductor $119.361$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,3,3,65,-12,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 76 x^{10} + 195 x^{9} + 2126 x^{8} - 4299 x^{7} - 26508 x^{6} + 35641 x^{5} + \cdots + 17280 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(4.56003\) of defining polynomial
Character \(\chi\) \(=\) 2023.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.56003 q^{2} -5.59626 q^{3} +12.7939 q^{4} -16.5864 q^{5} -25.5191 q^{6} -7.00000 q^{7} +21.8602 q^{8} +4.31818 q^{9} -75.6344 q^{10} -54.2366 q^{11} -71.5978 q^{12} -39.7142 q^{13} -31.9202 q^{14} +92.8218 q^{15} -2.66795 q^{16} +19.6910 q^{18} -12.7918 q^{19} -212.204 q^{20} +39.1739 q^{21} -247.320 q^{22} -78.5231 q^{23} -122.335 q^{24} +150.108 q^{25} -181.098 q^{26} +126.933 q^{27} -89.5571 q^{28} -257.158 q^{29} +423.270 q^{30} -1.21010 q^{31} -187.047 q^{32} +303.522 q^{33} +116.105 q^{35} +55.2461 q^{36} -245.600 q^{37} -58.3308 q^{38} +222.251 q^{39} -362.581 q^{40} +145.374 q^{41} +178.634 q^{42} -502.036 q^{43} -693.895 q^{44} -71.6229 q^{45} -358.068 q^{46} -338.971 q^{47} +14.9305 q^{48} +49.0000 q^{49} +684.498 q^{50} -508.098 q^{52} +382.486 q^{53} +578.820 q^{54} +899.589 q^{55} -153.021 q^{56} +71.5861 q^{57} -1172.65 q^{58} -209.765 q^{59} +1187.55 q^{60} +512.323 q^{61} -5.51808 q^{62} -30.2272 q^{63} -831.597 q^{64} +658.714 q^{65} +1384.07 q^{66} +816.118 q^{67} +439.436 q^{69} +529.441 q^{70} -870.540 q^{71} +94.3960 q^{72} -271.000 q^{73} -1119.94 q^{74} -840.045 q^{75} -163.656 q^{76} +379.656 q^{77} +1013.47 q^{78} +683.406 q^{79} +44.2516 q^{80} -826.944 q^{81} +662.908 q^{82} +995.996 q^{83} +501.185 q^{84} -2289.30 q^{86} +1439.13 q^{87} -1185.62 q^{88} +998.273 q^{89} -326.603 q^{90} +277.999 q^{91} -1004.61 q^{92} +6.77203 q^{93} -1545.72 q^{94} +212.169 q^{95} +1046.77 q^{96} +107.199 q^{97} +223.441 q^{98} -234.203 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} + 3 q^{3} + 65 q^{4} - 12 q^{5} - 22 q^{6} - 84 q^{7} + 78 q^{8} + 233 q^{9} + 36 q^{10} + 4 q^{11} + 6 q^{12} + 98 q^{13} - 21 q^{14} - 196 q^{15} + 429 q^{16} + 603 q^{18} - 37 q^{19} + 54 q^{20}+ \cdots + 5140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.56003 1.61221 0.806107 0.591770i \(-0.201571\pi\)
0.806107 + 0.591770i \(0.201571\pi\)
\(3\) −5.59626 −1.07700 −0.538501 0.842625i \(-0.681009\pi\)
−0.538501 + 0.842625i \(0.681009\pi\)
\(4\) 12.7939 1.59923
\(5\) −16.5864 −1.48353 −0.741766 0.670659i \(-0.766011\pi\)
−0.741766 + 0.670659i \(0.766011\pi\)
\(6\) −25.5191 −1.73636
\(7\) −7.00000 −0.377964
\(8\) 21.8602 0.966092
\(9\) 4.31818 0.159932
\(10\) −75.6344 −2.39177
\(11\) −54.2366 −1.48663 −0.743315 0.668941i \(-0.766748\pi\)
−0.743315 + 0.668941i \(0.766748\pi\)
\(12\) −71.5978 −1.72238
\(13\) −39.7142 −0.847287 −0.423643 0.905829i \(-0.639249\pi\)
−0.423643 + 0.905829i \(0.639249\pi\)
\(14\) −31.9202 −0.609360
\(15\) 92.8218 1.59777
\(16\) −2.66795 −0.0416867
\(17\) 0 0
\(18\) 19.6910 0.257845
\(19\) −12.7918 −0.154454 −0.0772272 0.997014i \(-0.524607\pi\)
−0.0772272 + 0.997014i \(0.524607\pi\)
\(20\) −212.204 −2.37251
\(21\) 39.1739 0.407068
\(22\) −247.320 −2.39677
\(23\) −78.5231 −0.711878 −0.355939 0.934509i \(-0.615839\pi\)
−0.355939 + 0.934509i \(0.615839\pi\)
\(24\) −122.335 −1.04048
\(25\) 150.108 1.20087
\(26\) −181.098 −1.36601
\(27\) 126.933 0.904754
\(28\) −89.5571 −0.604453
\(29\) −257.158 −1.64666 −0.823330 0.567563i \(-0.807886\pi\)
−0.823330 + 0.567563i \(0.807886\pi\)
\(30\) 423.270 2.57594
\(31\) −1.21010 −0.00701097 −0.00350548 0.999994i \(-0.501116\pi\)
−0.00350548 + 0.999994i \(0.501116\pi\)
\(32\) −187.047 −1.03330
\(33\) 303.522 1.60110
\(34\) 0 0
\(35\) 116.105 0.560722
\(36\) 55.2461 0.255769
\(37\) −245.600 −1.09125 −0.545627 0.838028i \(-0.683709\pi\)
−0.545627 + 0.838028i \(0.683709\pi\)
\(38\) −58.3308 −0.249013
\(39\) 222.251 0.912529
\(40\) −362.581 −1.43323
\(41\) 145.374 0.553745 0.276872 0.960907i \(-0.410702\pi\)
0.276872 + 0.960907i \(0.410702\pi\)
\(42\) 178.634 0.656281
\(43\) −502.036 −1.78046 −0.890229 0.455512i \(-0.849456\pi\)
−0.890229 + 0.455512i \(0.849456\pi\)
\(44\) −693.895 −2.37747
\(45\) −71.6229 −0.237265
\(46\) −358.068 −1.14770
\(47\) −338.971 −1.05200 −0.525999 0.850485i \(-0.676309\pi\)
−0.525999 + 0.850485i \(0.676309\pi\)
\(48\) 14.9305 0.0448966
\(49\) 49.0000 0.142857
\(50\) 684.498 1.93605
\(51\) 0 0
\(52\) −508.098 −1.35501
\(53\) 382.486 0.991293 0.495647 0.868524i \(-0.334931\pi\)
0.495647 + 0.868524i \(0.334931\pi\)
\(54\) 578.820 1.45866
\(55\) 899.589 2.20546
\(56\) −153.021 −0.365148
\(57\) 71.5861 0.166348
\(58\) −1172.65 −2.65477
\(59\) −209.765 −0.462866 −0.231433 0.972851i \(-0.574341\pi\)
−0.231433 + 0.972851i \(0.574341\pi\)
\(60\) 1187.55 2.55520
\(61\) 512.323 1.07535 0.537674 0.843153i \(-0.319303\pi\)
0.537674 + 0.843153i \(0.319303\pi\)
\(62\) −5.51808 −0.0113032
\(63\) −30.2272 −0.0604488
\(64\) −831.597 −1.62421
\(65\) 658.714 1.25698
\(66\) 1384.07 2.58132
\(67\) 816.118 1.48813 0.744065 0.668107i \(-0.232895\pi\)
0.744065 + 0.668107i \(0.232895\pi\)
\(68\) 0 0
\(69\) 439.436 0.766694
\(70\) 529.441 0.904004
\(71\) −870.540 −1.45513 −0.727564 0.686040i \(-0.759348\pi\)
−0.727564 + 0.686040i \(0.759348\pi\)
\(72\) 94.3960 0.154509
\(73\) −271.000 −0.434496 −0.217248 0.976116i \(-0.569708\pi\)
−0.217248 + 0.976116i \(0.569708\pi\)
\(74\) −1119.94 −1.75934
\(75\) −840.045 −1.29333
\(76\) −163.656 −0.247008
\(77\) 379.656 0.561894
\(78\) 1013.47 1.47119
\(79\) 683.406 0.973281 0.486640 0.873602i \(-0.338222\pi\)
0.486640 + 0.873602i \(0.338222\pi\)
\(80\) 44.2516 0.0618435
\(81\) −826.944 −1.13435
\(82\) 662.908 0.892755
\(83\) 995.996 1.31717 0.658583 0.752508i \(-0.271156\pi\)
0.658583 + 0.752508i \(0.271156\pi\)
\(84\) 501.185 0.650997
\(85\) 0 0
\(86\) −2289.30 −2.87048
\(87\) 1439.13 1.77345
\(88\) −1185.62 −1.43622
\(89\) 998.273 1.18895 0.594476 0.804114i \(-0.297360\pi\)
0.594476 + 0.804114i \(0.297360\pi\)
\(90\) −326.603 −0.382521
\(91\) 277.999 0.320244
\(92\) −1004.61 −1.13846
\(93\) 6.77203 0.00755082
\(94\) −1545.72 −1.69605
\(95\) 212.169 0.229138
\(96\) 1046.77 1.11287
\(97\) 107.199 0.112210 0.0561052 0.998425i \(-0.482132\pi\)
0.0561052 + 0.998425i \(0.482132\pi\)
\(98\) 223.441 0.230316
\(99\) −234.203 −0.237760
\(100\) 1920.46 1.92046
\(101\) −954.213 −0.940077 −0.470038 0.882646i \(-0.655760\pi\)
−0.470038 + 0.882646i \(0.655760\pi\)
\(102\) 0 0
\(103\) −1855.78 −1.77529 −0.887646 0.460527i \(-0.847660\pi\)
−0.887646 + 0.460527i \(0.847660\pi\)
\(104\) −868.158 −0.818557
\(105\) −649.753 −0.603899
\(106\) 1744.15 1.59818
\(107\) 1503.94 1.35879 0.679397 0.733770i \(-0.262241\pi\)
0.679397 + 0.733770i \(0.262241\pi\)
\(108\) 1623.97 1.44691
\(109\) −1211.54 −1.06463 −0.532313 0.846548i \(-0.678677\pi\)
−0.532313 + 0.846548i \(0.678677\pi\)
\(110\) 4102.15 3.55568
\(111\) 1374.44 1.17528
\(112\) 18.6756 0.0157561
\(113\) 603.563 0.502464 0.251232 0.967927i \(-0.419164\pi\)
0.251232 + 0.967927i \(0.419164\pi\)
\(114\) 326.435 0.268188
\(115\) 1302.41 1.05609
\(116\) −3290.05 −2.63339
\(117\) −171.493 −0.135509
\(118\) −956.535 −0.746239
\(119\) 0 0
\(120\) 2029.10 1.54359
\(121\) 1610.61 1.21007
\(122\) 2336.21 1.73369
\(123\) −813.549 −0.596384
\(124\) −15.4818 −0.0112122
\(125\) −416.453 −0.297990
\(126\) −137.837 −0.0974563
\(127\) −1725.70 −1.20576 −0.602879 0.797833i \(-0.705980\pi\)
−0.602879 + 0.797833i \(0.705980\pi\)
\(128\) −2295.73 −1.58528
\(129\) 2809.52 1.91756
\(130\) 3003.76 2.02651
\(131\) 1200.04 0.800363 0.400181 0.916436i \(-0.368947\pi\)
0.400181 + 0.916436i \(0.368947\pi\)
\(132\) 3883.22 2.56054
\(133\) 89.5424 0.0583783
\(134\) 3721.52 2.39918
\(135\) −2105.37 −1.34223
\(136\) 0 0
\(137\) −289.928 −0.180805 −0.0904023 0.995905i \(-0.528815\pi\)
−0.0904023 + 0.995905i \(0.528815\pi\)
\(138\) 2003.84 1.23607
\(139\) 2605.99 1.59019 0.795096 0.606483i \(-0.207420\pi\)
0.795096 + 0.606483i \(0.207420\pi\)
\(140\) 1485.43 0.896725
\(141\) 1896.97 1.13300
\(142\) −3969.69 −2.34598
\(143\) 2153.96 1.25960
\(144\) −11.5207 −0.00666705
\(145\) 4265.33 2.44287
\(146\) −1235.77 −0.700500
\(147\) −274.217 −0.153857
\(148\) −3142.18 −1.74517
\(149\) −311.829 −0.171450 −0.0857250 0.996319i \(-0.527321\pi\)
−0.0857250 + 0.996319i \(0.527321\pi\)
\(150\) −3830.63 −2.08513
\(151\) −2966.52 −1.59876 −0.799378 0.600828i \(-0.794838\pi\)
−0.799378 + 0.600828i \(0.794838\pi\)
\(152\) −279.630 −0.149217
\(153\) 0 0
\(154\) 1731.24 0.905893
\(155\) 20.0711 0.0104010
\(156\) 2843.45 1.45935
\(157\) −2432.43 −1.23649 −0.618245 0.785985i \(-0.712156\pi\)
−0.618245 + 0.785985i \(0.712156\pi\)
\(158\) 3116.35 1.56914
\(159\) −2140.49 −1.06762
\(160\) 3102.44 1.53293
\(161\) 549.662 0.269065
\(162\) −3770.89 −1.82882
\(163\) −2436.61 −1.17086 −0.585429 0.810724i \(-0.699074\pi\)
−0.585429 + 0.810724i \(0.699074\pi\)
\(164\) 1859.89 0.885567
\(165\) −5034.34 −2.37529
\(166\) 4541.77 2.12355
\(167\) −1825.85 −0.846041 −0.423021 0.906120i \(-0.639030\pi\)
−0.423021 + 0.906120i \(0.639030\pi\)
\(168\) 856.347 0.393265
\(169\) −619.785 −0.282105
\(170\) 0 0
\(171\) −55.2371 −0.0247023
\(172\) −6422.98 −2.84737
\(173\) −4268.75 −1.87600 −0.937998 0.346640i \(-0.887323\pi\)
−0.937998 + 0.346640i \(0.887323\pi\)
\(174\) 6562.46 2.85919
\(175\) −1050.76 −0.453884
\(176\) 144.700 0.0619727
\(177\) 1173.90 0.498507
\(178\) 4552.15 1.91684
\(179\) −1876.68 −0.783629 −0.391814 0.920044i \(-0.628152\pi\)
−0.391814 + 0.920044i \(0.628152\pi\)
\(180\) −916.334 −0.379442
\(181\) −3062.61 −1.25769 −0.628846 0.777530i \(-0.716472\pi\)
−0.628846 + 0.777530i \(0.716472\pi\)
\(182\) 1267.68 0.516302
\(183\) −2867.10 −1.15815
\(184\) −1716.53 −0.687740
\(185\) 4073.62 1.61891
\(186\) 30.8806 0.0121735
\(187\) 0 0
\(188\) −4336.74 −1.68239
\(189\) −888.534 −0.341965
\(190\) 967.497 0.369419
\(191\) 3686.99 1.39676 0.698381 0.715726i \(-0.253904\pi\)
0.698381 + 0.715726i \(0.253904\pi\)
\(192\) 4653.84 1.74928
\(193\) 2380.80 0.887949 0.443974 0.896040i \(-0.353568\pi\)
0.443974 + 0.896040i \(0.353568\pi\)
\(194\) 488.830 0.180907
\(195\) −3686.34 −1.35377
\(196\) 626.899 0.228462
\(197\) 588.171 0.212718 0.106359 0.994328i \(-0.466081\pi\)
0.106359 + 0.994328i \(0.466081\pi\)
\(198\) −1067.97 −0.383321
\(199\) −2563.36 −0.913125 −0.456562 0.889691i \(-0.650919\pi\)
−0.456562 + 0.889691i \(0.650919\pi\)
\(200\) 3281.39 1.16015
\(201\) −4567.21 −1.60272
\(202\) −4351.24 −1.51560
\(203\) 1800.11 0.622379
\(204\) 0 0
\(205\) −2411.22 −0.821498
\(206\) −8462.39 −2.86215
\(207\) −339.076 −0.113852
\(208\) 105.955 0.0353206
\(209\) 693.782 0.229617
\(210\) −2962.89 −0.973614
\(211\) −4835.88 −1.57780 −0.788899 0.614522i \(-0.789349\pi\)
−0.788899 + 0.614522i \(0.789349\pi\)
\(212\) 4893.48 1.58531
\(213\) 4871.77 1.56717
\(214\) 6858.00 2.19067
\(215\) 8326.96 2.64137
\(216\) 2774.79 0.874076
\(217\) 8.47068 0.00264990
\(218\) −5524.64 −1.71640
\(219\) 1516.59 0.467952
\(220\) 11509.2 3.52705
\(221\) 0 0
\(222\) 6267.50 1.89481
\(223\) 5637.03 1.69275 0.846375 0.532587i \(-0.178780\pi\)
0.846375 + 0.532587i \(0.178780\pi\)
\(224\) 1309.33 0.390551
\(225\) 648.193 0.192057
\(226\) 2752.26 0.810079
\(227\) 5351.53 1.56473 0.782365 0.622820i \(-0.214013\pi\)
0.782365 + 0.622820i \(0.214013\pi\)
\(228\) 915.863 0.266029
\(229\) −1086.98 −0.313666 −0.156833 0.987625i \(-0.550128\pi\)
−0.156833 + 0.987625i \(0.550128\pi\)
\(230\) 5939.05 1.70265
\(231\) −2124.66 −0.605160
\(232\) −5621.53 −1.59082
\(233\) 4847.48 1.36296 0.681478 0.731838i \(-0.261337\pi\)
0.681478 + 0.731838i \(0.261337\pi\)
\(234\) −782.012 −0.218469
\(235\) 5622.30 1.56067
\(236\) −2683.71 −0.740231
\(237\) −3824.52 −1.04822
\(238\) 0 0
\(239\) −4769.07 −1.29073 −0.645367 0.763873i \(-0.723295\pi\)
−0.645367 + 0.763873i \(0.723295\pi\)
\(240\) −247.644 −0.0666055
\(241\) 4414.19 1.17985 0.589923 0.807460i \(-0.299158\pi\)
0.589923 + 0.807460i \(0.299158\pi\)
\(242\) 7344.41 1.95089
\(243\) 1200.59 0.316947
\(244\) 6554.59 1.71973
\(245\) −812.733 −0.211933
\(246\) −3709.81 −0.961499
\(247\) 508.014 0.130867
\(248\) −26.4529 −0.00677324
\(249\) −5573.86 −1.41859
\(250\) −1899.04 −0.480423
\(251\) 142.193 0.0357577 0.0178788 0.999840i \(-0.494309\pi\)
0.0178788 + 0.999840i \(0.494309\pi\)
\(252\) −386.723 −0.0966717
\(253\) 4258.82 1.05830
\(254\) −7869.25 −1.94394
\(255\) 0 0
\(256\) −3815.82 −0.931596
\(257\) 482.480 0.117106 0.0585531 0.998284i \(-0.481351\pi\)
0.0585531 + 0.998284i \(0.481351\pi\)
\(258\) 12811.5 3.09151
\(259\) 1719.20 0.412455
\(260\) 8427.50 2.01020
\(261\) −1110.46 −0.263354
\(262\) 5472.19 1.29036
\(263\) 836.582 0.196144 0.0980720 0.995179i \(-0.468732\pi\)
0.0980720 + 0.995179i \(0.468732\pi\)
\(264\) 6635.04 1.54681
\(265\) −6344.06 −1.47061
\(266\) 408.316 0.0941182
\(267\) −5586.60 −1.28050
\(268\) 10441.3 2.37987
\(269\) 53.7897 0.0121919 0.00609594 0.999981i \(-0.498060\pi\)
0.00609594 + 0.999981i \(0.498060\pi\)
\(270\) −9600.54 −2.16396
\(271\) −1010.96 −0.226610 −0.113305 0.993560i \(-0.536144\pi\)
−0.113305 + 0.993560i \(0.536144\pi\)
\(272\) 0 0
\(273\) −1555.76 −0.344904
\(274\) −1322.08 −0.291496
\(275\) −8141.35 −1.78524
\(276\) 5622.08 1.22612
\(277\) −4711.43 −1.02196 −0.510979 0.859593i \(-0.670717\pi\)
−0.510979 + 0.859593i \(0.670717\pi\)
\(278\) 11883.4 2.56373
\(279\) −5.22541 −0.00112128
\(280\) 2538.07 0.541709
\(281\) 1153.69 0.244924 0.122462 0.992473i \(-0.460921\pi\)
0.122462 + 0.992473i \(0.460921\pi\)
\(282\) 8650.23 1.82665
\(283\) 981.068 0.206072 0.103036 0.994678i \(-0.467144\pi\)
0.103036 + 0.994678i \(0.467144\pi\)
\(284\) −11137.6 −2.32709
\(285\) −1187.35 −0.246782
\(286\) 9822.12 2.03075
\(287\) −1017.62 −0.209296
\(288\) −807.703 −0.165258
\(289\) 0 0
\(290\) 19450.0 3.93843
\(291\) −599.913 −0.120851
\(292\) −3467.14 −0.694860
\(293\) −1407.45 −0.280628 −0.140314 0.990107i \(-0.544811\pi\)
−0.140314 + 0.990107i \(0.544811\pi\)
\(294\) −1250.44 −0.248051
\(295\) 3479.25 0.686676
\(296\) −5368.86 −1.05425
\(297\) −6884.44 −1.34504
\(298\) −1421.95 −0.276414
\(299\) 3118.48 0.603165
\(300\) −10747.4 −2.06834
\(301\) 3514.25 0.672950
\(302\) −13527.4 −2.57754
\(303\) 5340.03 1.01246
\(304\) 34.1277 0.00643868
\(305\) −8497.59 −1.59531
\(306\) 0 0
\(307\) −5085.93 −0.945502 −0.472751 0.881196i \(-0.656739\pi\)
−0.472751 + 0.881196i \(0.656739\pi\)
\(308\) 4857.27 0.898599
\(309\) 10385.4 1.91199
\(310\) 91.5250 0.0167686
\(311\) 807.820 0.147290 0.0736452 0.997285i \(-0.476537\pi\)
0.0736452 + 0.997285i \(0.476537\pi\)
\(312\) 4858.44 0.881587
\(313\) −875.988 −0.158191 −0.0790955 0.996867i \(-0.525203\pi\)
−0.0790955 + 0.996867i \(0.525203\pi\)
\(314\) −11092.0 −1.99349
\(315\) 501.360 0.0896776
\(316\) 8743.40 1.55650
\(317\) 165.917 0.0293970 0.0146985 0.999892i \(-0.495321\pi\)
0.0146985 + 0.999892i \(0.495321\pi\)
\(318\) −9760.72 −1.72124
\(319\) 13947.4 2.44798
\(320\) 13793.2 2.40957
\(321\) −8416.43 −1.46342
\(322\) 2506.47 0.433790
\(323\) 0 0
\(324\) −10579.8 −1.81410
\(325\) −5961.42 −1.01748
\(326\) −11111.0 −1.88767
\(327\) 6780.08 1.14660
\(328\) 3177.89 0.534968
\(329\) 2372.79 0.397618
\(330\) −22956.7 −3.82947
\(331\) 2365.15 0.392750 0.196375 0.980529i \(-0.437083\pi\)
0.196375 + 0.980529i \(0.437083\pi\)
\(332\) 12742.6 2.10646
\(333\) −1060.54 −0.174527
\(334\) −8325.95 −1.36400
\(335\) −13536.5 −2.20769
\(336\) −104.514 −0.0169693
\(337\) 3410.11 0.551218 0.275609 0.961270i \(-0.411120\pi\)
0.275609 + 0.961270i \(0.411120\pi\)
\(338\) −2826.24 −0.454814
\(339\) −3377.70 −0.541154
\(340\) 0 0
\(341\) 65.6315 0.0104227
\(342\) −251.883 −0.0398253
\(343\) −343.000 −0.0539949
\(344\) −10974.6 −1.72009
\(345\) −7288.65 −1.13741
\(346\) −19465.6 −3.02451
\(347\) −3520.52 −0.544644 −0.272322 0.962206i \(-0.587792\pi\)
−0.272322 + 0.962206i \(0.587792\pi\)
\(348\) 18412.0 2.83617
\(349\) 5445.52 0.835220 0.417610 0.908626i \(-0.362868\pi\)
0.417610 + 0.908626i \(0.362868\pi\)
\(350\) −4791.48 −0.731759
\(351\) −5041.06 −0.766586
\(352\) 10144.8 1.53614
\(353\) −9491.22 −1.43107 −0.715534 0.698578i \(-0.753816\pi\)
−0.715534 + 0.698578i \(0.753816\pi\)
\(354\) 5353.02 0.803700
\(355\) 14439.1 2.15873
\(356\) 12771.8 1.90141
\(357\) 0 0
\(358\) −8557.71 −1.26338
\(359\) 1.65708 0.000243613 0 0.000121807 1.00000i \(-0.499961\pi\)
0.000121807 1.00000i \(0.499961\pi\)
\(360\) −1565.69 −0.229220
\(361\) −6695.37 −0.976144
\(362\) −13965.6 −2.02767
\(363\) −9013.37 −1.30325
\(364\) 3556.68 0.512145
\(365\) 4494.91 0.644588
\(366\) −13074.0 −1.86719
\(367\) −11612.5 −1.65168 −0.825841 0.563903i \(-0.809299\pi\)
−0.825841 + 0.563903i \(0.809299\pi\)
\(368\) 209.495 0.0296758
\(369\) 627.749 0.0885617
\(370\) 18575.8 2.61003
\(371\) −2677.40 −0.374674
\(372\) 86.6404 0.0120755
\(373\) −1767.69 −0.245381 −0.122691 0.992445i \(-0.539152\pi\)
−0.122691 + 0.992445i \(0.539152\pi\)
\(374\) 0 0
\(375\) 2330.58 0.320935
\(376\) −7409.95 −1.01633
\(377\) 10212.8 1.39519
\(378\) −4051.74 −0.551321
\(379\) 2360.62 0.319938 0.159969 0.987122i \(-0.448860\pi\)
0.159969 + 0.987122i \(0.448860\pi\)
\(380\) 2714.46 0.366445
\(381\) 9657.48 1.29860
\(382\) 16812.8 2.25188
\(383\) 1574.00 0.209994 0.104997 0.994473i \(-0.466517\pi\)
0.104997 + 0.994473i \(0.466517\pi\)
\(384\) 12847.5 1.70735
\(385\) −6297.12 −0.833587
\(386\) 10856.5 1.43156
\(387\) −2167.88 −0.284753
\(388\) 1371.49 0.179450
\(389\) 222.732 0.0290307 0.0145154 0.999895i \(-0.495379\pi\)
0.0145154 + 0.999895i \(0.495379\pi\)
\(390\) −16809.8 −2.18256
\(391\) 0 0
\(392\) 1071.15 0.138013
\(393\) −6715.71 −0.861992
\(394\) 2682.07 0.342947
\(395\) −11335.2 −1.44389
\(396\) −2996.36 −0.380234
\(397\) −14387.6 −1.81888 −0.909439 0.415838i \(-0.863488\pi\)
−0.909439 + 0.415838i \(0.863488\pi\)
\(398\) −11689.0 −1.47215
\(399\) −501.103 −0.0628735
\(400\) −400.480 −0.0500601
\(401\) −9740.86 −1.21306 −0.606528 0.795062i \(-0.707438\pi\)
−0.606528 + 0.795062i \(0.707438\pi\)
\(402\) −20826.6 −2.58393
\(403\) 48.0580 0.00594030
\(404\) −12208.1 −1.50340
\(405\) 13716.0 1.68285
\(406\) 8208.55 1.00341
\(407\) 13320.5 1.62229
\(408\) 0 0
\(409\) 2221.61 0.268586 0.134293 0.990942i \(-0.457124\pi\)
0.134293 + 0.990942i \(0.457124\pi\)
\(410\) −10995.2 −1.32443
\(411\) 1622.51 0.194727
\(412\) −23742.5 −2.83910
\(413\) 1468.36 0.174947
\(414\) −1546.20 −0.183554
\(415\) −16520.0 −1.95406
\(416\) 7428.42 0.875501
\(417\) −14583.8 −1.71264
\(418\) 3163.66 0.370191
\(419\) −10989.1 −1.28127 −0.640634 0.767846i \(-0.721329\pi\)
−0.640634 + 0.767846i \(0.721329\pi\)
\(420\) −8312.85 −0.965775
\(421\) −1051.51 −0.121728 −0.0608639 0.998146i \(-0.519386\pi\)
−0.0608639 + 0.998146i \(0.519386\pi\)
\(422\) −22051.7 −2.54375
\(423\) −1463.73 −0.168249
\(424\) 8361.21 0.957680
\(425\) 0 0
\(426\) 22215.4 2.52662
\(427\) −3586.26 −0.406443
\(428\) 19241.2 2.17303
\(429\) −12054.1 −1.35659
\(430\) 37971.2 4.25845
\(431\) −4772.07 −0.533323 −0.266662 0.963790i \(-0.585921\pi\)
−0.266662 + 0.963790i \(0.585921\pi\)
\(432\) −338.652 −0.0377162
\(433\) −5952.72 −0.660668 −0.330334 0.943864i \(-0.607161\pi\)
−0.330334 + 0.943864i \(0.607161\pi\)
\(434\) 38.6266 0.00427220
\(435\) −23869.9 −2.63098
\(436\) −15500.2 −1.70258
\(437\) 1004.45 0.109953
\(438\) 6915.69 0.754439
\(439\) 12310.8 1.33841 0.669206 0.743077i \(-0.266634\pi\)
0.669206 + 0.743077i \(0.266634\pi\)
\(440\) 19665.2 2.13068
\(441\) 211.591 0.0228475
\(442\) 0 0
\(443\) 2755.06 0.295478 0.147739 0.989026i \(-0.452800\pi\)
0.147739 + 0.989026i \(0.452800\pi\)
\(444\) 17584.4 1.87955
\(445\) −16557.7 −1.76385
\(446\) 25705.0 2.72908
\(447\) 1745.08 0.184652
\(448\) 5821.18 0.613895
\(449\) 11322.3 1.19005 0.595023 0.803709i \(-0.297143\pi\)
0.595023 + 0.803709i \(0.297143\pi\)
\(450\) 2955.78 0.309637
\(451\) −7884.56 −0.823214
\(452\) 7721.90 0.803557
\(453\) 16601.4 1.72186
\(454\) 24403.1 2.52268
\(455\) −4611.00 −0.475092
\(456\) 1564.88 0.160707
\(457\) 13575.5 1.38958 0.694789 0.719214i \(-0.255498\pi\)
0.694789 + 0.719214i \(0.255498\pi\)
\(458\) −4956.64 −0.505696
\(459\) 0 0
\(460\) 16662.9 1.68894
\(461\) −2043.21 −0.206424 −0.103212 0.994659i \(-0.532912\pi\)
−0.103212 + 0.994659i \(0.532912\pi\)
\(462\) −9688.49 −0.975648
\(463\) −1921.91 −0.192913 −0.0964563 0.995337i \(-0.530751\pi\)
−0.0964563 + 0.995337i \(0.530751\pi\)
\(464\) 686.085 0.0686437
\(465\) −112.323 −0.0112019
\(466\) 22104.6 2.19738
\(467\) −3896.41 −0.386091 −0.193045 0.981190i \(-0.561836\pi\)
−0.193045 + 0.981190i \(0.561836\pi\)
\(468\) −2194.05 −0.216710
\(469\) −5712.83 −0.562460
\(470\) 25637.8 2.51614
\(471\) 13612.5 1.33170
\(472\) −4585.50 −0.447171
\(473\) 27228.7 2.64689
\(474\) −17439.9 −1.68996
\(475\) −1920.15 −0.185479
\(476\) 0 0
\(477\) 1651.64 0.158540
\(478\) −21747.1 −2.08094
\(479\) −14443.9 −1.37779 −0.688894 0.724862i \(-0.741904\pi\)
−0.688894 + 0.724862i \(0.741904\pi\)
\(480\) −17362.1 −1.65097
\(481\) 9753.81 0.924606
\(482\) 20128.8 1.90216
\(483\) −3076.05 −0.289783
\(484\) 20605.9 1.93519
\(485\) −1778.04 −0.166468
\(486\) 5474.74 0.510986
\(487\) −6873.72 −0.639585 −0.319793 0.947488i \(-0.603613\pi\)
−0.319793 + 0.947488i \(0.603613\pi\)
\(488\) 11199.5 1.03889
\(489\) 13635.9 1.26102
\(490\) −3706.09 −0.341681
\(491\) 6686.90 0.614614 0.307307 0.951610i \(-0.400572\pi\)
0.307307 + 0.951610i \(0.400572\pi\)
\(492\) −10408.4 −0.953757
\(493\) 0 0
\(494\) 2316.56 0.210986
\(495\) 3884.58 0.352725
\(496\) 3.22848 0.000292264 0
\(497\) 6093.78 0.549987
\(498\) −25417.0 −2.28707
\(499\) −10506.3 −0.942540 −0.471270 0.881989i \(-0.656204\pi\)
−0.471270 + 0.881989i \(0.656204\pi\)
\(500\) −5328.05 −0.476555
\(501\) 10218.0 0.911188
\(502\) 648.406 0.0576490
\(503\) 19541.7 1.73225 0.866124 0.499830i \(-0.166604\pi\)
0.866124 + 0.499830i \(0.166604\pi\)
\(504\) −660.772 −0.0583991
\(505\) 15826.9 1.39463
\(506\) 19420.4 1.70621
\(507\) 3468.48 0.303828
\(508\) −22078.4 −1.92829
\(509\) −18409.4 −1.60310 −0.801552 0.597925i \(-0.795992\pi\)
−0.801552 + 0.597925i \(0.795992\pi\)
\(510\) 0 0
\(511\) 1897.00 0.164224
\(512\) 965.606 0.0833479
\(513\) −1623.70 −0.139743
\(514\) 2200.12 0.188800
\(515\) 30780.6 2.63370
\(516\) 35944.7 3.06662
\(517\) 18384.6 1.56393
\(518\) 7839.61 0.664966
\(519\) 23889.1 2.02045
\(520\) 14399.6 1.21435
\(521\) −12217.0 −1.02733 −0.513664 0.857992i \(-0.671712\pi\)
−0.513664 + 0.857992i \(0.671712\pi\)
\(522\) −5063.71 −0.424583
\(523\) −16501.8 −1.37968 −0.689841 0.723961i \(-0.742320\pi\)
−0.689841 + 0.723961i \(0.742320\pi\)
\(524\) 15353.1 1.27997
\(525\) 5880.31 0.488834
\(526\) 3814.84 0.316226
\(527\) 0 0
\(528\) −809.781 −0.0667447
\(529\) −6001.12 −0.493230
\(530\) −28929.1 −2.37094
\(531\) −905.803 −0.0740273
\(532\) 1145.59 0.0933604
\(533\) −5773.39 −0.469181
\(534\) −25475.0 −2.06444
\(535\) −24944.9 −2.01581
\(536\) 17840.5 1.43767
\(537\) 10502.4 0.843970
\(538\) 245.282 0.0196559
\(539\) −2657.59 −0.212376
\(540\) −26935.8 −2.14654
\(541\) −21274.4 −1.69068 −0.845339 0.534231i \(-0.820601\pi\)
−0.845339 + 0.534231i \(0.820601\pi\)
\(542\) −4610.00 −0.365344
\(543\) 17139.2 1.35454
\(544\) 0 0
\(545\) 20095.0 1.57940
\(546\) −7094.30 −0.556058
\(547\) −19363.0 −1.51353 −0.756766 0.653686i \(-0.773222\pi\)
−0.756766 + 0.653686i \(0.773222\pi\)
\(548\) −3709.30 −0.289149
\(549\) 2212.30 0.171983
\(550\) −37124.8 −2.87819
\(551\) 3289.51 0.254334
\(552\) 9606.14 0.740697
\(553\) −4783.84 −0.367866
\(554\) −21484.3 −1.64761
\(555\) −22797.0 −1.74357
\(556\) 33340.6 2.54309
\(557\) −25595.2 −1.94705 −0.973523 0.228590i \(-0.926589\pi\)
−0.973523 + 0.228590i \(0.926589\pi\)
\(558\) −23.8280 −0.00180774
\(559\) 19937.9 1.50856
\(560\) −309.761 −0.0233746
\(561\) 0 0
\(562\) 5260.87 0.394869
\(563\) −7344.93 −0.549826 −0.274913 0.961469i \(-0.588649\pi\)
−0.274913 + 0.961469i \(0.588649\pi\)
\(564\) 24269.6 1.81194
\(565\) −10010.9 −0.745421
\(566\) 4473.70 0.332233
\(567\) 5788.61 0.428746
\(568\) −19030.1 −1.40579
\(569\) 15128.8 1.11464 0.557321 0.830297i \(-0.311829\pi\)
0.557321 + 0.830297i \(0.311829\pi\)
\(570\) −5414.37 −0.397865
\(571\) −6451.42 −0.472826 −0.236413 0.971653i \(-0.575972\pi\)
−0.236413 + 0.971653i \(0.575972\pi\)
\(572\) 27557.5 2.01440
\(573\) −20633.4 −1.50431
\(574\) −4640.35 −0.337430
\(575\) −11787.0 −0.854870
\(576\) −3590.98 −0.259764
\(577\) 2081.11 0.150152 0.0750759 0.997178i \(-0.476080\pi\)
0.0750759 + 0.997178i \(0.476080\pi\)
\(578\) 0 0
\(579\) −13323.6 −0.956322
\(580\) 54570.0 3.90672
\(581\) −6971.97 −0.497842
\(582\) −2735.62 −0.194837
\(583\) −20744.7 −1.47369
\(584\) −5924.11 −0.419763
\(585\) 2844.44 0.201031
\(586\) −6418.01 −0.452433
\(587\) −292.238 −0.0205485 −0.0102742 0.999947i \(-0.503270\pi\)
−0.0102742 + 0.999947i \(0.503270\pi\)
\(588\) −3508.29 −0.246054
\(589\) 15.4793 0.00108287
\(590\) 15865.5 1.10707
\(591\) −3291.56 −0.229097
\(592\) 655.248 0.0454908
\(593\) 22333.5 1.54659 0.773295 0.634046i \(-0.218607\pi\)
0.773295 + 0.634046i \(0.218607\pi\)
\(594\) −31393.2 −2.16848
\(595\) 0 0
\(596\) −3989.50 −0.274188
\(597\) 14345.2 0.983437
\(598\) 14220.4 0.972431
\(599\) 10247.1 0.698974 0.349487 0.936941i \(-0.386356\pi\)
0.349487 + 0.936941i \(0.386356\pi\)
\(600\) −18363.5 −1.24948
\(601\) 19611.1 1.33103 0.665517 0.746382i \(-0.268211\pi\)
0.665517 + 0.746382i \(0.268211\pi\)
\(602\) 16025.1 1.08494
\(603\) 3524.14 0.238000
\(604\) −37953.3 −2.55678
\(605\) −26714.1 −1.79518
\(606\) 24350.7 1.63231
\(607\) −8920.32 −0.596482 −0.298241 0.954491i \(-0.596400\pi\)
−0.298241 + 0.954491i \(0.596400\pi\)
\(608\) 2392.66 0.159598
\(609\) −10073.9 −0.670303
\(610\) −38749.2 −2.57199
\(611\) 13461.9 0.891345
\(612\) 0 0
\(613\) 993.762 0.0654774 0.0327387 0.999464i \(-0.489577\pi\)
0.0327387 + 0.999464i \(0.489577\pi\)
\(614\) −23192.0 −1.52435
\(615\) 13493.8 0.884754
\(616\) 8299.34 0.542841
\(617\) −9995.00 −0.652161 −0.326081 0.945342i \(-0.605728\pi\)
−0.326081 + 0.945342i \(0.605728\pi\)
\(618\) 47357.8 3.08254
\(619\) 54.6200 0.00354663 0.00177332 0.999998i \(-0.499436\pi\)
0.00177332 + 0.999998i \(0.499436\pi\)
\(620\) 256.788 0.0166336
\(621\) −9967.21 −0.644075
\(622\) 3683.68 0.237463
\(623\) −6987.91 −0.449381
\(624\) −592.954 −0.0380403
\(625\) −11856.1 −0.758788
\(626\) −3994.53 −0.255038
\(627\) −3882.58 −0.247297
\(628\) −31120.2 −1.97744
\(629\) 0 0
\(630\) 2286.22 0.144580
\(631\) 2876.31 0.181464 0.0907322 0.995875i \(-0.471079\pi\)
0.0907322 + 0.995875i \(0.471079\pi\)
\(632\) 14939.4 0.940278
\(633\) 27062.8 1.69929
\(634\) 756.588 0.0473943
\(635\) 28623.1 1.78878
\(636\) −27385.2 −1.70738
\(637\) −1945.99 −0.121041
\(638\) 63600.5 3.94666
\(639\) −3759.14 −0.232722
\(640\) 38077.8 2.35181
\(641\) −3787.11 −0.233357 −0.116679 0.993170i \(-0.537225\pi\)
−0.116679 + 0.993170i \(0.537225\pi\)
\(642\) −38379.2 −2.35935
\(643\) 1452.27 0.0890700 0.0445350 0.999008i \(-0.485819\pi\)
0.0445350 + 0.999008i \(0.485819\pi\)
\(644\) 7032.30 0.430297
\(645\) −46599.9 −2.84476
\(646\) 0 0
\(647\) −2230.55 −0.135536 −0.0677680 0.997701i \(-0.521588\pi\)
−0.0677680 + 0.997701i \(0.521588\pi\)
\(648\) −18077.1 −1.09589
\(649\) 11376.9 0.688111
\(650\) −27184.2 −1.64039
\(651\) −47.4042 −0.00285394
\(652\) −31173.6 −1.87247
\(653\) 9386.24 0.562499 0.281249 0.959635i \(-0.409251\pi\)
0.281249 + 0.959635i \(0.409251\pi\)
\(654\) 30917.4 1.84857
\(655\) −19904.2 −1.18736
\(656\) −387.849 −0.0230838
\(657\) −1170.23 −0.0694899
\(658\) 10820.0 0.641045
\(659\) −19498.6 −1.15259 −0.576294 0.817242i \(-0.695502\pi\)
−0.576294 + 0.817242i \(0.695502\pi\)
\(660\) −64408.6 −3.79864
\(661\) −31452.2 −1.85075 −0.925377 0.379049i \(-0.876251\pi\)
−0.925377 + 0.379049i \(0.876251\pi\)
\(662\) 10785.1 0.633196
\(663\) 0 0
\(664\) 21772.6 1.27250
\(665\) −1485.18 −0.0866060
\(666\) −4836.11 −0.281375
\(667\) 20192.9 1.17222
\(668\) −23359.7 −1.35302
\(669\) −31546.3 −1.82310
\(670\) −61726.6 −3.55926
\(671\) −27786.6 −1.59865
\(672\) −7327.36 −0.420624
\(673\) 17176.7 0.983824 0.491912 0.870645i \(-0.336298\pi\)
0.491912 + 0.870645i \(0.336298\pi\)
\(674\) 15550.2 0.888681
\(675\) 19053.8 1.08649
\(676\) −7929.44 −0.451152
\(677\) −10960.6 −0.622228 −0.311114 0.950373i \(-0.600702\pi\)
−0.311114 + 0.950373i \(0.600702\pi\)
\(678\) −15402.4 −0.872457
\(679\) −750.392 −0.0424115
\(680\) 0 0
\(681\) −29948.6 −1.68522
\(682\) 299.282 0.0168037
\(683\) 8739.75 0.489630 0.244815 0.969570i \(-0.421273\pi\)
0.244815 + 0.969570i \(0.421273\pi\)
\(684\) −706.696 −0.0395047
\(685\) 4808.86 0.268229
\(686\) −1564.09 −0.0870514
\(687\) 6083.01 0.337818
\(688\) 1339.40 0.0742214
\(689\) −15190.1 −0.839910
\(690\) −33236.5 −1.83376
\(691\) −9458.53 −0.520723 −0.260361 0.965511i \(-0.583842\pi\)
−0.260361 + 0.965511i \(0.583842\pi\)
\(692\) −54613.9 −3.00016
\(693\) 1639.42 0.0898650
\(694\) −16053.7 −0.878083
\(695\) −43223.9 −2.35910
\(696\) 31459.5 1.71332
\(697\) 0 0
\(698\) 24831.7 1.34655
\(699\) −27127.8 −1.46791
\(700\) −13443.2 −0.725867
\(701\) 27233.3 1.46732 0.733658 0.679518i \(-0.237811\pi\)
0.733658 + 0.679518i \(0.237811\pi\)
\(702\) −22987.4 −1.23590
\(703\) 3141.66 0.168549
\(704\) 45103.0 2.41461
\(705\) −31463.9 −1.68085
\(706\) −43280.3 −2.30719
\(707\) 6679.49 0.355316
\(708\) 15018.7 0.797230
\(709\) −5101.51 −0.270227 −0.135114 0.990830i \(-0.543140\pi\)
−0.135114 + 0.990830i \(0.543140\pi\)
\(710\) 65842.8 3.48033
\(711\) 2951.07 0.155659
\(712\) 21822.4 1.14864
\(713\) 95.0206 0.00499095
\(714\) 0 0
\(715\) −35726.4 −1.86866
\(716\) −24010.0 −1.25321
\(717\) 26689.0 1.39012
\(718\) 7.55632 0.000392757 0
\(719\) 16399.8 0.850636 0.425318 0.905044i \(-0.360162\pi\)
0.425318 + 0.905044i \(0.360162\pi\)
\(720\) 191.086 0.00989077
\(721\) 12990.4 0.670997
\(722\) −30531.1 −1.57375
\(723\) −24703.0 −1.27070
\(724\) −39182.6 −2.01134
\(725\) −38601.6 −1.97742
\(726\) −41101.2 −2.10112
\(727\) 35224.3 1.79697 0.898486 0.439002i \(-0.144668\pi\)
0.898486 + 0.439002i \(0.144668\pi\)
\(728\) 6077.11 0.309385
\(729\) 15608.7 0.793002
\(730\) 20496.9 1.03921
\(731\) 0 0
\(732\) −36681.2 −1.85215
\(733\) 24492.2 1.23416 0.617080 0.786901i \(-0.288316\pi\)
0.617080 + 0.786901i \(0.288316\pi\)
\(734\) −52953.3 −2.66287
\(735\) 4548.27 0.228252
\(736\) 14687.5 0.735583
\(737\) −44263.5 −2.21230
\(738\) 2862.55 0.142780
\(739\) −15242.9 −0.758753 −0.379377 0.925242i \(-0.623862\pi\)
−0.379377 + 0.925242i \(0.623862\pi\)
\(740\) 52117.3 2.58902
\(741\) −2842.98 −0.140944
\(742\) −12209.0 −0.604054
\(743\) 39870.7 1.96866 0.984329 0.176341i \(-0.0564263\pi\)
0.984329 + 0.176341i \(0.0564263\pi\)
\(744\) 148.038 0.00729479
\(745\) 5172.12 0.254351
\(746\) −8060.70 −0.395607
\(747\) 4300.89 0.210658
\(748\) 0 0
\(749\) −10527.6 −0.513576
\(750\) 10627.5 0.517417
\(751\) 2654.53 0.128982 0.0644908 0.997918i \(-0.479458\pi\)
0.0644908 + 0.997918i \(0.479458\pi\)
\(752\) 904.355 0.0438543
\(753\) −795.752 −0.0385111
\(754\) 46570.8 2.24935
\(755\) 49203.9 2.37180
\(756\) −11367.8 −0.546882
\(757\) −1010.67 −0.0485248 −0.0242624 0.999706i \(-0.507724\pi\)
−0.0242624 + 0.999706i \(0.507724\pi\)
\(758\) 10764.5 0.515809
\(759\) −23833.5 −1.13979
\(760\) 4638.05 0.221368
\(761\) −332.507 −0.0158388 −0.00791942 0.999969i \(-0.502521\pi\)
−0.00791942 + 0.999969i \(0.502521\pi\)
\(762\) 44038.4 2.09362
\(763\) 8480.76 0.402391
\(764\) 47170.9 2.23375
\(765\) 0 0
\(766\) 7177.50 0.338556
\(767\) 8330.65 0.392180
\(768\) 21354.3 1.00333
\(769\) 30704.4 1.43983 0.719915 0.694062i \(-0.244181\pi\)
0.719915 + 0.694062i \(0.244181\pi\)
\(770\) −28715.1 −1.34392
\(771\) −2700.09 −0.126124
\(772\) 30459.7 1.42004
\(773\) −8703.14 −0.404955 −0.202477 0.979287i \(-0.564899\pi\)
−0.202477 + 0.979287i \(0.564899\pi\)
\(774\) −9885.59 −0.459083
\(775\) −181.646 −0.00841923
\(776\) 2343.39 0.108405
\(777\) −9621.11 −0.444215
\(778\) 1015.66 0.0468037
\(779\) −1859.58 −0.0855283
\(780\) −47162.5 −2.16499
\(781\) 47215.1 2.16324
\(782\) 0 0
\(783\) −32642.0 −1.48982
\(784\) −130.729 −0.00595524
\(785\) 40345.2 1.83437
\(786\) −30623.8 −1.38972
\(787\) −19895.2 −0.901128 −0.450564 0.892744i \(-0.648777\pi\)
−0.450564 + 0.892744i \(0.648777\pi\)
\(788\) 7524.97 0.340185
\(789\) −4681.73 −0.211247
\(790\) −51689.0 −2.32786
\(791\) −4224.94 −0.189914
\(792\) −5119.72 −0.229698
\(793\) −20346.5 −0.911128
\(794\) −65608.0 −2.93242
\(795\) 35503.1 1.58385
\(796\) −32795.3 −1.46030
\(797\) −16467.8 −0.731895 −0.365947 0.930636i \(-0.619255\pi\)
−0.365947 + 0.930636i \(0.619255\pi\)
\(798\) −2285.04 −0.101365
\(799\) 0 0
\(800\) −28077.3 −1.24085
\(801\) 4310.72 0.190152
\(802\) −44418.6 −1.95570
\(803\) 14698.1 0.645935
\(804\) −58432.3 −2.56312
\(805\) −9116.90 −0.399166
\(806\) 219.146 0.00957703
\(807\) −301.021 −0.0131307
\(808\) −20859.3 −0.908200
\(809\) 2656.20 0.115435 0.0577175 0.998333i \(-0.481618\pi\)
0.0577175 + 0.998333i \(0.481618\pi\)
\(810\) 62545.4 2.71311
\(811\) 38641.9 1.67312 0.836560 0.547875i \(-0.184563\pi\)
0.836560 + 0.547875i \(0.184563\pi\)
\(812\) 23030.4 0.995329
\(813\) 5657.59 0.244059
\(814\) 60741.9 2.61548
\(815\) 40414.5 1.73700
\(816\) 0 0
\(817\) 6421.92 0.275000
\(818\) 10130.6 0.433018
\(819\) 1200.45 0.0512174
\(820\) −30848.8 −1.31377
\(821\) 9005.92 0.382836 0.191418 0.981509i \(-0.438691\pi\)
0.191418 + 0.981509i \(0.438691\pi\)
\(822\) 7398.71 0.313941
\(823\) −36800.9 −1.55869 −0.779343 0.626598i \(-0.784447\pi\)
−0.779343 + 0.626598i \(0.784447\pi\)
\(824\) −40567.6 −1.71509
\(825\) 45561.2 1.92271
\(826\) 6695.75 0.282052
\(827\) 13301.3 0.559287 0.279644 0.960104i \(-0.409784\pi\)
0.279644 + 0.960104i \(0.409784\pi\)
\(828\) −4338.10 −0.182077
\(829\) −18299.1 −0.766651 −0.383326 0.923613i \(-0.625221\pi\)
−0.383326 + 0.923613i \(0.625221\pi\)
\(830\) −75331.6 −3.15036
\(831\) 26366.4 1.10065
\(832\) 33026.2 1.37617
\(833\) 0 0
\(834\) −66502.5 −2.76114
\(835\) 30284.3 1.25513
\(836\) 8876.15 0.367210
\(837\) −153.602 −0.00634320
\(838\) −50110.5 −2.06568
\(839\) 11672.3 0.480300 0.240150 0.970736i \(-0.422803\pi\)
0.240150 + 0.970736i \(0.422803\pi\)
\(840\) −14203.7 −0.583421
\(841\) 41741.5 1.71149
\(842\) −4794.91 −0.196251
\(843\) −6456.37 −0.263783
\(844\) −61869.6 −2.52327
\(845\) 10280.0 0.418512
\(846\) −6674.67 −0.271253
\(847\) −11274.2 −0.457364
\(848\) −1020.45 −0.0413237
\(849\) −5490.32 −0.221940
\(850\) 0 0
\(851\) 19285.3 0.776840
\(852\) 62328.8 2.50628
\(853\) 14306.3 0.574254 0.287127 0.957893i \(-0.407300\pi\)
0.287127 + 0.957893i \(0.407300\pi\)
\(854\) −16353.5 −0.655274
\(855\) 916.184 0.0366466
\(856\) 32876.3 1.31272
\(857\) 41452.9 1.65228 0.826140 0.563465i \(-0.190532\pi\)
0.826140 + 0.563465i \(0.190532\pi\)
\(858\) −54967.2 −2.18712
\(859\) −12908.8 −0.512739 −0.256370 0.966579i \(-0.582526\pi\)
−0.256370 + 0.966579i \(0.582526\pi\)
\(860\) 106534. 4.22416
\(861\) 5694.84 0.225412
\(862\) −21760.8 −0.859831
\(863\) −2970.29 −0.117161 −0.0585804 0.998283i \(-0.518657\pi\)
−0.0585804 + 0.998283i \(0.518657\pi\)
\(864\) −23742.6 −0.934882
\(865\) 70803.2 2.78310
\(866\) −27144.6 −1.06514
\(867\) 0 0
\(868\) 108.373 0.00423780
\(869\) −37065.6 −1.44691
\(870\) −108847. −4.24170
\(871\) −32411.5 −1.26087
\(872\) −26484.4 −1.02853
\(873\) 462.904 0.0179461
\(874\) 4580.32 0.177267
\(875\) 2915.17 0.112630
\(876\) 19403.0 0.748365
\(877\) −35809.8 −1.37880 −0.689402 0.724379i \(-0.742126\pi\)
−0.689402 + 0.724379i \(0.742126\pi\)
\(878\) 56137.7 2.15781
\(879\) 7876.46 0.302237
\(880\) −2400.05 −0.0919384
\(881\) −1976.82 −0.0755969 −0.0377984 0.999285i \(-0.512034\pi\)
−0.0377984 + 0.999285i \(0.512034\pi\)
\(882\) 964.859 0.0368350
\(883\) −48132.0 −1.83440 −0.917198 0.398431i \(-0.869555\pi\)
−0.917198 + 0.398431i \(0.869555\pi\)
\(884\) 0 0
\(885\) −19470.8 −0.739551
\(886\) 12563.1 0.476373
\(887\) 3448.67 0.130547 0.0652734 0.997867i \(-0.479208\pi\)
0.0652734 + 0.997867i \(0.479208\pi\)
\(888\) 30045.6 1.13543
\(889\) 12079.9 0.455733
\(890\) −75503.7 −2.84370
\(891\) 44850.6 1.68637
\(892\) 72119.4 2.70710
\(893\) 4336.03 0.162486
\(894\) 7957.61 0.297698
\(895\) 31127.3 1.16254
\(896\) 16070.1 0.599179
\(897\) −17451.8 −0.649610
\(898\) 51629.8 1.91861
\(899\) 311.187 0.0115447
\(900\) 8292.90 0.307144
\(901\) 0 0
\(902\) −35953.8 −1.32720
\(903\) −19666.7 −0.724768
\(904\) 13194.0 0.485426
\(905\) 50797.6 1.86582
\(906\) 75703.1 2.77601
\(907\) −21771.1 −0.797019 −0.398509 0.917164i \(-0.630472\pi\)
−0.398509 + 0.917164i \(0.630472\pi\)
\(908\) 68466.8 2.50237
\(909\) −4120.46 −0.150349
\(910\) −21026.3 −0.765951
\(911\) 186.035 0.00676576 0.00338288 0.999994i \(-0.498923\pi\)
0.00338288 + 0.999994i \(0.498923\pi\)
\(912\) −190.988 −0.00693447
\(913\) −54019.4 −1.95814
\(914\) 61904.9 2.24030
\(915\) 47554.7 1.71815
\(916\) −13906.6 −0.501624
\(917\) −8400.25 −0.302509
\(918\) 0 0
\(919\) 19292.1 0.692477 0.346238 0.938147i \(-0.387459\pi\)
0.346238 + 0.938147i \(0.387459\pi\)
\(920\) 28471.0 1.02028
\(921\) 28462.2 1.01831
\(922\) −9317.09 −0.332800
\(923\) 34572.8 1.23291
\(924\) −27182.6 −0.967793
\(925\) −36866.6 −1.31045
\(926\) −8763.95 −0.311016
\(927\) −8013.56 −0.283927
\(928\) 48100.8 1.70149
\(929\) 51848.3 1.83110 0.915548 0.402209i \(-0.131758\pi\)
0.915548 + 0.402209i \(0.131758\pi\)
\(930\) −512.198 −0.0180598
\(931\) −626.797 −0.0220649
\(932\) 62018.0 2.17968
\(933\) −4520.78 −0.158632
\(934\) −17767.7 −0.622461
\(935\) 0 0
\(936\) −3748.86 −0.130914
\(937\) 19428.8 0.677388 0.338694 0.940897i \(-0.390015\pi\)
0.338694 + 0.940897i \(0.390015\pi\)
\(938\) −26050.7 −0.906806
\(939\) 4902.26 0.170372
\(940\) 71930.9 2.49588
\(941\) 27279.2 0.945034 0.472517 0.881322i \(-0.343346\pi\)
0.472517 + 0.881322i \(0.343346\pi\)
\(942\) 62073.5 2.14699
\(943\) −11415.2 −0.394199
\(944\) 559.642 0.0192953
\(945\) 14737.6 0.507316
\(946\) 124164. 4.26734
\(947\) −28524.9 −0.978812 −0.489406 0.872056i \(-0.662786\pi\)
−0.489406 + 0.872056i \(0.662786\pi\)
\(948\) −48930.4 −1.67636
\(949\) 10762.5 0.368142
\(950\) −8755.93 −0.299032
\(951\) −928.518 −0.0316606
\(952\) 0 0
\(953\) 47301.2 1.60780 0.803902 0.594761i \(-0.202753\pi\)
0.803902 + 0.594761i \(0.202753\pi\)
\(954\) 7531.54 0.255600
\(955\) −61153.9 −2.07214
\(956\) −61014.8 −2.06418
\(957\) −78053.3 −2.63647
\(958\) −65864.8 −2.22129
\(959\) 2029.50 0.0683377
\(960\) −77190.3 −2.59511
\(961\) −29789.5 −0.999951
\(962\) 44477.6 1.49066
\(963\) 6494.26 0.217315
\(964\) 56474.5 1.88685
\(965\) −39488.9 −1.31730
\(966\) −14026.9 −0.467192
\(967\) 1072.86 0.0356781 0.0178391 0.999841i \(-0.494321\pi\)
0.0178391 + 0.999841i \(0.494321\pi\)
\(968\) 35208.1 1.16904
\(969\) 0 0
\(970\) −8107.93 −0.268381
\(971\) 45369.2 1.49945 0.749725 0.661749i \(-0.230186\pi\)
0.749725 + 0.661749i \(0.230186\pi\)
\(972\) 15360.2 0.506872
\(973\) −18241.9 −0.601036
\(974\) −31344.4 −1.03115
\(975\) 33361.7 1.09582
\(976\) −1366.85 −0.0448277
\(977\) −17955.4 −0.587966 −0.293983 0.955811i \(-0.594981\pi\)
−0.293983 + 0.955811i \(0.594981\pi\)
\(978\) 62180.1 2.03303
\(979\) −54142.9 −1.76753
\(980\) −10398.0 −0.338930
\(981\) −5231.63 −0.170268
\(982\) 30492.5 0.990890
\(983\) −40761.1 −1.32256 −0.661281 0.750138i \(-0.729987\pi\)
−0.661281 + 0.750138i \(0.729987\pi\)
\(984\) −17784.3 −0.576162
\(985\) −9755.62 −0.315574
\(986\) 0 0
\(987\) −13278.8 −0.428235
\(988\) 6499.47 0.209287
\(989\) 39421.4 1.26747
\(990\) 17713.8 0.568668
\(991\) 47753.6 1.53072 0.765359 0.643603i \(-0.222561\pi\)
0.765359 + 0.643603i \(0.222561\pi\)
\(992\) 226.345 0.00724443
\(993\) −13236.0 −0.422992
\(994\) 27787.8 0.886696
\(995\) 42516.9 1.35465
\(996\) −71311.2 −2.26866
\(997\) 29104.5 0.924522 0.462261 0.886744i \(-0.347038\pi\)
0.462261 + 0.886744i \(0.347038\pi\)
\(998\) −47909.1 −1.51958
\(999\) −31174.9 −0.987317
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.4.a.l.1.10 yes 12
17.16 even 2 2023.4.a.k.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2023.4.a.k.1.10 12 17.16 even 2
2023.4.a.l.1.10 yes 12 1.1 even 1 trivial