Properties

Label 2016.3.f.g.1441.13
Level $2016$
Weight $3$
Character 2016.1441
Analytic conductor $54.932$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,3,Mod(1441,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1441"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-64,0,0,0,128] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2 x^{14} - 8 x^{13} - 57 x^{12} + 32 x^{11} + 466 x^{10} + 304 x^{9} + 3000 x^{8} + \cdots + 790321 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{34} \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1441.13
Root \(2.79294 + 1.11885i\) of defining polynomial
Character \(\chi\) \(=\) 2016.1441
Dual form 2016.3.f.g.1441.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.15119i q^{5} +(-2.53356 - 6.52542i) q^{7} -14.9067 q^{11} +4.05181i q^{13} +26.1871i q^{17} -10.3048i q^{19} -18.0230 q^{23} -1.53475 q^{25} +42.4532 q^{29} +3.16847i q^{31} +(33.6137 - 13.0508i) q^{35} -34.4305 q^{37} -41.4151i q^{41} -16.2894 q^{43} -1.01371i q^{47} +(-36.1622 + 33.0651i) q^{49} +84.3489 q^{53} -76.7870i q^{55} -59.3790i q^{59} -86.6064i q^{61} -20.8716 q^{65} +116.082 q^{67} -97.7926 q^{71} -28.2973i q^{73} +(37.7669 + 97.2722i) q^{77} -103.257 q^{79} -34.8098i q^{83} -134.895 q^{85} -64.9992i q^{89} +(26.4397 - 10.2655i) q^{91} +53.0820 q^{95} -105.475i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 64 q^{25} + 128 q^{29} + 48 q^{37} - 256 q^{49} + 160 q^{53} + 288 q^{65} - 128 q^{77} - 16 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.15119i 1.03024i 0.857119 + 0.515119i \(0.172252\pi\)
−0.857119 + 0.515119i \(0.827748\pi\)
\(6\) 0 0
\(7\) −2.53356 6.52542i −0.361937 0.932203i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −14.9067 −1.35515 −0.677575 0.735453i \(-0.736969\pi\)
−0.677575 + 0.735453i \(0.736969\pi\)
\(12\) 0 0
\(13\) 4.05181i 0.311677i 0.987783 + 0.155839i \(0.0498080\pi\)
−0.987783 + 0.155839i \(0.950192\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 26.1871i 1.54042i 0.637792 + 0.770209i \(0.279848\pi\)
−0.637792 + 0.770209i \(0.720152\pi\)
\(18\) 0 0
\(19\) 10.3048i 0.542359i −0.962529 0.271179i \(-0.912586\pi\)
0.962529 0.271179i \(-0.0874136\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −18.0230 −0.783607 −0.391803 0.920049i \(-0.628149\pi\)
−0.391803 + 0.920049i \(0.628149\pi\)
\(24\) 0 0
\(25\) −1.53475 −0.0613900
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 42.4532 1.46390 0.731951 0.681357i \(-0.238610\pi\)
0.731951 + 0.681357i \(0.238610\pi\)
\(30\) 0 0
\(31\) 3.16847i 0.102209i 0.998693 + 0.0511044i \(0.0162741\pi\)
−0.998693 + 0.0511044i \(0.983726\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 33.6137 13.0508i 0.960390 0.372881i
\(36\) 0 0
\(37\) −34.4305 −0.930553 −0.465277 0.885165i \(-0.654045\pi\)
−0.465277 + 0.885165i \(0.654045\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 41.4151i 1.01012i −0.863083 0.505062i \(-0.831470\pi\)
0.863083 0.505062i \(-0.168530\pi\)
\(42\) 0 0
\(43\) −16.2894 −0.378823 −0.189412 0.981898i \(-0.560658\pi\)
−0.189412 + 0.981898i \(0.560658\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.01371i 0.0215683i −0.999942 0.0107841i \(-0.996567\pi\)
0.999942 0.0107841i \(-0.00343276\pi\)
\(48\) 0 0
\(49\) −36.1622 + 33.0651i −0.738003 + 0.674797i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 84.3489 1.59149 0.795744 0.605633i \(-0.207080\pi\)
0.795744 + 0.605633i \(0.207080\pi\)
\(54\) 0 0
\(55\) 76.7870i 1.39613i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 59.3790i 1.00642i −0.864163 0.503212i \(-0.832151\pi\)
0.864163 0.503212i \(-0.167849\pi\)
\(60\) 0 0
\(61\) 86.6064i 1.41978i −0.704314 0.709889i \(-0.748745\pi\)
0.704314 0.709889i \(-0.251255\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −20.8716 −0.321102
\(66\) 0 0
\(67\) 116.082 1.73257 0.866286 0.499549i \(-0.166501\pi\)
0.866286 + 0.499549i \(0.166501\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −97.7926 −1.37736 −0.688680 0.725065i \(-0.741810\pi\)
−0.688680 + 0.725065i \(0.741810\pi\)
\(72\) 0 0
\(73\) 28.2973i 0.387634i −0.981038 0.193817i \(-0.937913\pi\)
0.981038 0.193817i \(-0.0620868\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 37.7669 + 97.2722i 0.490479 + 1.26327i
\(78\) 0 0
\(79\) −103.257 −1.30705 −0.653526 0.756904i \(-0.726711\pi\)
−0.653526 + 0.756904i \(0.726711\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 34.8098i 0.419396i −0.977766 0.209698i \(-0.932752\pi\)
0.977766 0.209698i \(-0.0672480\pi\)
\(84\) 0 0
\(85\) −134.895 −1.58700
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 64.9992i 0.730328i −0.930943 0.365164i \(-0.881013\pi\)
0.930943 0.365164i \(-0.118987\pi\)
\(90\) 0 0
\(91\) 26.4397 10.2655i 0.290547 0.112808i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 53.0820 0.558758
\(96\) 0 0
\(97\) 105.475i 1.08737i −0.839289 0.543686i \(-0.817028\pi\)
0.839289 0.543686i \(-0.182972\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.24742i 0.0618556i −0.999522 0.0309278i \(-0.990154\pi\)
0.999522 0.0309278i \(-0.00984620\pi\)
\(102\) 0 0
\(103\) 57.0493i 0.553876i −0.960888 0.276938i \(-0.910680\pi\)
0.960888 0.276938i \(-0.0893197\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 133.600 1.24860 0.624299 0.781186i \(-0.285385\pi\)
0.624299 + 0.781186i \(0.285385\pi\)
\(108\) 0 0
\(109\) −37.9546 −0.348207 −0.174104 0.984727i \(-0.555703\pi\)
−0.174104 + 0.984727i \(0.555703\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.35912 0.0120276 0.00601380 0.999982i \(-0.498086\pi\)
0.00601380 + 0.999982i \(0.498086\pi\)
\(114\) 0 0
\(115\) 92.8396i 0.807301i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 170.882 66.3465i 1.43598 0.557534i
\(120\) 0 0
\(121\) 101.208 0.836433
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 120.874i 0.966992i
\(126\) 0 0
\(127\) 139.975 1.10217 0.551083 0.834450i \(-0.314215\pi\)
0.551083 + 0.834450i \(0.314215\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 24.0681i 0.183726i −0.995772 0.0918629i \(-0.970718\pi\)
0.995772 0.0918629i \(-0.0292822\pi\)
\(132\) 0 0
\(133\) −67.2432 + 26.1078i −0.505588 + 0.196300i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −185.628 −1.35495 −0.677475 0.735545i \(-0.736926\pi\)
−0.677475 + 0.735545i \(0.736926\pi\)
\(138\) 0 0
\(139\) 255.078i 1.83510i −0.397625 0.917548i \(-0.630165\pi\)
0.397625 0.917548i \(-0.369835\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 60.3989i 0.422370i
\(144\) 0 0
\(145\) 218.684i 1.50817i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −41.7178 −0.279985 −0.139993 0.990153i \(-0.544708\pi\)
−0.139993 + 0.990153i \(0.544708\pi\)
\(150\) 0 0
\(151\) 109.711 0.726565 0.363282 0.931679i \(-0.381656\pi\)
0.363282 + 0.931679i \(0.381656\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −16.3214 −0.105299
\(156\) 0 0
\(157\) 22.5395i 0.143564i 0.997420 + 0.0717818i \(0.0228685\pi\)
−0.997420 + 0.0717818i \(0.977131\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 45.6622 + 117.607i 0.283616 + 0.730480i
\(162\) 0 0
\(163\) 272.331 1.67074 0.835371 0.549686i \(-0.185253\pi\)
0.835371 + 0.549686i \(0.185253\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 310.691i 1.86043i 0.367019 + 0.930214i \(0.380379\pi\)
−0.367019 + 0.930214i \(0.619621\pi\)
\(168\) 0 0
\(169\) 152.583 0.902857
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 321.021i 1.85561i −0.373064 0.927805i \(-0.621693\pi\)
0.373064 0.927805i \(-0.378307\pi\)
\(174\) 0 0
\(175\) 3.88838 + 10.0149i 0.0222193 + 0.0572280i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 141.201 0.788830 0.394415 0.918932i \(-0.370947\pi\)
0.394415 + 0.918932i \(0.370947\pi\)
\(180\) 0 0
\(181\) 197.828i 1.09297i 0.837468 + 0.546486i \(0.184035\pi\)
−0.837468 + 0.546486i \(0.815965\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 177.358i 0.958691i
\(186\) 0 0
\(187\) 390.362i 2.08750i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −116.101 −0.607857 −0.303929 0.952695i \(-0.598298\pi\)
−0.303929 + 0.952695i \(0.598298\pi\)
\(192\) 0 0
\(193\) 368.857 1.91118 0.955588 0.294705i \(-0.0952213\pi\)
0.955588 + 0.294705i \(0.0952213\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 65.8721 0.334376 0.167188 0.985925i \(-0.446531\pi\)
0.167188 + 0.985925i \(0.446531\pi\)
\(198\) 0 0
\(199\) 69.6424i 0.349962i 0.984572 + 0.174981i \(0.0559863\pi\)
−0.984572 + 0.174981i \(0.944014\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −107.558 277.025i −0.529840 1.36465i
\(204\) 0 0
\(205\) 213.337 1.04067
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 153.610i 0.734978i
\(210\) 0 0
\(211\) −353.466 −1.67519 −0.837597 0.546289i \(-0.816040\pi\)
−0.837597 + 0.546289i \(0.816040\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 83.9098i 0.390278i
\(216\) 0 0
\(217\) 20.6756 8.02751i 0.0952793 0.0369931i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −106.105 −0.480113
\(222\) 0 0
\(223\) 348.135i 1.56114i −0.625065 0.780572i \(-0.714928\pi\)
0.625065 0.780572i \(-0.285072\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 420.898i 1.85417i −0.374845 0.927087i \(-0.622304\pi\)
0.374845 0.927087i \(-0.377696\pi\)
\(228\) 0 0
\(229\) 367.551i 1.60503i −0.596633 0.802514i \(-0.703495\pi\)
0.596633 0.802514i \(-0.296505\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −234.452 −1.00623 −0.503115 0.864219i \(-0.667813\pi\)
−0.503115 + 0.864219i \(0.667813\pi\)
\(234\) 0 0
\(235\) 5.22180 0.0222204
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −53.3195 −0.223094 −0.111547 0.993759i \(-0.535581\pi\)
−0.111547 + 0.993759i \(0.535581\pi\)
\(240\) 0 0
\(241\) 31.2242i 0.129561i −0.997900 0.0647805i \(-0.979365\pi\)
0.997900 0.0647805i \(-0.0206347\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −170.324 186.278i −0.695201 0.760319i
\(246\) 0 0
\(247\) 41.7531 0.169041
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 159.945i 0.637232i −0.947884 0.318616i \(-0.896782\pi\)
0.947884 0.318616i \(-0.103218\pi\)
\(252\) 0 0
\(253\) 268.662 1.06191
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 33.1653i 0.129048i −0.997916 0.0645239i \(-0.979447\pi\)
0.997916 0.0645239i \(-0.0205529\pi\)
\(258\) 0 0
\(259\) 87.2316 + 224.673i 0.336801 + 0.867464i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 53.6396 0.203953 0.101976 0.994787i \(-0.467483\pi\)
0.101976 + 0.994787i \(0.467483\pi\)
\(264\) 0 0
\(265\) 434.497i 1.63961i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.6712i 0.0805621i −0.999188 0.0402810i \(-0.987175\pi\)
0.999188 0.0402810i \(-0.0128253\pi\)
\(270\) 0 0
\(271\) 57.0119i 0.210376i 0.994452 + 0.105188i \(0.0335444\pi\)
−0.994452 + 0.105188i \(0.966456\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 22.8780 0.0831928
\(276\) 0 0
\(277\) 35.3099 0.127472 0.0637362 0.997967i \(-0.479698\pi\)
0.0637362 + 0.997967i \(0.479698\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −243.290 −0.865799 −0.432900 0.901442i \(-0.642510\pi\)
−0.432900 + 0.901442i \(0.642510\pi\)
\(282\) 0 0
\(283\) 78.1560i 0.276170i −0.990420 0.138085i \(-0.955905\pi\)
0.990420 0.138085i \(-0.0440947\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −270.251 + 104.927i −0.941640 + 0.365601i
\(288\) 0 0
\(289\) −396.764 −1.37289
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 351.888i 1.20098i 0.799632 + 0.600491i \(0.205028\pi\)
−0.799632 + 0.600491i \(0.794972\pi\)
\(294\) 0 0
\(295\) 305.873 1.03686
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 73.0255i 0.244233i
\(300\) 0 0
\(301\) 41.2701 + 106.295i 0.137110 + 0.353140i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 446.126 1.46271
\(306\) 0 0
\(307\) 368.173i 1.19926i −0.800277 0.599631i \(-0.795314\pi\)
0.800277 0.599631i \(-0.204686\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 93.4897i 0.300610i −0.988640 0.150305i \(-0.951974\pi\)
0.988640 0.150305i \(-0.0480256\pi\)
\(312\) 0 0
\(313\) 333.448i 1.06533i −0.846326 0.532665i \(-0.821190\pi\)
0.846326 0.532665i \(-0.178810\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −367.491 −1.15928 −0.579638 0.814874i \(-0.696806\pi\)
−0.579638 + 0.814874i \(0.696806\pi\)
\(318\) 0 0
\(319\) −632.835 −1.98381
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 269.853 0.835459
\(324\) 0 0
\(325\) 6.21852i 0.0191339i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.61487 + 2.56829i −0.0201060 + 0.00780635i
\(330\) 0 0
\(331\) −118.816 −0.358961 −0.179481 0.983762i \(-0.557442\pi\)
−0.179481 + 0.983762i \(0.557442\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 597.962i 1.78496i
\(336\) 0 0
\(337\) −411.888 −1.22222 −0.611109 0.791546i \(-0.709276\pi\)
−0.611109 + 0.791546i \(0.709276\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 47.2313i 0.138508i
\(342\) 0 0
\(343\) 307.382 + 152.201i 0.896158 + 0.443735i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −95.9406 −0.276486 −0.138243 0.990398i \(-0.544145\pi\)
−0.138243 + 0.990398i \(0.544145\pi\)
\(348\) 0 0
\(349\) 71.7537i 0.205598i 0.994702 + 0.102799i \(0.0327798\pi\)
−0.994702 + 0.102799i \(0.967220\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 282.287i 0.799679i −0.916585 0.399840i \(-0.869066\pi\)
0.916585 0.399840i \(-0.130934\pi\)
\(354\) 0 0
\(355\) 503.748i 1.41901i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −199.095 −0.554583 −0.277291 0.960786i \(-0.589437\pi\)
−0.277291 + 0.960786i \(0.589437\pi\)
\(360\) 0 0
\(361\) 254.811 0.705847
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 145.765 0.399355
\(366\) 0 0
\(367\) 531.102i 1.44714i 0.690249 + 0.723572i \(0.257501\pi\)
−0.690249 + 0.723572i \(0.742499\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −213.703 550.412i −0.576018 1.48359i
\(372\) 0 0
\(373\) −451.830 −1.21134 −0.605670 0.795716i \(-0.707095\pi\)
−0.605670 + 0.795716i \(0.707095\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 172.012i 0.456265i
\(378\) 0 0
\(379\) 499.730 1.31855 0.659274 0.751903i \(-0.270864\pi\)
0.659274 + 0.751903i \(0.270864\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 391.943i 1.02335i 0.859179 + 0.511674i \(0.170975\pi\)
−0.859179 + 0.511674i \(0.829025\pi\)
\(384\) 0 0
\(385\) −501.067 + 194.544i −1.30147 + 0.505310i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 411.379 1.05753 0.528765 0.848769i \(-0.322655\pi\)
0.528765 + 0.848769i \(0.322655\pi\)
\(390\) 0 0
\(391\) 471.969i 1.20708i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 531.897i 1.34657i
\(396\) 0 0
\(397\) 314.331i 0.791765i 0.918301 + 0.395882i \(0.129561\pi\)
−0.918301 + 0.395882i \(0.870439\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 505.723 1.26115 0.630577 0.776127i \(-0.282818\pi\)
0.630577 + 0.776127i \(0.282818\pi\)
\(402\) 0 0
\(403\) −12.8380 −0.0318562
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 513.243 1.26104
\(408\) 0 0
\(409\) 533.011i 1.30321i −0.758560 0.651603i \(-0.774097\pi\)
0.758560 0.651603i \(-0.225903\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −387.473 + 150.440i −0.938191 + 0.364262i
\(414\) 0 0
\(415\) 179.312 0.432077
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 527.882i 1.25986i 0.776652 + 0.629930i \(0.216917\pi\)
−0.776652 + 0.629930i \(0.783083\pi\)
\(420\) 0 0
\(421\) 357.750 0.849763 0.424881 0.905249i \(-0.360316\pi\)
0.424881 + 0.905249i \(0.360316\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 40.1907i 0.0945663i
\(426\) 0 0
\(427\) −565.143 + 219.422i −1.32352 + 0.513870i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −295.522 −0.685667 −0.342833 0.939396i \(-0.611387\pi\)
−0.342833 + 0.939396i \(0.611387\pi\)
\(432\) 0 0
\(433\) 819.746i 1.89318i −0.322445 0.946588i \(-0.604505\pi\)
0.322445 0.946588i \(-0.395495\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 185.723i 0.424996i
\(438\) 0 0
\(439\) 580.965i 1.32338i 0.749776 + 0.661691i \(0.230161\pi\)
−0.749776 + 0.661691i \(0.769839\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 137.309 0.309953 0.154977 0.987918i \(-0.450470\pi\)
0.154977 + 0.987918i \(0.450470\pi\)
\(444\) 0 0
\(445\) 334.823 0.752412
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 334.385 0.744732 0.372366 0.928086i \(-0.378547\pi\)
0.372366 + 0.928086i \(0.378547\pi\)
\(450\) 0 0
\(451\) 617.360i 1.36887i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 52.8795 + 136.196i 0.116219 + 0.299332i
\(456\) 0 0
\(457\) −656.384 −1.43629 −0.718145 0.695894i \(-0.755008\pi\)
−0.718145 + 0.695894i \(0.755008\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 134.660i 0.292105i −0.989277 0.146052i \(-0.953343\pi\)
0.989277 0.146052i \(-0.0466568\pi\)
\(462\) 0 0
\(463\) −471.861 −1.01914 −0.509569 0.860430i \(-0.670195\pi\)
−0.509569 + 0.860430i \(0.670195\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 529.473i 1.13377i 0.823795 + 0.566887i \(0.191853\pi\)
−0.823795 + 0.566887i \(0.808147\pi\)
\(468\) 0 0
\(469\) −294.101 757.486i −0.627082 1.61511i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 242.821 0.513363
\(474\) 0 0
\(475\) 15.8153i 0.0332954i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.3586i 0.0320640i −0.999871 0.0160320i \(-0.994897\pi\)
0.999871 0.0160320i \(-0.00510336\pi\)
\(480\) 0 0
\(481\) 139.506i 0.290032i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 543.322 1.12025
\(486\) 0 0
\(487\) 288.676 0.592763 0.296382 0.955070i \(-0.404220\pi\)
0.296382 + 0.955070i \(0.404220\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 444.046 0.904371 0.452185 0.891924i \(-0.350645\pi\)
0.452185 + 0.891924i \(0.350645\pi\)
\(492\) 0 0
\(493\) 1111.73i 2.25502i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 247.763 + 638.138i 0.498517 + 1.28398i
\(498\) 0 0
\(499\) 466.334 0.934537 0.467269 0.884115i \(-0.345238\pi\)
0.467269 + 0.884115i \(0.345238\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 935.154i 1.85915i 0.368628 + 0.929577i \(0.379828\pi\)
−0.368628 + 0.929577i \(0.620172\pi\)
\(504\) 0 0
\(505\) 32.1816 0.0637260
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 393.830i 0.773732i −0.922136 0.386866i \(-0.873558\pi\)
0.922136 0.386866i \(-0.126442\pi\)
\(510\) 0 0
\(511\) −184.652 + 71.6928i −0.361353 + 0.140299i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 293.872 0.570624
\(516\) 0 0
\(517\) 15.1110i 0.0292282i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 383.993i 0.737030i 0.929622 + 0.368515i \(0.120134\pi\)
−0.929622 + 0.368515i \(0.879866\pi\)
\(522\) 0 0
\(523\) 53.3845i 0.102074i −0.998697 0.0510368i \(-0.983747\pi\)
0.998697 0.0510368i \(-0.0162526\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −82.9731 −0.157444
\(528\) 0 0
\(529\) −204.173 −0.385961
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 167.806 0.314833
\(534\) 0 0
\(535\) 688.198i 1.28635i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 539.057 492.889i 1.00011 0.914452i
\(540\) 0 0
\(541\) 33.8848 0.0626336 0.0313168 0.999510i \(-0.490030\pi\)
0.0313168 + 0.999510i \(0.490030\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 195.511i 0.358736i
\(546\) 0 0
\(547\) 344.630 0.630037 0.315019 0.949086i \(-0.397989\pi\)
0.315019 + 0.949086i \(0.397989\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 437.472i 0.793960i
\(552\) 0 0
\(553\) 261.608 + 673.796i 0.473070 + 1.21844i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −129.194 −0.231947 −0.115973 0.993252i \(-0.536999\pi\)
−0.115973 + 0.993252i \(0.536999\pi\)
\(558\) 0 0
\(559\) 66.0015i 0.118071i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 783.083i 1.39091i 0.718569 + 0.695456i \(0.244797\pi\)
−0.718569 + 0.695456i \(0.755203\pi\)
\(564\) 0 0
\(565\) 7.00108i 0.0123913i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 420.659 0.739296 0.369648 0.929172i \(-0.379478\pi\)
0.369648 + 0.929172i \(0.379478\pi\)
\(570\) 0 0
\(571\) 66.0186 0.115619 0.0578097 0.998328i \(-0.481588\pi\)
0.0578097 + 0.998328i \(0.481588\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 27.6608 0.0481057
\(576\) 0 0
\(577\) 476.719i 0.826203i −0.910685 0.413101i \(-0.864445\pi\)
0.910685 0.413101i \(-0.135555\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −227.149 + 88.1927i −0.390962 + 0.151795i
\(582\) 0 0
\(583\) −1257.36 −2.15671
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 782.519i 1.33308i −0.745469 0.666541i \(-0.767774\pi\)
0.745469 0.666541i \(-0.232226\pi\)
\(588\) 0 0
\(589\) 32.6505 0.0554338
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 114.539i 0.193152i −0.995326 0.0965762i \(-0.969211\pi\)
0.995326 0.0965762i \(-0.0307892\pi\)
\(594\) 0 0
\(595\) 341.764 + 880.245i 0.574393 + 1.47940i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1073.21 −1.79167 −0.895837 0.444383i \(-0.853423\pi\)
−0.895837 + 0.444383i \(0.853423\pi\)
\(600\) 0 0
\(601\) 573.754i 0.954666i 0.878723 + 0.477333i \(0.158396\pi\)
−0.878723 + 0.477333i \(0.841604\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 521.344i 0.861725i
\(606\) 0 0
\(607\) 1163.67i 1.91708i 0.284959 + 0.958540i \(0.408020\pi\)
−0.284959 + 0.958540i \(0.591980\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.10735 0.00672234
\(612\) 0 0
\(613\) 466.983 0.761799 0.380900 0.924616i \(-0.375614\pi\)
0.380900 + 0.924616i \(0.375614\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −543.328 −0.880596 −0.440298 0.897852i \(-0.645127\pi\)
−0.440298 + 0.897852i \(0.645127\pi\)
\(618\) 0 0
\(619\) 132.036i 0.213305i 0.994296 + 0.106653i \(0.0340132\pi\)
−0.994296 + 0.106653i \(0.965987\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −424.147 + 164.679i −0.680814 + 0.264333i
\(624\) 0 0
\(625\) −661.013 −1.05762
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 901.634i 1.43344i
\(630\) 0 0
\(631\) −790.993 −1.25355 −0.626777 0.779198i \(-0.715626\pi\)
−0.626777 + 0.779198i \(0.715626\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 721.039i 1.13549i
\(636\) 0 0
\(637\) −133.973 146.522i −0.210319 0.230019i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 461.410 0.719829 0.359915 0.932985i \(-0.382806\pi\)
0.359915 + 0.932985i \(0.382806\pi\)
\(642\) 0 0
\(643\) 308.047i 0.479078i 0.970887 + 0.239539i \(0.0769962\pi\)
−0.970887 + 0.239539i \(0.923004\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 911.607i 1.40898i −0.709716 0.704488i \(-0.751177\pi\)
0.709716 0.704488i \(-0.248823\pi\)
\(648\) 0 0
\(649\) 885.143i 1.36386i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −761.550 −1.16623 −0.583116 0.812389i \(-0.698167\pi\)
−0.583116 + 0.812389i \(0.698167\pi\)
\(654\) 0 0
\(655\) 123.979 0.189281
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1169.93 −1.77531 −0.887655 0.460509i \(-0.847667\pi\)
−0.887655 + 0.460509i \(0.847667\pi\)
\(660\) 0 0
\(661\) 51.1358i 0.0773613i 0.999252 + 0.0386806i \(0.0123155\pi\)
−0.999252 + 0.0386806i \(0.987685\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −134.486 346.383i −0.202235 0.520876i
\(666\) 0 0
\(667\) −765.132 −1.14712
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1291.01i 1.92401i
\(672\) 0 0
\(673\) 596.694 0.886619 0.443309 0.896369i \(-0.353804\pi\)
0.443309 + 0.896369i \(0.353804\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 889.654i 1.31411i 0.753842 + 0.657056i \(0.228199\pi\)
−0.753842 + 0.657056i \(0.771801\pi\)
\(678\) 0 0
\(679\) −688.269 + 267.227i −1.01365 + 0.393560i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −468.595 −0.686083 −0.343042 0.939320i \(-0.611457\pi\)
−0.343042 + 0.939320i \(0.611457\pi\)
\(684\) 0 0
\(685\) 956.206i 1.39592i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 341.765i 0.496031i
\(690\) 0 0
\(691\) 154.796i 0.224018i −0.993707 0.112009i \(-0.964271\pi\)
0.993707 0.112009i \(-0.0357286\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1313.96 1.89059
\(696\) 0 0
\(697\) 1084.54 1.55601
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −509.180 −0.726362 −0.363181 0.931719i \(-0.618309\pi\)
−0.363181 + 0.931719i \(0.618309\pi\)
\(702\) 0 0
\(703\) 354.800i 0.504693i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −40.7670 + 15.8282i −0.0576620 + 0.0223878i
\(708\) 0 0
\(709\) −1058.71 −1.49325 −0.746623 0.665248i \(-0.768326\pi\)
−0.746623 + 0.665248i \(0.768326\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 57.1052i 0.0800915i
\(714\) 0 0
\(715\) 311.126 0.435141
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.06477i 0.0112167i −0.999984 0.00560833i \(-0.998215\pi\)
0.999984 0.00560833i \(-0.00178519\pi\)
\(720\) 0 0
\(721\) −372.270 + 144.538i −0.516325 + 0.200468i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −65.1551 −0.0898690
\(726\) 0 0
\(727\) 848.459i 1.16707i −0.812088 0.583534i \(-0.801669\pi\)
0.812088 0.583534i \(-0.198331\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 426.572i 0.583546i
\(732\) 0 0
\(733\) 1117.22i 1.52418i −0.647471 0.762090i \(-0.724173\pi\)
0.647471 0.762090i \(-0.275827\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1730.40 −2.34790
\(738\) 0 0
\(739\) −733.946 −0.993161 −0.496580 0.867991i \(-0.665411\pi\)
−0.496580 + 0.867991i \(0.665411\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1392.52 −1.87419 −0.937096 0.349071i \(-0.886497\pi\)
−0.937096 + 0.349071i \(0.886497\pi\)
\(744\) 0 0
\(745\) 214.896i 0.288451i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −338.483 871.795i −0.451913 1.16395i
\(750\) 0 0
\(751\) 1196.00 1.59255 0.796275 0.604935i \(-0.206801\pi\)
0.796275 + 0.604935i \(0.206801\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 565.144i 0.748535i
\(756\) 0 0
\(757\) 326.138 0.430830 0.215415 0.976523i \(-0.430890\pi\)
0.215415 + 0.976523i \(0.430890\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 507.940i 0.667463i 0.942668 + 0.333732i \(0.108308\pi\)
−0.942668 + 0.333732i \(0.891692\pi\)
\(762\) 0 0
\(763\) 96.1602 + 247.670i 0.126029 + 0.324600i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 240.592 0.313680
\(768\) 0 0
\(769\) 54.2112i 0.0704957i 0.999379 + 0.0352478i \(0.0112221\pi\)
−0.999379 + 0.0352478i \(0.988778\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 487.877i 0.631147i −0.948901 0.315574i \(-0.897803\pi\)
0.948901 0.315574i \(-0.102197\pi\)
\(774\) 0 0
\(775\) 4.86282i 0.00627460i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −426.774 −0.547849
\(780\) 0 0
\(781\) 1457.76 1.86653
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −116.105 −0.147905
\(786\) 0 0
\(787\) 316.008i 0.401535i 0.979639 + 0.200768i \(0.0643437\pi\)
−0.979639 + 0.200768i \(0.935656\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.44340 8.86882i −0.00435323 0.0112122i
\(792\) 0 0
\(793\) 350.913 0.442513
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 868.063i 1.08916i −0.838708 0.544582i \(-0.816688\pi\)
0.838708 0.544582i \(-0.183312\pi\)
\(798\) 0 0
\(799\) 26.5461 0.0332241
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 421.818i 0.525302i
\(804\) 0 0
\(805\) −605.818 + 235.215i −0.752568 + 0.292192i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 484.513 0.598904 0.299452 0.954111i \(-0.403196\pi\)
0.299452 + 0.954111i \(0.403196\pi\)
\(810\) 0 0
\(811\) 1234.55i 1.52226i 0.648599 + 0.761130i \(0.275355\pi\)
−0.648599 + 0.761130i \(0.724645\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1402.83i 1.72126i
\(816\) 0 0
\(817\) 167.859i 0.205458i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 189.106 0.230336 0.115168 0.993346i \(-0.463259\pi\)
0.115168 + 0.993346i \(0.463259\pi\)
\(822\) 0 0
\(823\) 1606.53 1.95204 0.976018 0.217688i \(-0.0698515\pi\)
0.976018 + 0.217688i \(0.0698515\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −315.159 −0.381088 −0.190544 0.981679i \(-0.561025\pi\)
−0.190544 + 0.981679i \(0.561025\pi\)
\(828\) 0 0
\(829\) 7.08792i 0.00854997i −0.999991 0.00427498i \(-0.998639\pi\)
0.999991 0.00427498i \(-0.00136077\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −865.878 946.982i −1.03947 1.13683i
\(834\) 0 0
\(835\) −1600.43 −1.91668
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 375.971i 0.448118i −0.974576 0.224059i \(-0.928069\pi\)
0.974576 0.224059i \(-0.0719308\pi\)
\(840\) 0 0
\(841\) 961.272 1.14301
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 785.983i 0.930158i
\(846\) 0 0
\(847\) −256.417 660.427i −0.302736 0.779725i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 620.539 0.729188
\(852\) 0 0
\(853\) 402.432i 0.471785i 0.971779 + 0.235892i \(0.0758013\pi\)
−0.971779 + 0.235892i \(0.924199\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1625.19i 1.89637i −0.317726 0.948183i \(-0.602919\pi\)
0.317726 0.948183i \(-0.397081\pi\)
\(858\) 0 0
\(859\) 779.473i 0.907419i −0.891150 0.453710i \(-0.850100\pi\)
0.891150 0.453710i \(-0.149900\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −904.421 −1.04800 −0.523998 0.851719i \(-0.675560\pi\)
−0.523998 + 0.851719i \(0.675560\pi\)
\(864\) 0 0
\(865\) 1653.64 1.91172
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1539.22 1.77125
\(870\) 0 0
\(871\) 470.343i 0.540004i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 788.753 306.241i 0.901432 0.349990i
\(876\) 0 0
\(877\) −430.365 −0.490724 −0.245362 0.969432i \(-0.578907\pi\)
−0.245362 + 0.969432i \(0.578907\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 868.272i 0.985553i −0.870156 0.492777i \(-0.835982\pi\)
0.870156 0.492777i \(-0.164018\pi\)
\(882\) 0 0
\(883\) −1245.18 −1.41017 −0.705084 0.709124i \(-0.749091\pi\)
−0.705084 + 0.709124i \(0.749091\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 898.252i 1.01269i −0.862332 0.506343i \(-0.830997\pi\)
0.862332 0.506343i \(-0.169003\pi\)
\(888\) 0 0
\(889\) −354.635 913.397i −0.398915 1.02744i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −10.4461 −0.0116977
\(894\) 0 0
\(895\) 727.351i 0.812683i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 134.512i 0.149624i
\(900\) 0 0
\(901\) 2208.85i 2.45156i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1019.05 −1.12602
\(906\) 0 0
\(907\) −71.4730 −0.0788015 −0.0394007 0.999223i \(-0.512545\pi\)
−0.0394007 + 0.999223i \(0.512545\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 773.022 0.848542 0.424271 0.905535i \(-0.360530\pi\)
0.424271 + 0.905535i \(0.360530\pi\)
\(912\) 0 0
\(913\) 518.898i 0.568344i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −157.054 + 60.9779i −0.171270 + 0.0664972i
\(918\) 0 0
\(919\) 586.713 0.638426 0.319213 0.947683i \(-0.396582\pi\)
0.319213 + 0.947683i \(0.396582\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 396.237i 0.429292i
\(924\) 0 0
\(925\) 52.8422 0.0571267
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1564.85i 1.68445i 0.539126 + 0.842225i \(0.318755\pi\)
−0.539126 + 0.842225i \(0.681245\pi\)
\(930\) 0 0
\(931\) 340.729 + 372.644i 0.365982 + 0.400262i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2010.83 2.15062
\(936\) 0 0
\(937\) 128.110i 0.136723i −0.997661 0.0683615i \(-0.978223\pi\)
0.997661 0.0683615i \(-0.0217771\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 361.450i 0.384113i 0.981384 + 0.192056i \(0.0615157\pi\)
−0.981384 + 0.192056i \(0.938484\pi\)
\(942\) 0 0
\(943\) 746.422i 0.791539i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1247.00 −1.31679 −0.658393 0.752674i \(-0.728764\pi\)
−0.658393 + 0.752674i \(0.728764\pi\)
\(948\) 0 0
\(949\) 114.655 0.120817
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1200.01 −1.25919 −0.629594 0.776924i \(-0.716779\pi\)
−0.629594 + 0.776924i \(0.716779\pi\)
\(954\) 0 0
\(955\) 598.057i 0.626238i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 470.300 + 1211.30i 0.490407 + 1.26309i
\(960\) 0 0
\(961\) 950.961 0.989553
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1900.05i 1.96897i
\(966\) 0 0
\(967\) −1277.50 −1.32110 −0.660548 0.750784i \(-0.729676\pi\)
−0.660548 + 0.750784i \(0.729676\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 602.816i 0.620819i 0.950603 + 0.310410i \(0.100466\pi\)
−0.950603 + 0.310410i \(0.899534\pi\)
\(972\) 0 0
\(973\) −1664.49 + 646.256i −1.71068 + 0.664189i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1217.87 1.24654 0.623271 0.782006i \(-0.285803\pi\)
0.623271 + 0.782006i \(0.285803\pi\)
\(978\) 0 0
\(979\) 968.921i 0.989705i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1467.03i 1.49240i −0.665722 0.746199i \(-0.731877\pi\)
0.665722 0.746199i \(-0.268123\pi\)
\(984\) 0 0
\(985\) 339.320i 0.344487i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 293.583 0.296848
\(990\) 0 0
\(991\) −1112.89 −1.12299 −0.561497 0.827479i \(-0.689775\pi\)
−0.561497 + 0.827479i \(0.689775\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −358.741 −0.360544
\(996\) 0 0
\(997\) 462.397i 0.463788i −0.972741 0.231894i \(-0.925508\pi\)
0.972741 0.231894i \(-0.0744923\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.f.g.1441.13 16
3.2 odd 2 672.3.f.b.97.2 16
4.3 odd 2 inner 2016.3.f.g.1441.14 16
7.6 odd 2 inner 2016.3.f.g.1441.3 16
12.11 even 2 672.3.f.b.97.10 yes 16
21.20 even 2 672.3.f.b.97.15 yes 16
24.5 odd 2 1344.3.f.j.769.15 16
24.11 even 2 1344.3.f.j.769.7 16
28.27 even 2 inner 2016.3.f.g.1441.4 16
84.83 odd 2 672.3.f.b.97.7 yes 16
168.83 odd 2 1344.3.f.j.769.10 16
168.125 even 2 1344.3.f.j.769.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.f.b.97.2 16 3.2 odd 2
672.3.f.b.97.7 yes 16 84.83 odd 2
672.3.f.b.97.10 yes 16 12.11 even 2
672.3.f.b.97.15 yes 16 21.20 even 2
1344.3.f.j.769.2 16 168.125 even 2
1344.3.f.j.769.7 16 24.11 even 2
1344.3.f.j.769.10 16 168.83 odd 2
1344.3.f.j.769.15 16 24.5 odd 2
2016.3.f.g.1441.3 16 7.6 odd 2 inner
2016.3.f.g.1441.4 16 28.27 even 2 inner
2016.3.f.g.1441.13 16 1.1 even 1 trivial
2016.3.f.g.1441.14 16 4.3 odd 2 inner