Properties

Label 1344.3.f.j.769.15
Level $1344$
Weight $3$
Character 1344.769
Analytic conductor $36.621$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1344,3,Mod(769,1344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1344, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1344.769"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1344.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,0,0,0,0,0,0,0,0,0,0,-24,0,0,0,-64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.6213475300\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2 x^{14} - 8 x^{13} - 57 x^{12} + 32 x^{11} + 466 x^{10} + 304 x^{9} + 3000 x^{8} + \cdots + 790321 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{30} \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.15
Root \(-2.08583 - 0.105897i\) of defining polynomial
Character \(\chi\) \(=\) 1344.769
Dual form 1344.3.f.j.769.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +5.15119i q^{5} +(-2.53356 - 6.52542i) q^{7} -3.00000 q^{9} -14.9067 q^{11} -4.05181i q^{13} -8.92212 q^{15} -26.1871i q^{17} +10.3048i q^{19} +(11.3024 - 4.38825i) q^{21} +18.0230 q^{23} -1.53475 q^{25} -5.19615i q^{27} +42.4532 q^{29} +3.16847i q^{31} -25.8191i q^{33} +(33.6137 - 13.0508i) q^{35} +34.4305 q^{37} +7.01793 q^{39} +41.4151i q^{41} +16.2894 q^{43} -15.4536i q^{45} +1.01371i q^{47} +(-36.1622 + 33.0651i) q^{49} +45.3574 q^{51} +84.3489 q^{53} -76.7870i q^{55} -17.8485 q^{57} -59.3790i q^{59} +86.6064i q^{61} +(7.60067 + 19.5763i) q^{63} +20.8716 q^{65} -116.082 q^{67} +31.2167i q^{69} +97.7926 q^{71} -28.2973i q^{73} -2.65827i q^{75} +(37.7669 + 97.2722i) q^{77} -103.257 q^{79} +9.00000 q^{81} -34.8098i q^{83} +134.895 q^{85} +73.5311i q^{87} +64.9992i q^{89} +(-26.4397 + 10.2655i) q^{91} -5.48795 q^{93} -53.0820 q^{95} -105.475i q^{97} +44.7200 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} - 24 q^{21} - 64 q^{25} + 128 q^{29} - 48 q^{37} - 256 q^{49} + 160 q^{53} - 144 q^{57} - 288 q^{65} - 128 q^{77} + 144 q^{81} + 16 q^{85} - 96 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 5.15119i 1.03024i 0.857119 + 0.515119i \(0.172252\pi\)
−0.857119 + 0.515119i \(0.827748\pi\)
\(6\) 0 0
\(7\) −2.53356 6.52542i −0.361937 0.932203i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) −14.9067 −1.35515 −0.677575 0.735453i \(-0.736969\pi\)
−0.677575 + 0.735453i \(0.736969\pi\)
\(12\) 0 0
\(13\) 4.05181i 0.311677i −0.987783 0.155839i \(-0.950192\pi\)
0.987783 0.155839i \(-0.0498080\pi\)
\(14\) 0 0
\(15\) −8.92212 −0.594808
\(16\) 0 0
\(17\) 26.1871i 1.54042i −0.637792 0.770209i \(-0.720152\pi\)
0.637792 0.770209i \(-0.279848\pi\)
\(18\) 0 0
\(19\) 10.3048i 0.542359i 0.962529 + 0.271179i \(0.0874136\pi\)
−0.962529 + 0.271179i \(0.912586\pi\)
\(20\) 0 0
\(21\) 11.3024 4.38825i 0.538207 0.208964i
\(22\) 0 0
\(23\) 18.0230 0.783607 0.391803 0.920049i \(-0.371851\pi\)
0.391803 + 0.920049i \(0.371851\pi\)
\(24\) 0 0
\(25\) −1.53475 −0.0613900
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 42.4532 1.46390 0.731951 0.681357i \(-0.238610\pi\)
0.731951 + 0.681357i \(0.238610\pi\)
\(30\) 0 0
\(31\) 3.16847i 0.102209i 0.998693 + 0.0511044i \(0.0162741\pi\)
−0.998693 + 0.0511044i \(0.983726\pi\)
\(32\) 0 0
\(33\) 25.8191i 0.782397i
\(34\) 0 0
\(35\) 33.6137 13.0508i 0.960390 0.372881i
\(36\) 0 0
\(37\) 34.4305 0.930553 0.465277 0.885165i \(-0.345955\pi\)
0.465277 + 0.885165i \(0.345955\pi\)
\(38\) 0 0
\(39\) 7.01793 0.179947
\(40\) 0 0
\(41\) 41.4151i 1.01012i 0.863083 + 0.505062i \(0.168530\pi\)
−0.863083 + 0.505062i \(0.831470\pi\)
\(42\) 0 0
\(43\) 16.2894 0.378823 0.189412 0.981898i \(-0.439342\pi\)
0.189412 + 0.981898i \(0.439342\pi\)
\(44\) 0 0
\(45\) 15.4536i 0.343413i
\(46\) 0 0
\(47\) 1.01371i 0.0215683i 0.999942 + 0.0107841i \(0.00343276\pi\)
−0.999942 + 0.0107841i \(0.996567\pi\)
\(48\) 0 0
\(49\) −36.1622 + 33.0651i −0.738003 + 0.674797i
\(50\) 0 0
\(51\) 45.3574 0.889361
\(52\) 0 0
\(53\) 84.3489 1.59149 0.795744 0.605633i \(-0.207080\pi\)
0.795744 + 0.605633i \(0.207080\pi\)
\(54\) 0 0
\(55\) 76.7870i 1.39613i
\(56\) 0 0
\(57\) −17.8485 −0.313131
\(58\) 0 0
\(59\) 59.3790i 1.00642i −0.864163 0.503212i \(-0.832151\pi\)
0.864163 0.503212i \(-0.167849\pi\)
\(60\) 0 0
\(61\) 86.6064i 1.41978i 0.704314 + 0.709889i \(0.251255\pi\)
−0.704314 + 0.709889i \(0.748745\pi\)
\(62\) 0 0
\(63\) 7.60067 + 19.5763i 0.120646 + 0.310734i
\(64\) 0 0
\(65\) 20.8716 0.321102
\(66\) 0 0
\(67\) −116.082 −1.73257 −0.866286 0.499549i \(-0.833499\pi\)
−0.866286 + 0.499549i \(0.833499\pi\)
\(68\) 0 0
\(69\) 31.2167i 0.452416i
\(70\) 0 0
\(71\) 97.7926 1.37736 0.688680 0.725065i \(-0.258190\pi\)
0.688680 + 0.725065i \(0.258190\pi\)
\(72\) 0 0
\(73\) 28.2973i 0.387634i −0.981038 0.193817i \(-0.937913\pi\)
0.981038 0.193817i \(-0.0620868\pi\)
\(74\) 0 0
\(75\) 2.65827i 0.0354436i
\(76\) 0 0
\(77\) 37.7669 + 97.2722i 0.490479 + 1.26327i
\(78\) 0 0
\(79\) −103.257 −1.30705 −0.653526 0.756904i \(-0.726711\pi\)
−0.653526 + 0.756904i \(0.726711\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 34.8098i 0.419396i −0.977766 0.209698i \(-0.932752\pi\)
0.977766 0.209698i \(-0.0672480\pi\)
\(84\) 0 0
\(85\) 134.895 1.58700
\(86\) 0 0
\(87\) 73.5311i 0.845184i
\(88\) 0 0
\(89\) 64.9992i 0.730328i 0.930943 + 0.365164i \(0.118987\pi\)
−0.930943 + 0.365164i \(0.881013\pi\)
\(90\) 0 0
\(91\) −26.4397 + 10.2655i −0.290547 + 0.112808i
\(92\) 0 0
\(93\) −5.48795 −0.0590103
\(94\) 0 0
\(95\) −53.0820 −0.558758
\(96\) 0 0
\(97\) 105.475i 1.08737i −0.839289 0.543686i \(-0.817028\pi\)
0.839289 0.543686i \(-0.182972\pi\)
\(98\) 0 0
\(99\) 44.7200 0.451717
\(100\) 0 0
\(101\) 6.24742i 0.0618556i −0.999522 0.0309278i \(-0.990154\pi\)
0.999522 0.0309278i \(-0.00984620\pi\)
\(102\) 0 0
\(103\) 57.0493i 0.553876i −0.960888 0.276938i \(-0.910680\pi\)
0.960888 0.276938i \(-0.0893197\pi\)
\(104\) 0 0
\(105\) 22.6047 + 58.2206i 0.215283 + 0.554482i
\(106\) 0 0
\(107\) 133.600 1.24860 0.624299 0.781186i \(-0.285385\pi\)
0.624299 + 0.781186i \(0.285385\pi\)
\(108\) 0 0
\(109\) 37.9546 0.348207 0.174104 0.984727i \(-0.444297\pi\)
0.174104 + 0.984727i \(0.444297\pi\)
\(110\) 0 0
\(111\) 59.6353i 0.537255i
\(112\) 0 0
\(113\) −1.35912 −0.0120276 −0.00601380 0.999982i \(-0.501914\pi\)
−0.00601380 + 0.999982i \(0.501914\pi\)
\(114\) 0 0
\(115\) 92.8396i 0.807301i
\(116\) 0 0
\(117\) 12.1554i 0.103892i
\(118\) 0 0
\(119\) −170.882 + 66.3465i −1.43598 + 0.557534i
\(120\) 0 0
\(121\) 101.208 0.836433
\(122\) 0 0
\(123\) −71.7330 −0.583195
\(124\) 0 0
\(125\) 120.874i 0.966992i
\(126\) 0 0
\(127\) 139.975 1.10217 0.551083 0.834450i \(-0.314215\pi\)
0.551083 + 0.834450i \(0.314215\pi\)
\(128\) 0 0
\(129\) 28.2141i 0.218714i
\(130\) 0 0
\(131\) 24.0681i 0.183726i −0.995772 0.0918629i \(-0.970718\pi\)
0.995772 0.0918629i \(-0.0292822\pi\)
\(132\) 0 0
\(133\) 67.2432 26.1078i 0.505588 0.196300i
\(134\) 0 0
\(135\) 26.7664 0.198269
\(136\) 0 0
\(137\) 185.628 1.35495 0.677475 0.735545i \(-0.263074\pi\)
0.677475 + 0.735545i \(0.263074\pi\)
\(138\) 0 0
\(139\) 255.078i 1.83510i 0.397625 + 0.917548i \(0.369835\pi\)
−0.397625 + 0.917548i \(0.630165\pi\)
\(140\) 0 0
\(141\) −1.75579 −0.0124524
\(142\) 0 0
\(143\) 60.3989i 0.422370i
\(144\) 0 0
\(145\) 218.684i 1.50817i
\(146\) 0 0
\(147\) −57.2703 62.6347i −0.389594 0.426086i
\(148\) 0 0
\(149\) −41.7178 −0.279985 −0.139993 0.990153i \(-0.544708\pi\)
−0.139993 + 0.990153i \(0.544708\pi\)
\(150\) 0 0
\(151\) 109.711 0.726565 0.363282 0.931679i \(-0.381656\pi\)
0.363282 + 0.931679i \(0.381656\pi\)
\(152\) 0 0
\(153\) 78.5613i 0.513473i
\(154\) 0 0
\(155\) −16.3214 −0.105299
\(156\) 0 0
\(157\) 22.5395i 0.143564i −0.997420 0.0717818i \(-0.977131\pi\)
0.997420 0.0717818i \(-0.0228685\pi\)
\(158\) 0 0
\(159\) 146.097i 0.918846i
\(160\) 0 0
\(161\) −45.6622 117.607i −0.283616 0.730480i
\(162\) 0 0
\(163\) −272.331 −1.67074 −0.835371 0.549686i \(-0.814747\pi\)
−0.835371 + 0.549686i \(0.814747\pi\)
\(164\) 0 0
\(165\) 132.999 0.806055
\(166\) 0 0
\(167\) 310.691i 1.86043i −0.367019 0.930214i \(-0.619621\pi\)
0.367019 0.930214i \(-0.380379\pi\)
\(168\) 0 0
\(169\) 152.583 0.902857
\(170\) 0 0
\(171\) 30.9144i 0.180786i
\(172\) 0 0
\(173\) 321.021i 1.85561i −0.373064 0.927805i \(-0.621693\pi\)
0.373064 0.927805i \(-0.378307\pi\)
\(174\) 0 0
\(175\) 3.88838 + 10.0149i 0.0222193 + 0.0572280i
\(176\) 0 0
\(177\) 102.847 0.581059
\(178\) 0 0
\(179\) 141.201 0.788830 0.394415 0.918932i \(-0.370947\pi\)
0.394415 + 0.918932i \(0.370947\pi\)
\(180\) 0 0
\(181\) 197.828i 1.09297i −0.837468 0.546486i \(-0.815965\pi\)
0.837468 0.546486i \(-0.184035\pi\)
\(182\) 0 0
\(183\) −150.007 −0.819709
\(184\) 0 0
\(185\) 177.358i 0.958691i
\(186\) 0 0
\(187\) 390.362i 2.08750i
\(188\) 0 0
\(189\) −33.9071 + 13.1648i −0.179402 + 0.0696548i
\(190\) 0 0
\(191\) 116.101 0.607857 0.303929 0.952695i \(-0.401702\pi\)
0.303929 + 0.952695i \(0.401702\pi\)
\(192\) 0 0
\(193\) 368.857 1.91118 0.955588 0.294705i \(-0.0952213\pi\)
0.955588 + 0.294705i \(0.0952213\pi\)
\(194\) 0 0
\(195\) 36.1507i 0.185388i
\(196\) 0 0
\(197\) 65.8721 0.334376 0.167188 0.985925i \(-0.446531\pi\)
0.167188 + 0.985925i \(0.446531\pi\)
\(198\) 0 0
\(199\) 69.6424i 0.349962i 0.984572 + 0.174981i \(0.0559863\pi\)
−0.984572 + 0.174981i \(0.944014\pi\)
\(200\) 0 0
\(201\) 201.060i 1.00030i
\(202\) 0 0
\(203\) −107.558 277.025i −0.529840 1.36465i
\(204\) 0 0
\(205\) −213.337 −1.04067
\(206\) 0 0
\(207\) −54.0689 −0.261202
\(208\) 0 0
\(209\) 153.610i 0.734978i
\(210\) 0 0
\(211\) 353.466 1.67519 0.837597 0.546289i \(-0.183960\pi\)
0.837597 + 0.546289i \(0.183960\pi\)
\(212\) 0 0
\(213\) 169.382i 0.795219i
\(214\) 0 0
\(215\) 83.9098i 0.390278i
\(216\) 0 0
\(217\) 20.6756 8.02751i 0.0952793 0.0369931i
\(218\) 0 0
\(219\) 49.0123 0.223801
\(220\) 0 0
\(221\) −106.105 −0.480113
\(222\) 0 0
\(223\) 348.135i 1.56114i −0.625065 0.780572i \(-0.714928\pi\)
0.625065 0.780572i \(-0.285072\pi\)
\(224\) 0 0
\(225\) 4.60425 0.0204633
\(226\) 0 0
\(227\) 420.898i 1.85417i −0.374845 0.927087i \(-0.622304\pi\)
0.374845 0.927087i \(-0.377696\pi\)
\(228\) 0 0
\(229\) 367.551i 1.60503i 0.596633 + 0.802514i \(0.296505\pi\)
−0.596633 + 0.802514i \(0.703495\pi\)
\(230\) 0 0
\(231\) −168.480 + 65.4142i −0.729352 + 0.283178i
\(232\) 0 0
\(233\) 234.452 1.00623 0.503115 0.864219i \(-0.332187\pi\)
0.503115 + 0.864219i \(0.332187\pi\)
\(234\) 0 0
\(235\) −5.22180 −0.0222204
\(236\) 0 0
\(237\) 178.847i 0.754627i
\(238\) 0 0
\(239\) 53.3195 0.223094 0.111547 0.993759i \(-0.464419\pi\)
0.111547 + 0.993759i \(0.464419\pi\)
\(240\) 0 0
\(241\) 31.2242i 0.129561i −0.997900 0.0647805i \(-0.979365\pi\)
0.997900 0.0647805i \(-0.0206347\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) −170.324 186.278i −0.695201 0.760319i
\(246\) 0 0
\(247\) 41.7531 0.169041
\(248\) 0 0
\(249\) 60.2924 0.242138
\(250\) 0 0
\(251\) 159.945i 0.637232i −0.947884 0.318616i \(-0.896782\pi\)
0.947884 0.318616i \(-0.103218\pi\)
\(252\) 0 0
\(253\) −268.662 −1.06191
\(254\) 0 0
\(255\) 233.645i 0.916253i
\(256\) 0 0
\(257\) 33.1653i 0.129048i 0.997916 + 0.0645239i \(0.0205529\pi\)
−0.997916 + 0.0645239i \(0.979447\pi\)
\(258\) 0 0
\(259\) −87.2316 224.673i −0.336801 0.867464i
\(260\) 0 0
\(261\) −127.360 −0.487967
\(262\) 0 0
\(263\) −53.6396 −0.203953 −0.101976 0.994787i \(-0.532517\pi\)
−0.101976 + 0.994787i \(0.532517\pi\)
\(264\) 0 0
\(265\) 434.497i 1.63961i
\(266\) 0 0
\(267\) −112.582 −0.421655
\(268\) 0 0
\(269\) 21.6712i 0.0805621i −0.999188 0.0402810i \(-0.987175\pi\)
0.999188 0.0402810i \(-0.0128253\pi\)
\(270\) 0 0
\(271\) 57.0119i 0.210376i 0.994452 + 0.105188i \(0.0335444\pi\)
−0.994452 + 0.105188i \(0.966456\pi\)
\(272\) 0 0
\(273\) −17.7803 45.7950i −0.0651295 0.167747i
\(274\) 0 0
\(275\) 22.8780 0.0831928
\(276\) 0 0
\(277\) −35.3099 −0.127472 −0.0637362 0.997967i \(-0.520302\pi\)
−0.0637362 + 0.997967i \(0.520302\pi\)
\(278\) 0 0
\(279\) 9.50541i 0.0340696i
\(280\) 0 0
\(281\) 243.290 0.865799 0.432900 0.901442i \(-0.357490\pi\)
0.432900 + 0.901442i \(0.357490\pi\)
\(282\) 0 0
\(283\) 78.1560i 0.276170i 0.990420 + 0.138085i \(0.0440947\pi\)
−0.990420 + 0.138085i \(0.955905\pi\)
\(284\) 0 0
\(285\) 91.9408i 0.322599i
\(286\) 0 0
\(287\) 270.251 104.927i 0.941640 0.365601i
\(288\) 0 0
\(289\) −396.764 −1.37289
\(290\) 0 0
\(291\) 182.688 0.627795
\(292\) 0 0
\(293\) 351.888i 1.20098i 0.799632 + 0.600491i \(0.205028\pi\)
−0.799632 + 0.600491i \(0.794972\pi\)
\(294\) 0 0
\(295\) 305.873 1.03686
\(296\) 0 0
\(297\) 77.4573i 0.260799i
\(298\) 0 0
\(299\) 73.0255i 0.244233i
\(300\) 0 0
\(301\) −41.2701 106.295i −0.137110 0.353140i
\(302\) 0 0
\(303\) 10.8208 0.0357124
\(304\) 0 0
\(305\) −446.126 −1.46271
\(306\) 0 0
\(307\) 368.173i 1.19926i 0.800277 + 0.599631i \(0.204686\pi\)
−0.800277 + 0.599631i \(0.795314\pi\)
\(308\) 0 0
\(309\) 98.8122 0.319781
\(310\) 0 0
\(311\) 93.4897i 0.300610i 0.988640 + 0.150305i \(0.0480256\pi\)
−0.988640 + 0.150305i \(0.951974\pi\)
\(312\) 0 0
\(313\) 333.448i 1.06533i −0.846326 0.532665i \(-0.821190\pi\)
0.846326 0.532665i \(-0.178810\pi\)
\(314\) 0 0
\(315\) −100.841 + 39.1525i −0.320130 + 0.124294i
\(316\) 0 0
\(317\) −367.491 −1.15928 −0.579638 0.814874i \(-0.696806\pi\)
−0.579638 + 0.814874i \(0.696806\pi\)
\(318\) 0 0
\(319\) −632.835 −1.98381
\(320\) 0 0
\(321\) 231.402i 0.720878i
\(322\) 0 0
\(323\) 269.853 0.835459
\(324\) 0 0
\(325\) 6.21852i 0.0191339i
\(326\) 0 0
\(327\) 65.7393i 0.201038i
\(328\) 0 0
\(329\) 6.61487 2.56829i 0.0201060 0.00780635i
\(330\) 0 0
\(331\) 118.816 0.358961 0.179481 0.983762i \(-0.442558\pi\)
0.179481 + 0.983762i \(0.442558\pi\)
\(332\) 0 0
\(333\) −103.291 −0.310184
\(334\) 0 0
\(335\) 597.962i 1.78496i
\(336\) 0 0
\(337\) −411.888 −1.22222 −0.611109 0.791546i \(-0.709276\pi\)
−0.611109 + 0.791546i \(0.709276\pi\)
\(338\) 0 0
\(339\) 2.35406i 0.00694414i
\(340\) 0 0
\(341\) 47.2313i 0.138508i
\(342\) 0 0
\(343\) 307.382 + 152.201i 0.896158 + 0.443735i
\(344\) 0 0
\(345\) −160.803 −0.466096
\(346\) 0 0
\(347\) −95.9406 −0.276486 −0.138243 0.990398i \(-0.544145\pi\)
−0.138243 + 0.990398i \(0.544145\pi\)
\(348\) 0 0
\(349\) 71.7537i 0.205598i −0.994702 0.102799i \(-0.967220\pi\)
0.994702 0.102799i \(-0.0327798\pi\)
\(350\) 0 0
\(351\) −21.0538 −0.0599824
\(352\) 0 0
\(353\) 282.287i 0.799679i 0.916585 + 0.399840i \(0.130934\pi\)
−0.916585 + 0.399840i \(0.869066\pi\)
\(354\) 0 0
\(355\) 503.748i 1.41901i
\(356\) 0 0
\(357\) −114.916 295.976i −0.321892 0.829064i
\(358\) 0 0
\(359\) 199.095 0.554583 0.277291 0.960786i \(-0.410563\pi\)
0.277291 + 0.960786i \(0.410563\pi\)
\(360\) 0 0
\(361\) 254.811 0.705847
\(362\) 0 0
\(363\) 175.298i 0.482915i
\(364\) 0 0
\(365\) 145.765 0.399355
\(366\) 0 0
\(367\) 531.102i 1.44714i 0.690249 + 0.723572i \(0.257501\pi\)
−0.690249 + 0.723572i \(0.742499\pi\)
\(368\) 0 0
\(369\) 124.245i 0.336708i
\(370\) 0 0
\(371\) −213.703 550.412i −0.576018 1.48359i
\(372\) 0 0
\(373\) 451.830 1.21134 0.605670 0.795716i \(-0.292905\pi\)
0.605670 + 0.795716i \(0.292905\pi\)
\(374\) 0 0
\(375\) −209.360 −0.558293
\(376\) 0 0
\(377\) 172.012i 0.456265i
\(378\) 0 0
\(379\) −499.730 −1.31855 −0.659274 0.751903i \(-0.729136\pi\)
−0.659274 + 0.751903i \(0.729136\pi\)
\(380\) 0 0
\(381\) 242.444i 0.636336i
\(382\) 0 0
\(383\) 391.943i 1.02335i −0.859179 0.511674i \(-0.829025\pi\)
0.859179 0.511674i \(-0.170975\pi\)
\(384\) 0 0
\(385\) −501.067 + 194.544i −1.30147 + 0.505310i
\(386\) 0 0
\(387\) −48.8682 −0.126274
\(388\) 0 0
\(389\) 411.379 1.05753 0.528765 0.848769i \(-0.322655\pi\)
0.528765 + 0.848769i \(0.322655\pi\)
\(390\) 0 0
\(391\) 471.969i 1.20708i
\(392\) 0 0
\(393\) 41.6871 0.106074
\(394\) 0 0
\(395\) 531.897i 1.34657i
\(396\) 0 0
\(397\) 314.331i 0.791765i −0.918301 0.395882i \(-0.870439\pi\)
0.918301 0.395882i \(-0.129561\pi\)
\(398\) 0 0
\(399\) 45.2201 + 116.469i 0.113334 + 0.291901i
\(400\) 0 0
\(401\) −505.723 −1.26115 −0.630577 0.776127i \(-0.717182\pi\)
−0.630577 + 0.776127i \(0.717182\pi\)
\(402\) 0 0
\(403\) 12.8380 0.0318562
\(404\) 0 0
\(405\) 46.3607i 0.114471i
\(406\) 0 0
\(407\) −513.243 −1.26104
\(408\) 0 0
\(409\) 533.011i 1.30321i −0.758560 0.651603i \(-0.774097\pi\)
0.758560 0.651603i \(-0.225903\pi\)
\(410\) 0 0
\(411\) 321.518i 0.782281i
\(412\) 0 0
\(413\) −387.473 + 150.440i −0.938191 + 0.364262i
\(414\) 0 0
\(415\) 179.312 0.432077
\(416\) 0 0
\(417\) −441.809 −1.05949
\(418\) 0 0
\(419\) 527.882i 1.25986i 0.776652 + 0.629930i \(0.216917\pi\)
−0.776652 + 0.629930i \(0.783083\pi\)
\(420\) 0 0
\(421\) −357.750 −0.849763 −0.424881 0.905249i \(-0.639684\pi\)
−0.424881 + 0.905249i \(0.639684\pi\)
\(422\) 0 0
\(423\) 3.04112i 0.00718942i
\(424\) 0 0
\(425\) 40.1907i 0.0945663i
\(426\) 0 0
\(427\) 565.143 219.422i 1.32352 0.513870i
\(428\) 0 0
\(429\) −104.614 −0.243855
\(430\) 0 0
\(431\) 295.522 0.685667 0.342833 0.939396i \(-0.388613\pi\)
0.342833 + 0.939396i \(0.388613\pi\)
\(432\) 0 0
\(433\) 819.746i 1.89318i −0.322445 0.946588i \(-0.604505\pi\)
0.322445 0.946588i \(-0.395495\pi\)
\(434\) 0 0
\(435\) −378.772 −0.870741
\(436\) 0 0
\(437\) 185.723i 0.424996i
\(438\) 0 0
\(439\) 580.965i 1.32338i 0.749776 + 0.661691i \(0.230161\pi\)
−0.749776 + 0.661691i \(0.769839\pi\)
\(440\) 0 0
\(441\) 108.487 99.1952i 0.246001 0.224932i
\(442\) 0 0
\(443\) 137.309 0.309953 0.154977 0.987918i \(-0.450470\pi\)
0.154977 + 0.987918i \(0.450470\pi\)
\(444\) 0 0
\(445\) −334.823 −0.752412
\(446\) 0 0
\(447\) 72.2573i 0.161649i
\(448\) 0 0
\(449\) −334.385 −0.744732 −0.372366 0.928086i \(-0.621453\pi\)
−0.372366 + 0.928086i \(0.621453\pi\)
\(450\) 0 0
\(451\) 617.360i 1.36887i
\(452\) 0 0
\(453\) 190.026i 0.419482i
\(454\) 0 0
\(455\) −52.8795 136.196i −0.116219 0.299332i
\(456\) 0 0
\(457\) −656.384 −1.43629 −0.718145 0.695894i \(-0.755008\pi\)
−0.718145 + 0.695894i \(0.755008\pi\)
\(458\) 0 0
\(459\) −136.072 −0.296454
\(460\) 0 0
\(461\) 134.660i 0.292105i −0.989277 0.146052i \(-0.953343\pi\)
0.989277 0.146052i \(-0.0466568\pi\)
\(462\) 0 0
\(463\) −471.861 −1.01914 −0.509569 0.860430i \(-0.670195\pi\)
−0.509569 + 0.860430i \(0.670195\pi\)
\(464\) 0 0
\(465\) 28.2695i 0.0607946i
\(466\) 0 0
\(467\) 529.473i 1.13377i 0.823795 + 0.566887i \(0.191853\pi\)
−0.823795 + 0.566887i \(0.808147\pi\)
\(468\) 0 0
\(469\) 294.101 + 757.486i 0.627082 + 1.61511i
\(470\) 0 0
\(471\) 39.0396 0.0828865
\(472\) 0 0
\(473\) −242.821 −0.513363
\(474\) 0 0
\(475\) 15.8153i 0.0332954i
\(476\) 0 0
\(477\) −253.047 −0.530496
\(478\) 0 0
\(479\) 15.3586i 0.0320640i 0.999871 + 0.0160320i \(0.00510336\pi\)
−0.999871 + 0.0160320i \(0.994897\pi\)
\(480\) 0 0
\(481\) 139.506i 0.290032i
\(482\) 0 0
\(483\) 203.702 79.0892i 0.421743 0.163746i
\(484\) 0 0
\(485\) 543.322 1.12025
\(486\) 0 0
\(487\) 288.676 0.592763 0.296382 0.955070i \(-0.404220\pi\)
0.296382 + 0.955070i \(0.404220\pi\)
\(488\) 0 0
\(489\) 471.691i 0.964604i
\(490\) 0 0
\(491\) 444.046 0.904371 0.452185 0.891924i \(-0.350645\pi\)
0.452185 + 0.891924i \(0.350645\pi\)
\(492\) 0 0
\(493\) 1111.73i 2.25502i
\(494\) 0 0
\(495\) 230.361i 0.465376i
\(496\) 0 0
\(497\) −247.763 638.138i −0.498517 1.28398i
\(498\) 0 0
\(499\) −466.334 −0.934537 −0.467269 0.884115i \(-0.654762\pi\)
−0.467269 + 0.884115i \(0.654762\pi\)
\(500\) 0 0
\(501\) 538.133 1.07412
\(502\) 0 0
\(503\) 935.154i 1.85915i −0.368628 0.929577i \(-0.620172\pi\)
0.368628 0.929577i \(-0.379828\pi\)
\(504\) 0 0
\(505\) 32.1816 0.0637260
\(506\) 0 0
\(507\) 264.281i 0.521265i
\(508\) 0 0
\(509\) 393.830i 0.773732i −0.922136 0.386866i \(-0.873558\pi\)
0.922136 0.386866i \(-0.126442\pi\)
\(510\) 0 0
\(511\) −184.652 + 71.6928i −0.361353 + 0.140299i
\(512\) 0 0
\(513\) 53.5454 0.104377
\(514\) 0 0
\(515\) 293.872 0.570624
\(516\) 0 0
\(517\) 15.1110i 0.0292282i
\(518\) 0 0
\(519\) 556.024 1.07134
\(520\) 0 0
\(521\) 383.993i 0.737030i −0.929622 0.368515i \(-0.879866\pi\)
0.929622 0.368515i \(-0.120134\pi\)
\(522\) 0 0
\(523\) 53.3845i 0.102074i 0.998697 + 0.0510368i \(0.0162526\pi\)
−0.998697 + 0.0510368i \(0.983747\pi\)
\(524\) 0 0
\(525\) −17.3463 + 6.73487i −0.0330406 + 0.0128283i
\(526\) 0 0
\(527\) 82.9731 0.157444
\(528\) 0 0
\(529\) −204.173 −0.385961
\(530\) 0 0
\(531\) 178.137i 0.335475i
\(532\) 0 0
\(533\) 167.806 0.314833
\(534\) 0 0
\(535\) 688.198i 1.28635i
\(536\) 0 0
\(537\) 244.567i 0.455431i
\(538\) 0 0
\(539\) 539.057 492.889i 1.00011 0.914452i
\(540\) 0 0
\(541\) −33.8848 −0.0626336 −0.0313168 0.999510i \(-0.509970\pi\)
−0.0313168 + 0.999510i \(0.509970\pi\)
\(542\) 0 0
\(543\) 342.648 0.631028
\(544\) 0 0
\(545\) 195.511i 0.358736i
\(546\) 0 0
\(547\) −344.630 −0.630037 −0.315019 0.949086i \(-0.602011\pi\)
−0.315019 + 0.949086i \(0.602011\pi\)
\(548\) 0 0
\(549\) 259.819i 0.473259i
\(550\) 0 0
\(551\) 437.472i 0.793960i
\(552\) 0 0
\(553\) 261.608 + 673.796i 0.473070 + 1.21844i
\(554\) 0 0
\(555\) −307.193 −0.553501
\(556\) 0 0
\(557\) −129.194 −0.231947 −0.115973 0.993252i \(-0.536999\pi\)
−0.115973 + 0.993252i \(0.536999\pi\)
\(558\) 0 0
\(559\) 66.0015i 0.118071i
\(560\) 0 0
\(561\) −676.127 −1.20522
\(562\) 0 0
\(563\) 783.083i 1.39091i 0.718569 + 0.695456i \(0.244797\pi\)
−0.718569 + 0.695456i \(0.755203\pi\)
\(564\) 0 0
\(565\) 7.00108i 0.0123913i
\(566\) 0 0
\(567\) −22.8020 58.7288i −0.0402152 0.103578i
\(568\) 0 0
\(569\) −420.659 −0.739296 −0.369648 0.929172i \(-0.620522\pi\)
−0.369648 + 0.929172i \(0.620522\pi\)
\(570\) 0 0
\(571\) −66.0186 −0.115619 −0.0578097 0.998328i \(-0.518412\pi\)
−0.0578097 + 0.998328i \(0.518412\pi\)
\(572\) 0 0
\(573\) 201.092i 0.350947i
\(574\) 0 0
\(575\) −27.6608 −0.0481057
\(576\) 0 0
\(577\) 476.719i 0.826203i −0.910685 0.413101i \(-0.864445\pi\)
0.910685 0.413101i \(-0.135555\pi\)
\(578\) 0 0
\(579\) 638.879i 1.10342i
\(580\) 0 0
\(581\) −227.149 + 88.1927i −0.390962 + 0.151795i
\(582\) 0 0
\(583\) −1257.36 −2.15671
\(584\) 0 0
\(585\) −62.6149 −0.107034
\(586\) 0 0
\(587\) 782.519i 1.33308i −0.745469 0.666541i \(-0.767774\pi\)
0.745469 0.666541i \(-0.232226\pi\)
\(588\) 0 0
\(589\) −32.6505 −0.0554338
\(590\) 0 0
\(591\) 114.094i 0.193052i
\(592\) 0 0
\(593\) 114.539i 0.193152i 0.995326 + 0.0965762i \(0.0307892\pi\)
−0.995326 + 0.0965762i \(0.969211\pi\)
\(594\) 0 0
\(595\) −341.764 880.245i −0.574393 1.47940i
\(596\) 0 0
\(597\) −120.624 −0.202050
\(598\) 0 0
\(599\) 1073.21 1.79167 0.895837 0.444383i \(-0.146577\pi\)
0.895837 + 0.444383i \(0.146577\pi\)
\(600\) 0 0
\(601\) 573.754i 0.954666i 0.878723 + 0.477333i \(0.158396\pi\)
−0.878723 + 0.477333i \(0.841604\pi\)
\(602\) 0 0
\(603\) 348.247 0.577524
\(604\) 0 0
\(605\) 521.344i 0.861725i
\(606\) 0 0
\(607\) 1163.67i 1.91708i 0.284959 + 0.958540i \(0.408020\pi\)
−0.284959 + 0.958540i \(0.591980\pi\)
\(608\) 0 0
\(609\) 479.821 186.295i 0.787883 0.305903i
\(610\) 0 0
\(611\) 4.10735 0.00672234
\(612\) 0 0
\(613\) −466.983 −0.761799 −0.380900 0.924616i \(-0.624386\pi\)
−0.380900 + 0.924616i \(0.624386\pi\)
\(614\) 0 0
\(615\) 369.510i 0.600830i
\(616\) 0 0
\(617\) 543.328 0.880596 0.440298 0.897852i \(-0.354873\pi\)
0.440298 + 0.897852i \(0.354873\pi\)
\(618\) 0 0
\(619\) 132.036i 0.213305i −0.994296 0.106653i \(-0.965987\pi\)
0.994296 0.106653i \(-0.0340132\pi\)
\(620\) 0 0
\(621\) 93.6500i 0.150805i
\(622\) 0 0
\(623\) 424.147 164.679i 0.680814 0.264333i
\(624\) 0 0
\(625\) −661.013 −1.05762
\(626\) 0 0
\(627\) 266.061 0.424340
\(628\) 0 0
\(629\) 901.634i 1.43344i
\(630\) 0 0
\(631\) −790.993 −1.25355 −0.626777 0.779198i \(-0.715626\pi\)
−0.626777 + 0.779198i \(0.715626\pi\)
\(632\) 0 0
\(633\) 612.221i 0.967174i
\(634\) 0 0
\(635\) 721.039i 1.13549i
\(636\) 0 0
\(637\) 133.973 + 146.522i 0.210319 + 0.230019i
\(638\) 0 0
\(639\) −293.378 −0.459120
\(640\) 0 0
\(641\) −461.410 −0.719829 −0.359915 0.932985i \(-0.617194\pi\)
−0.359915 + 0.932985i \(0.617194\pi\)
\(642\) 0 0
\(643\) 308.047i 0.479078i −0.970887 0.239539i \(-0.923004\pi\)
0.970887 0.239539i \(-0.0769962\pi\)
\(644\) 0 0
\(645\) −145.336 −0.225327
\(646\) 0 0
\(647\) 911.607i 1.40898i 0.709716 + 0.704488i \(0.248823\pi\)
−0.709716 + 0.704488i \(0.751177\pi\)
\(648\) 0 0
\(649\) 885.143i 1.36386i
\(650\) 0 0
\(651\) 13.9040 + 35.8112i 0.0213580 + 0.0550095i
\(652\) 0 0
\(653\) −761.550 −1.16623 −0.583116 0.812389i \(-0.698167\pi\)
−0.583116 + 0.812389i \(0.698167\pi\)
\(654\) 0 0
\(655\) 123.979 0.189281
\(656\) 0 0
\(657\) 84.8918i 0.129211i
\(658\) 0 0
\(659\) −1169.93 −1.77531 −0.887655 0.460509i \(-0.847667\pi\)
−0.887655 + 0.460509i \(0.847667\pi\)
\(660\) 0 0
\(661\) 51.1358i 0.0773613i −0.999252 0.0386806i \(-0.987685\pi\)
0.999252 0.0386806i \(-0.0123155\pi\)
\(662\) 0 0
\(663\) 183.779i 0.277194i
\(664\) 0 0
\(665\) 134.486 + 346.383i 0.202235 + 0.520876i
\(666\) 0 0
\(667\) 765.132 1.14712
\(668\) 0 0
\(669\) 602.988 0.901327
\(670\) 0 0
\(671\) 1291.01i 1.92401i
\(672\) 0 0
\(673\) 596.694 0.886619 0.443309 0.896369i \(-0.353804\pi\)
0.443309 + 0.896369i \(0.353804\pi\)
\(674\) 0 0
\(675\) 7.97480i 0.0118145i
\(676\) 0 0
\(677\) 889.654i 1.31411i 0.753842 + 0.657056i \(0.228199\pi\)
−0.753842 + 0.657056i \(0.771801\pi\)
\(678\) 0 0
\(679\) −688.269 + 267.227i −1.01365 + 0.393560i
\(680\) 0 0
\(681\) 729.016 1.07051
\(682\) 0 0
\(683\) −468.595 −0.686083 −0.343042 0.939320i \(-0.611457\pi\)
−0.343042 + 0.939320i \(0.611457\pi\)
\(684\) 0 0
\(685\) 956.206i 1.39592i
\(686\) 0 0
\(687\) −636.618 −0.926663
\(688\) 0 0
\(689\) 341.765i 0.496031i
\(690\) 0 0
\(691\) 154.796i 0.224018i 0.993707 + 0.112009i \(0.0357286\pi\)
−0.993707 + 0.112009i \(0.964271\pi\)
\(692\) 0 0
\(693\) −113.301 291.817i −0.163493 0.421092i
\(694\) 0 0
\(695\) −1313.96 −1.89059
\(696\) 0 0
\(697\) 1084.54 1.55601
\(698\) 0 0
\(699\) 406.082i 0.580947i
\(700\) 0 0
\(701\) −509.180 −0.726362 −0.363181 0.931719i \(-0.618309\pi\)
−0.363181 + 0.931719i \(0.618309\pi\)
\(702\) 0 0
\(703\) 354.800i 0.504693i
\(704\) 0 0
\(705\) 9.04443i 0.0128290i
\(706\) 0 0
\(707\) −40.7670 + 15.8282i −0.0576620 + 0.0223878i
\(708\) 0 0
\(709\) 1058.71 1.49325 0.746623 0.665248i \(-0.231674\pi\)
0.746623 + 0.665248i \(0.231674\pi\)
\(710\) 0 0
\(711\) 309.771 0.435684
\(712\) 0 0
\(713\) 57.1052i 0.0800915i
\(714\) 0 0
\(715\) −311.126 −0.435141
\(716\) 0 0
\(717\) 92.3521i 0.128804i
\(718\) 0 0
\(719\) 8.06477i 0.0112167i 0.999984 + 0.00560833i \(0.00178519\pi\)
−0.999984 + 0.00560833i \(0.998215\pi\)
\(720\) 0 0
\(721\) −372.270 + 144.538i −0.516325 + 0.200468i
\(722\) 0 0
\(723\) 54.0819 0.0748020
\(724\) 0 0
\(725\) −65.1551 −0.0898690
\(726\) 0 0
\(727\) 848.459i 1.16707i −0.812088 0.583534i \(-0.801669\pi\)
0.812088 0.583534i \(-0.198331\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 426.572i 0.583546i
\(732\) 0 0
\(733\) 1117.22i 1.52418i 0.647471 + 0.762090i \(0.275827\pi\)
−0.647471 + 0.762090i \(0.724173\pi\)
\(734\) 0 0
\(735\) 322.643 295.010i 0.438970 0.401375i
\(736\) 0 0
\(737\) 1730.40 2.34790
\(738\) 0 0
\(739\) 733.946 0.993161 0.496580 0.867991i \(-0.334589\pi\)
0.496580 + 0.867991i \(0.334589\pi\)
\(740\) 0 0
\(741\) 72.3185i 0.0975958i
\(742\) 0 0
\(743\) 1392.52 1.87419 0.937096 0.349071i \(-0.113503\pi\)
0.937096 + 0.349071i \(0.113503\pi\)
\(744\) 0 0
\(745\) 214.896i 0.288451i
\(746\) 0 0
\(747\) 104.429i 0.139799i
\(748\) 0 0
\(749\) −338.483 871.795i −0.451913 1.16395i
\(750\) 0 0
\(751\) 1196.00 1.59255 0.796275 0.604935i \(-0.206801\pi\)
0.796275 + 0.604935i \(0.206801\pi\)
\(752\) 0 0
\(753\) 277.033 0.367906
\(754\) 0 0
\(755\) 565.144i 0.748535i
\(756\) 0 0
\(757\) −326.138 −0.430830 −0.215415 0.976523i \(-0.569110\pi\)
−0.215415 + 0.976523i \(0.569110\pi\)
\(758\) 0 0
\(759\) 465.336i 0.613091i
\(760\) 0 0
\(761\) 507.940i 0.667463i −0.942668 0.333732i \(-0.891692\pi\)
0.942668 0.333732i \(-0.108308\pi\)
\(762\) 0 0
\(763\) −96.1602 247.670i −0.126029 0.324600i
\(764\) 0 0
\(765\) −404.684 −0.528999
\(766\) 0 0
\(767\) −240.592 −0.313680
\(768\) 0 0
\(769\) 54.2112i 0.0704957i 0.999379 + 0.0352478i \(0.0112221\pi\)
−0.999379 + 0.0352478i \(0.988778\pi\)
\(770\) 0 0
\(771\) −57.4439 −0.0745057
\(772\) 0 0
\(773\) 487.877i 0.631147i −0.948901 0.315574i \(-0.897803\pi\)
0.948901 0.315574i \(-0.102197\pi\)
\(774\) 0 0
\(775\) 4.86282i 0.00627460i
\(776\) 0 0
\(777\) 389.145 151.090i 0.500831 0.194452i
\(778\) 0 0
\(779\) −426.774 −0.547849
\(780\) 0 0
\(781\) −1457.76 −1.86653
\(782\) 0 0
\(783\) 220.593i 0.281728i
\(784\) 0 0
\(785\) 116.105 0.147905
\(786\) 0 0
\(787\) 316.008i 0.401535i −0.979639 0.200768i \(-0.935656\pi\)
0.979639 0.200768i \(-0.0643437\pi\)
\(788\) 0 0
\(789\) 92.9064i 0.117752i
\(790\) 0 0
\(791\) 3.44340 + 8.86882i 0.00435323 + 0.0112122i
\(792\) 0 0
\(793\) 350.913 0.442513
\(794\) 0 0
\(795\) −752.571 −0.946630
\(796\) 0 0
\(797\) 868.063i 1.08916i −0.838708 0.544582i \(-0.816688\pi\)
0.838708 0.544582i \(-0.183312\pi\)
\(798\) 0 0
\(799\) 26.5461 0.0332241
\(800\) 0 0
\(801\) 194.998i 0.243443i
\(802\) 0 0
\(803\) 421.818i 0.525302i
\(804\) 0 0
\(805\) 605.818 235.215i 0.752568 0.292192i
\(806\) 0 0
\(807\) 37.5356 0.0465125
\(808\) 0 0
\(809\) −484.513 −0.598904 −0.299452 0.954111i \(-0.596804\pi\)
−0.299452 + 0.954111i \(0.596804\pi\)
\(810\) 0 0
\(811\) 1234.55i 1.52226i −0.648599 0.761130i \(-0.724645\pi\)
0.648599 0.761130i \(-0.275355\pi\)
\(812\) 0 0
\(813\) −98.7475 −0.121461
\(814\) 0 0
\(815\) 1402.83i 1.72126i
\(816\) 0 0
\(817\) 167.859i 0.205458i
\(818\) 0 0
\(819\) 79.3192 30.7965i 0.0968488 0.0376025i
\(820\) 0 0
\(821\) 189.106 0.230336 0.115168 0.993346i \(-0.463259\pi\)
0.115168 + 0.993346i \(0.463259\pi\)
\(822\) 0 0
\(823\) 1606.53 1.95204 0.976018 0.217688i \(-0.0698515\pi\)
0.976018 + 0.217688i \(0.0698515\pi\)
\(824\) 0 0
\(825\) 39.6259i 0.0480314i
\(826\) 0 0
\(827\) −315.159 −0.381088 −0.190544 0.981679i \(-0.561025\pi\)
−0.190544 + 0.981679i \(0.561025\pi\)
\(828\) 0 0
\(829\) 7.08792i 0.00854997i 0.999991 + 0.00427498i \(0.00136077\pi\)
−0.999991 + 0.00427498i \(0.998639\pi\)
\(830\) 0 0
\(831\) 61.1585i 0.0735963i
\(832\) 0 0
\(833\) 865.878 + 946.982i 1.03947 + 1.13683i
\(834\) 0 0
\(835\) 1600.43 1.91668
\(836\) 0 0
\(837\) 16.4639 0.0196701
\(838\) 0 0
\(839\) 375.971i 0.448118i 0.974576 + 0.224059i \(0.0719308\pi\)
−0.974576 + 0.224059i \(0.928069\pi\)
\(840\) 0 0
\(841\) 961.272 1.14301
\(842\) 0 0
\(843\) 421.390i 0.499869i
\(844\) 0 0
\(845\) 785.983i 0.930158i
\(846\) 0 0
\(847\) −256.417 660.427i −0.302736 0.779725i
\(848\) 0 0
\(849\) −135.370 −0.159447
\(850\) 0 0
\(851\) 620.539 0.729188
\(852\) 0 0
\(853\) 402.432i 0.471785i −0.971779 0.235892i \(-0.924199\pi\)
0.971779 0.235892i \(-0.0758013\pi\)
\(854\) 0 0
\(855\) 159.246 0.186253
\(856\) 0 0
\(857\) 1625.19i 1.89637i 0.317726 + 0.948183i \(0.397081\pi\)
−0.317726 + 0.948183i \(0.602919\pi\)
\(858\) 0 0
\(859\) 779.473i 0.907419i 0.891150 + 0.453710i \(0.149900\pi\)
−0.891150 + 0.453710i \(0.850100\pi\)
\(860\) 0 0
\(861\) 181.740 + 468.088i 0.211080 + 0.543656i
\(862\) 0 0
\(863\) 904.421 1.04800 0.523998 0.851719i \(-0.324440\pi\)
0.523998 + 0.851719i \(0.324440\pi\)
\(864\) 0 0
\(865\) 1653.64 1.91172
\(866\) 0 0
\(867\) 687.216i 0.792637i
\(868\) 0 0
\(869\) 1539.22 1.77125
\(870\) 0 0
\(871\) 470.343i 0.540004i
\(872\) 0 0
\(873\) 316.425i 0.362457i
\(874\) 0 0
\(875\) 788.753 306.241i 0.901432 0.349990i
\(876\) 0 0
\(877\) 430.365 0.490724 0.245362 0.969432i \(-0.421093\pi\)
0.245362 + 0.969432i \(0.421093\pi\)
\(878\) 0 0
\(879\) −609.487 −0.693387
\(880\) 0 0
\(881\) 868.272i 0.985553i 0.870156 + 0.492777i \(0.164018\pi\)
−0.870156 + 0.492777i \(0.835982\pi\)
\(882\) 0 0
\(883\) 1245.18 1.41017 0.705084 0.709124i \(-0.250909\pi\)
0.705084 + 0.709124i \(0.250909\pi\)
\(884\) 0 0
\(885\) 529.787i 0.598629i
\(886\) 0 0
\(887\) 898.252i 1.01269i 0.862332 + 0.506343i \(0.169003\pi\)
−0.862332 + 0.506343i \(0.830997\pi\)
\(888\) 0 0
\(889\) −354.635 913.397i −0.398915 1.02744i
\(890\) 0 0
\(891\) −134.160 −0.150572
\(892\) 0 0
\(893\) −10.4461 −0.0116977
\(894\) 0 0
\(895\) 727.351i 0.812683i
\(896\) 0 0
\(897\) 126.484 0.141008
\(898\) 0 0
\(899\) 134.512i 0.149624i
\(900\) 0 0
\(901\) 2208.85i 2.45156i
\(902\) 0 0
\(903\) 184.109 71.4820i 0.203886 0.0791606i
\(904\) 0 0
\(905\) 1019.05 1.12602
\(906\) 0 0
\(907\) 71.4730 0.0788015 0.0394007 0.999223i \(-0.487455\pi\)
0.0394007 + 0.999223i \(0.487455\pi\)
\(908\) 0 0
\(909\) 18.7423i 0.0206185i
\(910\) 0 0
\(911\) −773.022 −0.848542 −0.424271 0.905535i \(-0.639470\pi\)
−0.424271 + 0.905535i \(0.639470\pi\)
\(912\) 0 0
\(913\) 518.898i 0.568344i
\(914\) 0 0
\(915\) 772.713i 0.844495i
\(916\) 0 0
\(917\) −157.054 + 60.9779i −0.171270 + 0.0664972i
\(918\) 0 0
\(919\) 586.713 0.638426 0.319213 0.947683i \(-0.396582\pi\)
0.319213 + 0.947683i \(0.396582\pi\)
\(920\) 0 0
\(921\) −637.695 −0.692394
\(922\) 0 0
\(923\) 396.237i 0.429292i
\(924\) 0 0
\(925\) −52.8422 −0.0571267
\(926\) 0 0
\(927\) 171.148i 0.184625i
\(928\) 0 0
\(929\) 1564.85i 1.68445i −0.539126 0.842225i \(-0.681245\pi\)
0.539126 0.842225i \(-0.318755\pi\)
\(930\) 0 0
\(931\) −340.729 372.644i −0.365982 0.400262i
\(932\) 0 0
\(933\) −161.929 −0.173557
\(934\) 0 0
\(935\) −2010.83 −2.15062
\(936\) 0 0
\(937\) 128.110i 0.136723i −0.997661 0.0683615i \(-0.978223\pi\)
0.997661 0.0683615i \(-0.0217771\pi\)
\(938\) 0 0
\(939\) 577.550 0.615069
\(940\) 0 0
\(941\) 361.450i 0.384113i 0.981384 + 0.192056i \(0.0615157\pi\)
−0.981384 + 0.192056i \(0.938484\pi\)
\(942\) 0 0
\(943\) 746.422i 0.791539i
\(944\) 0 0
\(945\) −67.8141 174.662i −0.0717610 0.184827i
\(946\) 0 0
\(947\) −1247.00 −1.31679 −0.658393 0.752674i \(-0.728764\pi\)
−0.658393 + 0.752674i \(0.728764\pi\)
\(948\) 0 0
\(949\) −114.655 −0.120817
\(950\) 0 0
\(951\) 636.512i 0.669308i
\(952\) 0 0
\(953\) 1200.01 1.25919 0.629594 0.776924i \(-0.283221\pi\)
0.629594 + 0.776924i \(0.283221\pi\)
\(954\) 0 0
\(955\) 598.057i 0.626238i
\(956\) 0 0
\(957\) 1096.10i 1.14535i
\(958\) 0 0
\(959\) −470.300 1211.30i −0.490407 1.26309i
\(960\) 0 0
\(961\) 950.961 0.989553
\(962\) 0 0
\(963\) −400.800 −0.416199
\(964\) 0 0
\(965\) 1900.05i 1.96897i
\(966\) 0 0
\(967\) −1277.50 −1.32110 −0.660548 0.750784i \(-0.729676\pi\)
−0.660548 + 0.750784i \(0.729676\pi\)
\(968\) 0 0
\(969\) 467.399i 0.482352i
\(970\) 0 0
\(971\) 602.816i 0.620819i 0.950603 + 0.310410i \(0.100466\pi\)
−0.950603 + 0.310410i \(0.899534\pi\)
\(972\) 0 0
\(973\) 1664.49 646.256i 1.71068 0.664189i
\(974\) 0 0
\(975\) −10.7708 −0.0110470
\(976\) 0 0
\(977\) −1217.87 −1.24654 −0.623271 0.782006i \(-0.714197\pi\)
−0.623271 + 0.782006i \(0.714197\pi\)
\(978\) 0 0
\(979\) 968.921i 0.989705i
\(980\) 0 0
\(981\) −113.864 −0.116069
\(982\) 0 0
\(983\) 1467.03i 1.49240i 0.665722 + 0.746199i \(0.268123\pi\)
−0.665722 + 0.746199i \(0.731877\pi\)
\(984\) 0 0
\(985\) 339.320i 0.344487i
\(986\) 0 0
\(987\) 4.44841 + 11.4573i 0.00450700 + 0.0116082i
\(988\) 0 0
\(989\) 293.583 0.296848
\(990\) 0 0
\(991\) −1112.89 −1.12299 −0.561497 0.827479i \(-0.689775\pi\)
−0.561497 + 0.827479i \(0.689775\pi\)
\(992\) 0 0
\(993\) 205.796i 0.207246i
\(994\) 0 0
\(995\) −358.741 −0.360544
\(996\) 0 0
\(997\) 462.397i 0.463788i 0.972741 + 0.231894i \(0.0744923\pi\)
−0.972741 + 0.231894i \(0.925508\pi\)
\(998\) 0 0
\(999\) 178.906i 0.179085i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1344.3.f.j.769.15 16
4.3 odd 2 inner 1344.3.f.j.769.7 16
7.6 odd 2 inner 1344.3.f.j.769.2 16
8.3 odd 2 672.3.f.b.97.10 yes 16
8.5 even 2 672.3.f.b.97.2 16
24.5 odd 2 2016.3.f.g.1441.13 16
24.11 even 2 2016.3.f.g.1441.14 16
28.27 even 2 inner 1344.3.f.j.769.10 16
56.13 odd 2 672.3.f.b.97.15 yes 16
56.27 even 2 672.3.f.b.97.7 yes 16
168.83 odd 2 2016.3.f.g.1441.4 16
168.125 even 2 2016.3.f.g.1441.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.f.b.97.2 16 8.5 even 2
672.3.f.b.97.7 yes 16 56.27 even 2
672.3.f.b.97.10 yes 16 8.3 odd 2
672.3.f.b.97.15 yes 16 56.13 odd 2
1344.3.f.j.769.2 16 7.6 odd 2 inner
1344.3.f.j.769.7 16 4.3 odd 2 inner
1344.3.f.j.769.10 16 28.27 even 2 inner
1344.3.f.j.769.15 16 1.1 even 1 trivial
2016.3.f.g.1441.3 16 168.125 even 2
2016.3.f.g.1441.4 16 168.83 odd 2
2016.3.f.g.1441.13 16 24.5 odd 2
2016.3.f.g.1441.14 16 24.11 even 2