Properties

Label 2016.3.f.c.1441.7
Level $2016$
Weight $3$
Character 2016.1441
Analytic conductor $54.932$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,3,Mod(1441,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1441"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4694952902656.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 56x^{4} + 20x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 224)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1441.7
Root \(-0.244539i\) of defining polynomial
Character \(\chi\) \(=\) 2016.1441
Dual form 2016.3.f.c.1441.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.12900i q^{5} +(-6.21005 + 3.23038i) q^{7} +15.2485 q^{11} -3.00789i q^{13} -21.6213i q^{17} -11.8981i q^{19} +1.72205 q^{23} -12.5647 q^{25} +41.1293 q^{29} +8.50759i q^{31} +(-19.7990 - 38.0614i) q^{35} +53.1293 q^{37} -43.0162i q^{41} -36.6446 q^{43} -30.2569i q^{47} +(28.1293 - 40.1216i) q^{49} +30.0000 q^{53} +93.4582i q^{55} -73.0525i q^{59} +5.67609i q^{61} +18.4353 q^{65} +28.7750 q^{67} +5.53191 q^{71} +94.9429i q^{73} +(-94.6940 + 49.2585i) q^{77} -81.5337 q^{79} +86.2943i q^{83} +132.517 q^{85} +27.6371i q^{89} +(9.71661 + 18.6791i) q^{91} +72.9234 q^{95} +100.959i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{25} + 112 q^{29} + 208 q^{37} + 8 q^{49} + 240 q^{53} + 256 q^{65} - 432 q^{77} + 192 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.12900i 1.22580i 0.790160 + 0.612900i \(0.209997\pi\)
−0.790160 + 0.612900i \(0.790003\pi\)
\(6\) 0 0
\(7\) −6.21005 + 3.23038i −0.887149 + 0.461483i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 15.2485 1.38623 0.693114 0.720828i \(-0.256238\pi\)
0.693114 + 0.720828i \(0.256238\pi\)
\(12\) 0 0
\(13\) 3.00789i 0.231376i −0.993286 0.115688i \(-0.963093\pi\)
0.993286 0.115688i \(-0.0369073\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 21.6213i 1.27184i −0.771753 0.635922i \(-0.780620\pi\)
0.771753 0.635922i \(-0.219380\pi\)
\(18\) 0 0
\(19\) 11.8981i 0.626216i −0.949718 0.313108i \(-0.898630\pi\)
0.949718 0.313108i \(-0.101370\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.72205 0.0748715 0.0374358 0.999299i \(-0.488081\pi\)
0.0374358 + 0.999299i \(0.488081\pi\)
\(24\) 0 0
\(25\) −12.5647 −0.502586
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 41.1293 1.41825 0.709126 0.705082i \(-0.249090\pi\)
0.709126 + 0.705082i \(0.249090\pi\)
\(30\) 0 0
\(31\) 8.50759i 0.274438i 0.990541 + 0.137219i \(0.0438165\pi\)
−0.990541 + 0.137219i \(0.956184\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −19.7990 38.0614i −0.565685 1.08747i
\(36\) 0 0
\(37\) 53.1293 1.43593 0.717964 0.696080i \(-0.245074\pi\)
0.717964 + 0.696080i \(0.245074\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 43.0162i 1.04918i −0.851356 0.524588i \(-0.824219\pi\)
0.851356 0.524588i \(-0.175781\pi\)
\(42\) 0 0
\(43\) −36.6446 −0.852200 −0.426100 0.904676i \(-0.640113\pi\)
−0.426100 + 0.904676i \(0.640113\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 30.2569i 0.643765i −0.946780 0.321882i \(-0.895684\pi\)
0.946780 0.321882i \(-0.104316\pi\)
\(48\) 0 0
\(49\) 28.1293 40.1216i 0.574068 0.818808i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 30.0000 0.566038 0.283019 0.959114i \(-0.408664\pi\)
0.283019 + 0.959114i \(0.408664\pi\)
\(54\) 0 0
\(55\) 93.4582i 1.69924i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 73.0525i 1.23818i −0.785321 0.619089i \(-0.787502\pi\)
0.785321 0.619089i \(-0.212498\pi\)
\(60\) 0 0
\(61\) 5.67609i 0.0930506i 0.998917 + 0.0465253i \(0.0148148\pi\)
−0.998917 + 0.0465253i \(0.985185\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 18.4353 0.283621
\(66\) 0 0
\(67\) 28.7750 0.429477 0.214739 0.976672i \(-0.431110\pi\)
0.214739 + 0.976672i \(0.431110\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.53191 0.0779142 0.0389571 0.999241i \(-0.487596\pi\)
0.0389571 + 0.999241i \(0.487596\pi\)
\(72\) 0 0
\(73\) 94.9429i 1.30059i 0.759683 + 0.650294i \(0.225354\pi\)
−0.759683 + 0.650294i \(0.774646\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −94.6940 + 49.2585i −1.22979 + 0.639720i
\(78\) 0 0
\(79\) −81.5337 −1.03207 −0.516036 0.856567i \(-0.672593\pi\)
−0.516036 + 0.856567i \(0.672593\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 86.2943i 1.03969i 0.854261 + 0.519845i \(0.174010\pi\)
−0.854261 + 0.519845i \(0.825990\pi\)
\(84\) 0 0
\(85\) 132.517 1.55903
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 27.6371i 0.310529i 0.987873 + 0.155265i \(0.0496231\pi\)
−0.987873 + 0.155265i \(0.950377\pi\)
\(90\) 0 0
\(91\) 9.71661 + 18.6791i 0.106776 + 0.205265i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 72.9234 0.767615
\(96\) 0 0
\(97\) 100.959i 1.04081i 0.853919 + 0.520406i \(0.174219\pi\)
−0.853919 + 0.520406i \(0.825781\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 107.541i 1.06476i 0.846506 + 0.532379i \(0.178702\pi\)
−0.846506 + 0.532379i \(0.821298\pi\)
\(102\) 0 0
\(103\) 59.1076i 0.573860i 0.957952 + 0.286930i \(0.0926347\pi\)
−0.957952 + 0.286930i \(0.907365\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 45.9954 0.429864 0.214932 0.976629i \(-0.431047\pi\)
0.214932 + 0.976629i \(0.431047\pi\)
\(108\) 0 0
\(109\) −23.7414 −0.217811 −0.108905 0.994052i \(-0.534735\pi\)
−0.108905 + 0.994052i \(0.534735\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 187.211 1.65674 0.828368 0.560184i \(-0.189269\pi\)
0.828368 + 0.560184i \(0.189269\pi\)
\(114\) 0 0
\(115\) 10.5544i 0.0917776i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 69.8451 + 134.270i 0.586934 + 1.12832i
\(120\) 0 0
\(121\) 111.517 0.921630
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 76.2162i 0.609730i
\(126\) 0 0
\(127\) 206.350 1.62480 0.812402 0.583097i \(-0.198159\pi\)
0.812402 + 0.583097i \(0.198159\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 186.979i 1.42732i −0.700492 0.713660i \(-0.747036\pi\)
0.700492 0.713660i \(-0.252964\pi\)
\(132\) 0 0
\(133\) 38.4353 + 73.8877i 0.288988 + 0.555547i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.51728 0.0183743 0.00918715 0.999958i \(-0.497076\pi\)
0.00918715 + 0.999958i \(0.497076\pi\)
\(138\) 0 0
\(139\) 18.6791i 0.134382i −0.997740 0.0671910i \(-0.978596\pi\)
0.997740 0.0671910i \(-0.0214037\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 45.8658i 0.320740i
\(144\) 0 0
\(145\) 252.082i 1.73849i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.51728 0.0168945 0.00844725 0.999964i \(-0.497311\pi\)
0.00844725 + 0.999964i \(0.497311\pi\)
\(150\) 0 0
\(151\) −78.4553 −0.519572 −0.259786 0.965666i \(-0.583652\pi\)
−0.259786 + 0.965666i \(0.583652\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −52.1430 −0.336407
\(156\) 0 0
\(157\) 298.559i 1.90165i −0.309732 0.950824i \(-0.600239\pi\)
0.309732 0.950824i \(-0.399761\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −10.6940 + 5.56286i −0.0664222 + 0.0345519i
\(162\) 0 0
\(163\) −8.86012 −0.0543566 −0.0271783 0.999631i \(-0.508652\pi\)
−0.0271783 + 0.999631i \(0.508652\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 252.930i 1.51455i 0.653095 + 0.757276i \(0.273470\pi\)
−0.653095 + 0.757276i \(0.726530\pi\)
\(168\) 0 0
\(169\) 159.953 0.946465
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.89137i 0.0456149i 0.999740 + 0.0228074i \(0.00726046\pi\)
−0.999740 + 0.0228074i \(0.992740\pi\)
\(174\) 0 0
\(175\) 78.0271 40.5886i 0.445869 0.231935i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −298.573 −1.66800 −0.834002 0.551761i \(-0.813956\pi\)
−0.834002 + 0.551761i \(0.813956\pi\)
\(180\) 0 0
\(181\) 281.821i 1.55702i 0.627631 + 0.778511i \(0.284025\pi\)
−0.627631 + 0.778511i \(0.715975\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 325.630i 1.76016i
\(186\) 0 0
\(187\) 329.694i 1.76307i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.5396 0.107537 0.0537686 0.998553i \(-0.482877\pi\)
0.0537686 + 0.998553i \(0.482877\pi\)
\(192\) 0 0
\(193\) 191.565 0.992563 0.496282 0.868162i \(-0.334698\pi\)
0.496282 + 0.868162i \(0.334698\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 113.129 0.574261 0.287130 0.957892i \(-0.407299\pi\)
0.287130 + 0.957892i \(0.407299\pi\)
\(198\) 0 0
\(199\) 132.543i 0.666045i −0.942919 0.333023i \(-0.891931\pi\)
0.942919 0.333023i \(-0.108069\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −255.415 + 132.863i −1.25820 + 0.654499i
\(204\) 0 0
\(205\) 263.647 1.28608
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 181.428i 0.868078i
\(210\) 0 0
\(211\) −235.366 −1.11548 −0.557739 0.830016i \(-0.688331\pi\)
−0.557739 + 0.830016i \(0.688331\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 224.595i 1.04463i
\(216\) 0 0
\(217\) −27.4827 52.8325i −0.126648 0.243468i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −65.0346 −0.294274
\(222\) 0 0
\(223\) 209.306i 0.938593i −0.883041 0.469297i \(-0.844508\pi\)
0.883041 0.469297i \(-0.155492\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 217.751i 0.959256i 0.877472 + 0.479628i \(0.159228\pi\)
−0.877472 + 0.479628i \(0.840772\pi\)
\(228\) 0 0
\(229\) 51.1341i 0.223293i 0.993748 + 0.111646i \(0.0356124\pi\)
−0.993748 + 0.111646i \(0.964388\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 242.517 1.04085 0.520423 0.853908i \(-0.325774\pi\)
0.520423 + 0.853908i \(0.325774\pi\)
\(234\) 0 0
\(235\) 185.445 0.789127
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 17.4613 0.0730598 0.0365299 0.999333i \(-0.488370\pi\)
0.0365299 + 0.999333i \(0.488370\pi\)
\(240\) 0 0
\(241\) 68.8417i 0.285650i 0.989748 + 0.142825i \(0.0456186\pi\)
−0.989748 + 0.142825i \(0.954381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 245.905 + 172.405i 1.00369 + 0.703692i
\(246\) 0 0
\(247\) −35.7881 −0.144891
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 122.246i 0.487037i −0.969896 0.243518i \(-0.921698\pi\)
0.969896 0.243518i \(-0.0783016\pi\)
\(252\) 0 0
\(253\) 26.2586 0.103789
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 312.466i 1.21582i −0.794006 0.607910i \(-0.792008\pi\)
0.794006 0.607910i \(-0.207992\pi\)
\(258\) 0 0
\(259\) −329.935 + 171.628i −1.27388 + 0.662655i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 373.959 1.42190 0.710949 0.703244i \(-0.248266\pi\)
0.710949 + 0.703244i \(0.248266\pi\)
\(264\) 0 0
\(265\) 183.870i 0.693849i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 180.636i 0.671508i −0.941950 0.335754i \(-0.891009\pi\)
0.941950 0.335754i \(-0.108991\pi\)
\(270\) 0 0
\(271\) 275.195i 1.01548i −0.861511 0.507740i \(-0.830481\pi\)
0.861511 0.507740i \(-0.169519\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −191.592 −0.696700
\(276\) 0 0
\(277\) 376.940 1.36079 0.680397 0.732844i \(-0.261807\pi\)
0.680397 + 0.732844i \(0.261807\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −62.5173 −0.222481 −0.111241 0.993793i \(-0.535482\pi\)
−0.111241 + 0.993793i \(0.535482\pi\)
\(282\) 0 0
\(283\) 103.435i 0.365494i −0.983160 0.182747i \(-0.941501\pi\)
0.983160 0.182747i \(-0.0584989\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 138.959 + 267.133i 0.484177 + 0.930776i
\(288\) 0 0
\(289\) −178.483 −0.617587
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 507.624i 1.73251i −0.499606 0.866253i \(-0.666522\pi\)
0.499606 0.866253i \(-0.333478\pi\)
\(294\) 0 0
\(295\) 447.739 1.51776
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.17972i 0.0173235i
\(300\) 0 0
\(301\) 227.565 118.376i 0.756029 0.393275i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −34.7887 −0.114061
\(306\) 0 0
\(307\) 419.316i 1.36585i 0.730489 + 0.682925i \(0.239292\pi\)
−0.730489 + 0.682925i \(0.760708\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 171.628i 0.551858i 0.961178 + 0.275929i \(0.0889854\pi\)
−0.961178 + 0.275929i \(0.911015\pi\)
\(312\) 0 0
\(313\) 503.484i 1.60857i −0.594240 0.804287i \(-0.702547\pi\)
0.594240 0.804287i \(-0.297453\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 205.647 0.648727 0.324364 0.945932i \(-0.394850\pi\)
0.324364 + 0.945932i \(0.394850\pi\)
\(318\) 0 0
\(319\) 627.161 1.96602
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −257.253 −0.796448
\(324\) 0 0
\(325\) 37.7931i 0.116286i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 97.7414 + 187.897i 0.297086 + 0.571115i
\(330\) 0 0
\(331\) −19.6740 −0.0594382 −0.0297191 0.999558i \(-0.509461\pi\)
−0.0297191 + 0.999558i \(0.509461\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 176.362i 0.526454i
\(336\) 0 0
\(337\) 317.823 0.943096 0.471548 0.881840i \(-0.343695\pi\)
0.471548 + 0.881840i \(0.343695\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 129.728i 0.380434i
\(342\) 0 0
\(343\) −45.0765 + 340.025i −0.131418 + 0.991327i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 416.385 1.19996 0.599979 0.800016i \(-0.295176\pi\)
0.599979 + 0.800016i \(0.295176\pi\)
\(348\) 0 0
\(349\) 333.344i 0.955140i 0.878594 + 0.477570i \(0.158482\pi\)
−0.878594 + 0.477570i \(0.841518\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 230.864i 0.654005i 0.945023 + 0.327003i \(0.106039\pi\)
−0.945023 + 0.327003i \(0.893961\pi\)
\(354\) 0 0
\(355\) 33.9051i 0.0955073i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −16.9796 −0.0472970 −0.0236485 0.999720i \(-0.507528\pi\)
−0.0236485 + 0.999720i \(0.507528\pi\)
\(360\) 0 0
\(361\) 219.435 0.607854
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −581.905 −1.59426
\(366\) 0 0
\(367\) 457.377i 1.24626i 0.782119 + 0.623129i \(0.214139\pi\)
−0.782119 + 0.623129i \(0.785861\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −186.301 + 96.9113i −0.502160 + 0.261217i
\(372\) 0 0
\(373\) −541.974 −1.45301 −0.726507 0.687159i \(-0.758858\pi\)
−0.726507 + 0.687159i \(0.758858\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 123.712i 0.328149i
\(378\) 0 0
\(379\) −254.799 −0.672294 −0.336147 0.941810i \(-0.609124\pi\)
−0.336147 + 0.941810i \(0.609124\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 295.983i 0.772803i −0.922331 0.386401i \(-0.873718\pi\)
0.922331 0.386401i \(-0.126282\pi\)
\(384\) 0 0
\(385\) −301.905 580.380i −0.784169 1.50748i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 538.164 1.38345 0.691727 0.722159i \(-0.256850\pi\)
0.691727 + 0.722159i \(0.256850\pi\)
\(390\) 0 0
\(391\) 37.2329i 0.0952249i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 499.720i 1.26511i
\(396\) 0 0
\(397\) 547.293i 1.37857i 0.724490 + 0.689286i \(0.242075\pi\)
−0.724490 + 0.689286i \(0.757925\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −203.375 −0.507170 −0.253585 0.967313i \(-0.581610\pi\)
−0.253585 + 0.967313i \(0.581610\pi\)
\(402\) 0 0
\(403\) 25.5899 0.0634984
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 810.143 1.99052
\(408\) 0 0
\(409\) 103.627i 0.253366i −0.991943 0.126683i \(-0.959567\pi\)
0.991943 0.126683i \(-0.0404332\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 235.987 + 453.659i 0.571398 + 1.09845i
\(414\) 0 0
\(415\) −528.898 −1.27445
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 438.503i 1.04655i −0.852165 0.523273i \(-0.824711\pi\)
0.852165 0.523273i \(-0.175289\pi\)
\(420\) 0 0
\(421\) −741.293 −1.76079 −0.880396 0.474240i \(-0.842723\pi\)
−0.880396 + 0.474240i \(0.842723\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 271.665i 0.639212i
\(426\) 0 0
\(427\) −18.3359 35.2488i −0.0429412 0.0825498i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 82.8809 0.192299 0.0961495 0.995367i \(-0.469347\pi\)
0.0961495 + 0.995367i \(0.469347\pi\)
\(432\) 0 0
\(433\) 607.840i 1.40379i 0.712282 + 0.701893i \(0.247662\pi\)
−0.712282 + 0.701893i \(0.752338\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.4891i 0.0468857i
\(438\) 0 0
\(439\) 654.207i 1.49022i 0.666941 + 0.745111i \(0.267603\pi\)
−0.666941 + 0.745111i \(0.732397\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −566.176 −1.27805 −0.639025 0.769186i \(-0.720662\pi\)
−0.639025 + 0.769186i \(0.720662\pi\)
\(444\) 0 0
\(445\) −169.388 −0.380647
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −348.776 −0.776784 −0.388392 0.921494i \(-0.626969\pi\)
−0.388392 + 0.921494i \(0.626969\pi\)
\(450\) 0 0
\(451\) 655.934i 1.45440i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −114.484 + 59.5531i −0.251614 + 0.130886i
\(456\) 0 0
\(457\) 354.694 0.776136 0.388068 0.921631i \(-0.373143\pi\)
0.388068 + 0.921631i \(0.373143\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 220.531i 0.478375i −0.970973 0.239187i \(-0.923119\pi\)
0.970973 0.239187i \(-0.0768810\pi\)
\(462\) 0 0
\(463\) −497.178 −1.07382 −0.536910 0.843640i \(-0.680408\pi\)
−0.536910 + 0.843640i \(0.680408\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 299.499i 0.641326i −0.947193 0.320663i \(-0.896094\pi\)
0.947193 0.320663i \(-0.103906\pi\)
\(468\) 0 0
\(469\) −178.694 + 92.9541i −0.381011 + 0.198196i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −558.776 −1.18134
\(474\) 0 0
\(475\) 149.496i 0.314727i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 524.867i 1.09576i −0.836558 0.547878i \(-0.815436\pi\)
0.836558 0.547878i \(-0.184564\pi\)
\(480\) 0 0
\(481\) 159.807i 0.332239i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −618.776 −1.27583
\(486\) 0 0
\(487\) 62.2345 0.127792 0.0638958 0.997957i \(-0.479647\pi\)
0.0638958 + 0.997957i \(0.479647\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −127.136 −0.258933 −0.129467 0.991584i \(-0.541326\pi\)
−0.129467 + 0.991584i \(0.541326\pi\)
\(492\) 0 0
\(493\) 889.271i 1.80380i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −34.3534 + 17.8702i −0.0691215 + 0.0359560i
\(498\) 0 0
\(499\) −699.460 −1.40172 −0.700862 0.713297i \(-0.747201\pi\)
−0.700862 + 0.713297i \(0.747201\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 856.217i 1.70222i 0.524986 + 0.851111i \(0.324070\pi\)
−0.524986 + 0.851111i \(0.675930\pi\)
\(504\) 0 0
\(505\) −659.116 −1.30518
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 83.6547i 0.164351i −0.996618 0.0821755i \(-0.973813\pi\)
0.996618 0.0821755i \(-0.0261868\pi\)
\(510\) 0 0
\(511\) −306.701 589.600i −0.600199 1.15382i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −362.270 −0.703438
\(516\) 0 0
\(517\) 461.374i 0.892405i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 563.287i 1.08117i 0.841291 + 0.540583i \(0.181796\pi\)
−0.841291 + 0.540583i \(0.818204\pi\)
\(522\) 0 0
\(523\) 414.011i 0.791607i −0.918335 0.395804i \(-0.870466\pi\)
0.918335 0.395804i \(-0.129534\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 183.946 0.349043
\(528\) 0 0
\(529\) −526.035 −0.994394
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −129.388 −0.242754
\(534\) 0 0
\(535\) 281.906i 0.526927i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 428.930 611.795i 0.795789 1.13505i
\(540\) 0 0
\(541\) −86.7068 −0.160271 −0.0801357 0.996784i \(-0.525535\pi\)
−0.0801357 + 0.996784i \(0.525535\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 145.511i 0.266992i
\(546\) 0 0
\(547\) 827.355 1.51253 0.756266 0.654265i \(-0.227022\pi\)
0.756266 + 0.654265i \(0.227022\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 489.361i 0.888132i
\(552\) 0 0
\(553\) 506.328 263.385i 0.915602 0.476283i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 343.741 0.617130 0.308565 0.951203i \(-0.400151\pi\)
0.308565 + 0.951203i \(0.400151\pi\)
\(558\) 0 0
\(559\) 110.223i 0.197179i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 308.968i 0.548788i −0.961617 0.274394i \(-0.911523\pi\)
0.961617 0.274394i \(-0.0884772\pi\)
\(564\) 0 0
\(565\) 1147.42i 2.03083i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −182.177 −0.320170 −0.160085 0.987103i \(-0.551177\pi\)
−0.160085 + 0.987103i \(0.551177\pi\)
\(570\) 0 0
\(571\) 378.037 0.662061 0.331031 0.943620i \(-0.392604\pi\)
0.331031 + 0.943620i \(0.392604\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −21.6369 −0.0376294
\(576\) 0 0
\(577\) 81.6019i 0.141424i −0.997497 0.0707122i \(-0.977473\pi\)
0.997497 0.0707122i \(-0.0225272\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −278.763 535.891i −0.479799 0.922360i
\(582\) 0 0
\(583\) 457.456 0.784658
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 37.9917i 0.0647217i −0.999476 0.0323609i \(-0.989697\pi\)
0.999476 0.0323609i \(-0.0103026\pi\)
\(588\) 0 0
\(589\) 101.224 0.171858
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 406.099i 0.684822i −0.939550 0.342411i \(-0.888757\pi\)
0.939550 0.342411i \(-0.111243\pi\)
\(594\) 0 0
\(595\) −822.938 + 428.081i −1.38309 + 0.719464i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 292.800 0.488815 0.244407 0.969673i \(-0.421407\pi\)
0.244407 + 0.969673i \(0.421407\pi\)
\(600\) 0 0
\(601\) 14.6997i 0.0244588i 0.999925 + 0.0122294i \(0.00389284\pi\)
−0.999925 + 0.0122294i \(0.996107\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 683.490i 1.12973i
\(606\) 0 0
\(607\) 959.534i 1.58078i 0.612604 + 0.790390i \(0.290122\pi\)
−0.612604 + 0.790390i \(0.709878\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −91.0095 −0.148952
\(612\) 0 0
\(613\) −896.397 −1.46231 −0.731156 0.682211i \(-0.761019\pi\)
−0.731156 + 0.682211i \(0.761019\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −137.280 −0.222497 −0.111248 0.993793i \(-0.535485\pi\)
−0.111248 + 0.993793i \(0.535485\pi\)
\(618\) 0 0
\(619\) 703.714i 1.13686i 0.822733 + 0.568428i \(0.192448\pi\)
−0.822733 + 0.568428i \(0.807552\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −89.2783 171.628i −0.143304 0.275486i
\(624\) 0 0
\(625\) −781.246 −1.24999
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1148.73i 1.82628i
\(630\) 0 0
\(631\) −87.6903 −0.138970 −0.0694852 0.997583i \(-0.522136\pi\)
−0.0694852 + 0.997583i \(0.522136\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1264.72i 1.99169i
\(636\) 0 0
\(637\) −120.681 84.6098i −0.189452 0.132825i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 380.953 0.594310 0.297155 0.954829i \(-0.403962\pi\)
0.297155 + 0.954829i \(0.403962\pi\)
\(642\) 0 0
\(643\) 441.511i 0.686642i −0.939218 0.343321i \(-0.888448\pi\)
0.939218 0.343321i \(-0.111552\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 844.897i 1.30587i 0.757414 + 0.652934i \(0.226462\pi\)
−0.757414 + 0.652934i \(0.773538\pi\)
\(648\) 0 0
\(649\) 1113.94i 1.71640i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −478.845 −0.733300 −0.366650 0.930359i \(-0.619495\pi\)
−0.366650 + 0.930359i \(0.619495\pi\)
\(654\) 0 0
\(655\) 1145.99 1.74961
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −257.012 −0.390003 −0.195002 0.980803i \(-0.562471\pi\)
−0.195002 + 0.980803i \(0.562471\pi\)
\(660\) 0 0
\(661\) 788.652i 1.19312i −0.802568 0.596560i \(-0.796534\pi\)
0.802568 0.596560i \(-0.203466\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −452.858 + 235.570i −0.680989 + 0.354241i
\(666\) 0 0
\(667\) 70.8266 0.106187
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 86.5519i 0.128989i
\(672\) 0 0
\(673\) −511.362 −0.759825 −0.379913 0.925022i \(-0.624046\pi\)
−0.379913 + 0.925022i \(0.624046\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 543.542i 0.802868i −0.915888 0.401434i \(-0.868512\pi\)
0.915888 0.401434i \(-0.131488\pi\)
\(678\) 0 0
\(679\) −326.135 626.958i −0.480316 0.923355i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 785.312 1.14980 0.574899 0.818224i \(-0.305041\pi\)
0.574899 + 0.818224i \(0.305041\pi\)
\(684\) 0 0
\(685\) 15.4284i 0.0225232i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 90.2366i 0.130967i
\(690\) 0 0
\(691\) 1063.98i 1.53978i −0.638179 0.769888i \(-0.720312\pi\)
0.638179 0.769888i \(-0.279688\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 114.484 0.164726
\(696\) 0 0
\(697\) −930.069 −1.33439
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 113.810 0.162354 0.0811772 0.996700i \(-0.474132\pi\)
0.0811772 + 0.996700i \(0.474132\pi\)
\(702\) 0 0
\(703\) 632.138i 0.899200i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −347.397 667.832i −0.491367 0.944600i
\(708\) 0 0
\(709\) 418.000 0.589563 0.294781 0.955565i \(-0.404753\pi\)
0.294781 + 0.955565i \(0.404753\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.6505i 0.0205476i
\(714\) 0 0
\(715\) 281.112 0.393163
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 752.720i 1.04690i 0.852057 + 0.523449i \(0.175355\pi\)
−0.852057 + 0.523449i \(0.824645\pi\)
\(720\) 0 0
\(721\) −190.940 367.061i −0.264826 0.509099i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −516.776 −0.712794
\(726\) 0 0
\(727\) 269.945i 0.371314i 0.982615 + 0.185657i \(0.0594414\pi\)
−0.982615 + 0.185657i \(0.940559\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 792.306i 1.08387i
\(732\) 0 0
\(733\) 805.971i 1.09955i −0.835312 0.549776i \(-0.814713\pi\)
0.835312 0.549776i \(-0.185287\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 438.776 0.595354
\(738\) 0 0
\(739\) 672.425 0.909912 0.454956 0.890514i \(-0.349655\pi\)
0.454956 + 0.890514i \(0.349655\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 367.686 0.494867 0.247434 0.968905i \(-0.420413\pi\)
0.247434 + 0.968905i \(0.420413\pi\)
\(744\) 0 0
\(745\) 15.4284i 0.0207093i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −285.634 + 148.583i −0.381354 + 0.198375i
\(750\) 0 0
\(751\) −181.778 −0.242048 −0.121024 0.992650i \(-0.538618\pi\)
−0.121024 + 0.992650i \(0.538618\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 480.853i 0.636891i
\(756\) 0 0
\(757\) −63.7414 −0.0842026 −0.0421013 0.999113i \(-0.513405\pi\)
−0.0421013 + 0.999113i \(0.513405\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1279.94i 1.68192i −0.541096 0.840961i \(-0.681990\pi\)
0.541096 0.840961i \(-0.318010\pi\)
\(762\) 0 0
\(763\) 147.435 76.6936i 0.193231 0.100516i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −219.734 −0.286485
\(768\) 0 0
\(769\) 321.701i 0.418337i 0.977880 + 0.209169i \(0.0670758\pi\)
−0.977880 + 0.209169i \(0.932924\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 697.333i 0.902112i −0.892496 0.451056i \(-0.851047\pi\)
0.892496 0.451056i \(-0.148953\pi\)
\(774\) 0 0
\(775\) 106.895i 0.137929i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −511.811 −0.657011
\(780\) 0 0
\(781\) 84.3534 0.108007
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1829.87 2.33104
\(786\) 0 0
\(787\) 330.202i 0.419570i −0.977748 0.209785i \(-0.932724\pi\)
0.977748 0.209785i \(-0.0672764\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1162.59 + 604.763i −1.46977 + 0.764555i
\(792\) 0 0
\(793\) 17.0730 0.0215297
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 456.879i 0.573248i 0.958043 + 0.286624i \(0.0925331\pi\)
−0.958043 + 0.286624i \(0.907467\pi\)
\(798\) 0 0
\(799\) −654.196 −0.818768
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1447.74i 1.80291i
\(804\) 0 0
\(805\) −34.0948 65.5434i −0.0423537 0.0814204i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −175.211 −0.216578 −0.108289 0.994119i \(-0.534537\pi\)
−0.108289 + 0.994119i \(0.534537\pi\)
\(810\) 0 0
\(811\) 149.621i 0.184489i 0.995736 + 0.0922446i \(0.0294042\pi\)
−0.995736 + 0.0922446i \(0.970596\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 54.3037i 0.0666303i
\(816\) 0 0
\(817\) 436.001i 0.533661i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 880.750 1.07278 0.536389 0.843971i \(-0.319788\pi\)
0.536389 + 0.843971i \(0.319788\pi\)
\(822\) 0 0
\(823\) 1149.93 1.39724 0.698621 0.715492i \(-0.253798\pi\)
0.698621 + 0.715492i \(0.253798\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 633.041 0.765466 0.382733 0.923859i \(-0.374983\pi\)
0.382733 + 0.923859i \(0.374983\pi\)
\(828\) 0 0
\(829\) 900.963i 1.08681i −0.839472 0.543404i \(-0.817135\pi\)
0.839472 0.543404i \(-0.182865\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −867.483 608.194i −1.04140 0.730125i
\(834\) 0 0
\(835\) −1550.21 −1.85654
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1587.19i 1.89176i −0.324514 0.945881i \(-0.605201\pi\)
0.324514 0.945881i \(-0.394799\pi\)
\(840\) 0 0
\(841\) 850.621 1.01144
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 980.350i 1.16018i
\(846\) 0 0
\(847\) −692.527 + 360.243i −0.817624 + 0.425316i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 91.4911 0.107510
\(852\) 0 0
\(853\) 614.776i 0.720722i −0.932813 0.360361i \(-0.882654\pi\)
0.932813 0.360361i \(-0.117346\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 741.142i 0.864809i −0.901680 0.432405i \(-0.857665\pi\)
0.901680 0.432405i \(-0.142335\pi\)
\(858\) 0 0
\(859\) 686.448i 0.799125i 0.916706 + 0.399563i \(0.130838\pi\)
−0.916706 + 0.399563i \(0.869162\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1375.44 −1.59378 −0.796892 0.604122i \(-0.793524\pi\)
−0.796892 + 0.604122i \(0.793524\pi\)
\(864\) 0 0
\(865\) −48.3662 −0.0559147
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1243.27 −1.43069
\(870\) 0 0
\(871\) 86.5519i 0.0993707i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −246.207 473.306i −0.281380 0.540921i
\(876\) 0 0
\(877\) −1319.39 −1.50443 −0.752217 0.658916i \(-0.771015\pi\)
−0.752217 + 0.658916i \(0.771015\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 270.582i 0.307130i −0.988139 0.153565i \(-0.950924\pi\)
0.988139 0.153565i \(-0.0490755\pi\)
\(882\) 0 0
\(883\) 1491.67 1.68932 0.844660 0.535303i \(-0.179803\pi\)
0.844660 + 0.535303i \(0.179803\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 79.8264i 0.0899960i 0.998987 + 0.0449980i \(0.0143281\pi\)
−0.998987 + 0.0449980i \(0.985672\pi\)
\(888\) 0 0
\(889\) −1281.44 + 666.589i −1.44144 + 0.749819i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −360.000 −0.403135
\(894\) 0 0
\(895\) 1829.95i 2.04464i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 349.911i 0.389223i
\(900\) 0 0
\(901\) 648.640i 0.719912i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1727.28 −1.90860
\(906\) 0 0
\(907\) 845.557 0.932256 0.466128 0.884717i \(-0.345649\pi\)
0.466128 + 0.884717i \(0.345649\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1377.51 −1.51209 −0.756045 0.654519i \(-0.772871\pi\)
−0.756045 + 0.654519i \(0.772871\pi\)
\(912\) 0 0
\(913\) 1315.86i 1.44125i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 604.013 + 1161.15i 0.658684 + 1.26625i
\(918\) 0 0
\(919\) −648.950 −0.706148 −0.353074 0.935595i \(-0.614864\pi\)
−0.353074 + 0.935595i \(0.614864\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 16.6394i 0.0180275i
\(924\) 0 0
\(925\) −667.552 −0.721678
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1394.62i 1.50120i 0.660756 + 0.750601i \(0.270236\pi\)
−0.660756 + 0.750601i \(0.729764\pi\)
\(930\) 0 0
\(931\) −477.370 334.685i −0.512750 0.359490i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2020.69 2.16117
\(936\) 0 0
\(937\) 433.382i 0.462521i −0.972892 0.231260i \(-0.925715\pi\)
0.972892 0.231260i \(-0.0742850\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 891.147i 0.947021i −0.880788 0.473511i \(-0.842987\pi\)
0.880788 0.473511i \(-0.157013\pi\)
\(942\) 0 0
\(943\) 74.0759i 0.0785535i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1021.88 −1.07907 −0.539537 0.841962i \(-0.681401\pi\)
−0.539537 + 0.841962i \(0.681401\pi\)
\(948\) 0 0
\(949\) 285.577 0.300925
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1322.52 1.38774 0.693871 0.720100i \(-0.255904\pi\)
0.693871 + 0.720100i \(0.255904\pi\)
\(954\) 0 0
\(955\) 125.887i 0.131819i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −15.6324 + 8.13176i −0.0163008 + 0.00847942i
\(960\) 0 0
\(961\) 888.621 0.924684
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1174.10i 1.21668i
\(966\) 0 0
\(967\) 1681.56 1.73894 0.869471 0.493983i \(-0.164460\pi\)
0.869471 + 0.493983i \(0.164460\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1177.91i 1.21309i 0.795049 + 0.606546i \(0.207445\pi\)
−0.795049 + 0.606546i \(0.792555\pi\)
\(972\) 0 0
\(973\) 60.3406 + 115.998i 0.0620150 + 0.119217i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1440.21 −1.47411 −0.737056 0.675832i \(-0.763785\pi\)
−0.737056 + 0.675832i \(0.763785\pi\)
\(978\) 0 0
\(979\) 421.425i 0.430465i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 283.257i 0.288156i −0.989566 0.144078i \(-0.953978\pi\)
0.989566 0.144078i \(-0.0460215\pi\)
\(984\) 0 0
\(985\) 693.370i 0.703929i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −63.1037 −0.0638055
\(990\) 0 0
\(991\) 1079.85 1.08966 0.544830 0.838547i \(-0.316594\pi\)
0.544830 + 0.838547i \(0.316594\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 812.356 0.816438
\(996\) 0 0
\(997\) 1572.31i 1.57704i 0.615010 + 0.788520i \(0.289152\pi\)
−0.615010 + 0.788520i \(0.710848\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.f.c.1441.7 8
3.2 odd 2 224.3.c.a.97.7 yes 8
4.3 odd 2 inner 2016.3.f.c.1441.8 8
7.6 odd 2 inner 2016.3.f.c.1441.1 8
12.11 even 2 224.3.c.a.97.1 8
21.20 even 2 224.3.c.a.97.2 yes 8
24.5 odd 2 448.3.c.g.321.2 8
24.11 even 2 448.3.c.g.321.8 8
28.27 even 2 inner 2016.3.f.c.1441.2 8
84.83 odd 2 224.3.c.a.97.8 yes 8
168.83 odd 2 448.3.c.g.321.1 8
168.125 even 2 448.3.c.g.321.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.3.c.a.97.1 8 12.11 even 2
224.3.c.a.97.2 yes 8 21.20 even 2
224.3.c.a.97.7 yes 8 3.2 odd 2
224.3.c.a.97.8 yes 8 84.83 odd 2
448.3.c.g.321.1 8 168.83 odd 2
448.3.c.g.321.2 8 24.5 odd 2
448.3.c.g.321.7 8 168.125 even 2
448.3.c.g.321.8 8 24.11 even 2
2016.3.f.c.1441.1 8 7.6 odd 2 inner
2016.3.f.c.1441.2 8 28.27 even 2 inner
2016.3.f.c.1441.7 8 1.1 even 1 trivial
2016.3.f.c.1441.8 8 4.3 odd 2 inner