Properties

Label 2-2016-7.6-c2-0-43
Degree $2$
Conductor $2016$
Sign $0.887 - 0.461i$
Analytic cond. $54.9320$
Root an. cond. $7.41161$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.12i·5-s + (−6.21 + 3.23i)7-s + 15.2·11-s − 3.00i·13-s − 21.6i·17-s − 11.8i·19-s + 1.72·23-s − 12.5·25-s + 41.1·29-s + 8.50i·31-s + (−19.7 − 38.0i)35-s + 53.1·37-s − 43.0i·41-s − 36.6·43-s − 30.2i·47-s + ⋯
L(s)  = 1  + 1.22i·5-s + (−0.887 + 0.461i)7-s + 1.38·11-s − 0.231i·13-s − 1.27i·17-s − 0.626i·19-s + 0.0748·23-s − 0.502·25-s + 1.41·29-s + 0.274i·31-s + (−0.565 − 1.08i)35-s + 1.43·37-s − 1.04i·41-s − 0.852·43-s − 0.643i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.887 - 0.461i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.887 - 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2016\)    =    \(2^{5} \cdot 3^{2} \cdot 7\)
Sign: $0.887 - 0.461i$
Analytic conductor: \(54.9320\)
Root analytic conductor: \(7.41161\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2016} (1441, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2016,\ (\ :1),\ 0.887 - 0.461i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.998328150\)
\(L(\frac12)\) \(\approx\) \(1.998328150\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (6.21 - 3.23i)T \)
good5 \( 1 - 6.12iT - 25T^{2} \)
11 \( 1 - 15.2T + 121T^{2} \)
13 \( 1 + 3.00iT - 169T^{2} \)
17 \( 1 + 21.6iT - 289T^{2} \)
19 \( 1 + 11.8iT - 361T^{2} \)
23 \( 1 - 1.72T + 529T^{2} \)
29 \( 1 - 41.1T + 841T^{2} \)
31 \( 1 - 8.50iT - 961T^{2} \)
37 \( 1 - 53.1T + 1.36e3T^{2} \)
41 \( 1 + 43.0iT - 1.68e3T^{2} \)
43 \( 1 + 36.6T + 1.84e3T^{2} \)
47 \( 1 + 30.2iT - 2.20e3T^{2} \)
53 \( 1 - 30T + 2.80e3T^{2} \)
59 \( 1 + 73.0iT - 3.48e3T^{2} \)
61 \( 1 - 5.67iT - 3.72e3T^{2} \)
67 \( 1 - 28.7T + 4.48e3T^{2} \)
71 \( 1 - 5.53T + 5.04e3T^{2} \)
73 \( 1 - 94.9iT - 5.32e3T^{2} \)
79 \( 1 + 81.5T + 6.24e3T^{2} \)
83 \( 1 - 86.2iT - 6.88e3T^{2} \)
89 \( 1 - 27.6iT - 7.92e3T^{2} \)
97 \( 1 - 100. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.180275607828274706133566349134, −8.329660081806255086030552353671, −7.03985467458893543399313103382, −6.82561511201013303462258173170, −6.10540080750660311248302031688, −5.04649888114696999149918132601, −3.88747831614494902386876252464, −3.04954941575607994365127427130, −2.41236766670092126340101105777, −0.74286232753534657756103365232, 0.821559711646996471546777694608, 1.59983847299408451594721310964, 3.16610350105803896935249857609, 4.15106673703767906168109012338, 4.57939185829023736605867149108, 5.99191688308656488041364378757, 6.31842586812085483882264994975, 7.34653591695423409650995043537, 8.375149720910431651750273326688, 8.826756019110733177418027144660

Graph of the $Z$-function along the critical line