Properties

Label 2016.3.e.c.1007.46
Level $2016$
Weight $3$
Character 2016.1007
Analytic conductor $54.932$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,3,Mod(1007,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1007"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-336] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1007.46
Character \(\chi\) \(=\) 2016.1007
Dual form 2016.3.e.c.1007.45

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.489356i q^{5} +(-5.24868 - 4.63156i) q^{7} +6.94749i q^{11} -16.5922 q^{13} +28.0732 q^{17} -29.3568i q^{19} -7.49845 q^{23} +24.7605 q^{25} +17.9470 q^{29} +30.8259 q^{31} +(2.26648 - 2.56848i) q^{35} +64.8471i q^{37} -50.7873 q^{41} -47.5472 q^{43} -65.0090i q^{47} +(6.09730 + 48.6192i) q^{49} -51.2494 q^{53} -3.39980 q^{55} +27.2645 q^{59} -115.375 q^{61} -8.11952i q^{65} -7.26829 q^{67} -91.6063 q^{71} +27.5052i q^{73} +(32.1777 - 36.4652i) q^{77} -36.2471i q^{79} -117.776 q^{83} +13.7378i q^{85} +35.2381 q^{89} +(87.0874 + 76.8480i) q^{91} +14.3659 q^{95} +24.7402i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 336 q^{25} + 384 q^{43} + 368 q^{49} + 896 q^{67} + 576 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.489356i 0.0978713i 0.998802 + 0.0489356i \(0.0155829\pi\)
−0.998802 + 0.0489356i \(0.984417\pi\)
\(6\) 0 0
\(7\) −5.24868 4.63156i −0.749812 0.661651i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.94749i 0.631590i 0.948827 + 0.315795i \(0.102271\pi\)
−0.948827 + 0.315795i \(0.897729\pi\)
\(12\) 0 0
\(13\) −16.5922 −1.27633 −0.638163 0.769901i \(-0.720305\pi\)
−0.638163 + 0.769901i \(0.720305\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 28.0732 1.65137 0.825683 0.564135i \(-0.190790\pi\)
0.825683 + 0.564135i \(0.190790\pi\)
\(18\) 0 0
\(19\) 29.3568i 1.54509i −0.634958 0.772547i \(-0.718983\pi\)
0.634958 0.772547i \(-0.281017\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.49845 −0.326020 −0.163010 0.986624i \(-0.552120\pi\)
−0.163010 + 0.986624i \(0.552120\pi\)
\(24\) 0 0
\(25\) 24.7605 0.990421
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 17.9470 0.618862 0.309431 0.950922i \(-0.399861\pi\)
0.309431 + 0.950922i \(0.399861\pi\)
\(30\) 0 0
\(31\) 30.8259 0.994385 0.497193 0.867640i \(-0.334364\pi\)
0.497193 + 0.867640i \(0.334364\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.26648 2.56848i 0.0647567 0.0733850i
\(36\) 0 0
\(37\) 64.8471i 1.75262i 0.481744 + 0.876312i \(0.340004\pi\)
−0.481744 + 0.876312i \(0.659996\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −50.7873 −1.23871 −0.619357 0.785109i \(-0.712607\pi\)
−0.619357 + 0.785109i \(0.712607\pi\)
\(42\) 0 0
\(43\) −47.5472 −1.10575 −0.552875 0.833264i \(-0.686469\pi\)
−0.552875 + 0.833264i \(0.686469\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 65.0090i 1.38317i −0.722295 0.691585i \(-0.756913\pi\)
0.722295 0.691585i \(-0.243087\pi\)
\(48\) 0 0
\(49\) 6.09730 + 48.6192i 0.124435 + 0.992228i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −51.2494 −0.966969 −0.483485 0.875353i \(-0.660629\pi\)
−0.483485 + 0.875353i \(0.660629\pi\)
\(54\) 0 0
\(55\) −3.39980 −0.0618145
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 27.2645 0.462110 0.231055 0.972941i \(-0.425782\pi\)
0.231055 + 0.972941i \(0.425782\pi\)
\(60\) 0 0
\(61\) −115.375 −1.89140 −0.945699 0.325043i \(-0.894621\pi\)
−0.945699 + 0.325043i \(0.894621\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.11952i 0.124916i
\(66\) 0 0
\(67\) −7.26829 −0.108482 −0.0542409 0.998528i \(-0.517274\pi\)
−0.0542409 + 0.998528i \(0.517274\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −91.6063 −1.29023 −0.645115 0.764085i \(-0.723191\pi\)
−0.645115 + 0.764085i \(0.723191\pi\)
\(72\) 0 0
\(73\) 27.5052i 0.376783i 0.982094 + 0.188392i \(0.0603274\pi\)
−0.982094 + 0.188392i \(0.939673\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 32.1777 36.4652i 0.417892 0.473574i
\(78\) 0 0
\(79\) 36.2471i 0.458824i −0.973329 0.229412i \(-0.926320\pi\)
0.973329 0.229412i \(-0.0736803\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −117.776 −1.41899 −0.709495 0.704711i \(-0.751077\pi\)
−0.709495 + 0.704711i \(0.751077\pi\)
\(84\) 0 0
\(85\) 13.7378i 0.161621i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 35.2381 0.395933 0.197967 0.980209i \(-0.436566\pi\)
0.197967 + 0.980209i \(0.436566\pi\)
\(90\) 0 0
\(91\) 87.0874 + 76.8480i 0.957004 + 0.844483i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 14.3659 0.151220
\(96\) 0 0
\(97\) 24.7402i 0.255053i 0.991835 + 0.127527i \(0.0407038\pi\)
−0.991835 + 0.127527i \(0.959296\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 54.1213i 0.535854i 0.963439 + 0.267927i \(0.0863387\pi\)
−0.963439 + 0.267927i \(0.913661\pi\)
\(102\) 0 0
\(103\) −118.143 −1.14701 −0.573507 0.819200i \(-0.694418\pi\)
−0.573507 + 0.819200i \(0.694418\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 85.2840i 0.797046i 0.917158 + 0.398523i \(0.130477\pi\)
−0.917158 + 0.398523i \(0.869523\pi\)
\(108\) 0 0
\(109\) 88.3506i 0.810556i 0.914193 + 0.405278i \(0.132825\pi\)
−0.914193 + 0.405278i \(0.867175\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 113.657i 1.00581i 0.864341 + 0.502907i \(0.167736\pi\)
−0.864341 + 0.502907i \(0.832264\pi\)
\(114\) 0 0
\(115\) 3.66942i 0.0319080i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −147.347 130.023i −1.23821 1.09263i
\(120\) 0 0
\(121\) 72.7324 0.601094
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.3506i 0.194805i
\(126\) 0 0
\(127\) 230.345i 1.81374i 0.421409 + 0.906871i \(0.361536\pi\)
−0.421409 + 0.906871i \(0.638464\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −65.7427 −0.501853 −0.250926 0.968006i \(-0.580735\pi\)
−0.250926 + 0.968006i \(0.580735\pi\)
\(132\) 0 0
\(133\) −135.968 + 154.084i −1.02231 + 1.15853i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 251.938i 1.83896i −0.393131 0.919482i \(-0.628608\pi\)
0.393131 0.919482i \(-0.371392\pi\)
\(138\) 0 0
\(139\) 55.1901i 0.397051i −0.980096 0.198526i \(-0.936385\pi\)
0.980096 0.198526i \(-0.0636153\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 115.274i 0.806115i
\(144\) 0 0
\(145\) 8.78248i 0.0605688i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.0084 0.120862 0.0604308 0.998172i \(-0.480753\pi\)
0.0604308 + 0.998172i \(0.480753\pi\)
\(150\) 0 0
\(151\) 123.390i 0.817155i 0.912724 + 0.408578i \(0.133975\pi\)
−0.912724 + 0.408578i \(0.866025\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.0849i 0.0973217i
\(156\) 0 0
\(157\) −39.5283 −0.251773 −0.125886 0.992045i \(-0.540177\pi\)
−0.125886 + 0.992045i \(0.540177\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 39.3570 + 34.7295i 0.244453 + 0.215711i
\(162\) 0 0
\(163\) 5.42728 0.0332962 0.0166481 0.999861i \(-0.494700\pi\)
0.0166481 + 0.999861i \(0.494700\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 156.148i 0.935019i −0.883988 0.467509i \(-0.845151\pi\)
0.883988 0.467509i \(-0.154849\pi\)
\(168\) 0 0
\(169\) 106.302 0.629009
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 148.083i 0.855970i −0.903786 0.427985i \(-0.859224\pi\)
0.903786 0.427985i \(-0.140776\pi\)
\(174\) 0 0
\(175\) −129.960 114.680i −0.742629 0.655314i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 146.484i 0.818348i 0.912456 + 0.409174i \(0.134183\pi\)
−0.912456 + 0.409174i \(0.865817\pi\)
\(180\) 0 0
\(181\) −150.952 −0.833987 −0.416993 0.908910i \(-0.636916\pi\)
−0.416993 + 0.908910i \(0.636916\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −31.7333 −0.171532
\(186\) 0 0
\(187\) 195.038i 1.04299i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −243.251 −1.27357 −0.636783 0.771043i \(-0.719735\pi\)
−0.636783 + 0.771043i \(0.719735\pi\)
\(192\) 0 0
\(193\) −138.025 −0.715158 −0.357579 0.933883i \(-0.616398\pi\)
−0.357579 + 0.933883i \(0.616398\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 80.7464 0.409880 0.204940 0.978775i \(-0.434300\pi\)
0.204940 + 0.978775i \(0.434300\pi\)
\(198\) 0 0
\(199\) −230.552 −1.15855 −0.579276 0.815131i \(-0.696665\pi\)
−0.579276 + 0.815131i \(0.696665\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −94.1981 83.1226i −0.464030 0.409471i
\(204\) 0 0
\(205\) 24.8531i 0.121235i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 203.956 0.975866
\(210\) 0 0
\(211\) 10.9675 0.0519789 0.0259894 0.999662i \(-0.491726\pi\)
0.0259894 + 0.999662i \(0.491726\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 23.2675i 0.108221i
\(216\) 0 0
\(217\) −161.796 142.772i −0.745602 0.657936i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −465.797 −2.10768
\(222\) 0 0
\(223\) −150.911 −0.676730 −0.338365 0.941015i \(-0.609874\pi\)
−0.338365 + 0.941015i \(0.609874\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −179.331 −0.790002 −0.395001 0.918681i \(-0.629256\pi\)
−0.395001 + 0.918681i \(0.629256\pi\)
\(228\) 0 0
\(229\) 12.7967 0.0558808 0.0279404 0.999610i \(-0.491105\pi\)
0.0279404 + 0.999610i \(0.491105\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 88.7566i 0.380930i 0.981694 + 0.190465i \(0.0609995\pi\)
−0.981694 + 0.190465i \(0.939000\pi\)
\(234\) 0 0
\(235\) 31.8126 0.135373
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −144.716 −0.605506 −0.302753 0.953069i \(-0.597906\pi\)
−0.302753 + 0.953069i \(0.597906\pi\)
\(240\) 0 0
\(241\) 40.5889i 0.168419i −0.996448 0.0842093i \(-0.973164\pi\)
0.996448 0.0842093i \(-0.0268364\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −23.7921 + 2.98375i −0.0971106 + 0.0121786i
\(246\) 0 0
\(247\) 487.095i 1.97204i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 446.676 1.77959 0.889793 0.456365i \(-0.150849\pi\)
0.889793 + 0.456365i \(0.150849\pi\)
\(252\) 0 0
\(253\) 52.0954i 0.205911i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −311.679 −1.21276 −0.606379 0.795176i \(-0.707378\pi\)
−0.606379 + 0.795176i \(0.707378\pi\)
\(258\) 0 0
\(259\) 300.343 340.362i 1.15963 1.31414i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 254.263 0.966781 0.483390 0.875405i \(-0.339405\pi\)
0.483390 + 0.875405i \(0.339405\pi\)
\(264\) 0 0
\(265\) 25.0792i 0.0946385i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 381.909i 1.41974i −0.704335 0.709868i \(-0.748755\pi\)
0.704335 0.709868i \(-0.251245\pi\)
\(270\) 0 0
\(271\) −108.365 −0.399870 −0.199935 0.979809i \(-0.564073\pi\)
−0.199935 + 0.979809i \(0.564073\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 172.024i 0.625540i
\(276\) 0 0
\(277\) 179.094i 0.646547i 0.946306 + 0.323274i \(0.104783\pi\)
−0.946306 + 0.323274i \(0.895217\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 347.268i 1.23583i 0.786245 + 0.617915i \(0.212023\pi\)
−0.786245 + 0.617915i \(0.787977\pi\)
\(282\) 0 0
\(283\) 155.999i 0.551233i 0.961268 + 0.275616i \(0.0888819\pi\)
−0.961268 + 0.275616i \(0.911118\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 266.566 + 235.224i 0.928802 + 0.819597i
\(288\) 0 0
\(289\) 499.105 1.72701
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 479.808i 1.63757i −0.574101 0.818785i \(-0.694648\pi\)
0.574101 0.818785i \(-0.305352\pi\)
\(294\) 0 0
\(295\) 13.3420i 0.0452272i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 124.416 0.416108
\(300\) 0 0
\(301\) 249.560 + 220.218i 0.829104 + 0.731621i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 56.4596i 0.185114i
\(306\) 0 0
\(307\) 409.804i 1.33487i 0.744670 + 0.667433i \(0.232607\pi\)
−0.744670 + 0.667433i \(0.767393\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 229.581i 0.738202i 0.929389 + 0.369101i \(0.120334\pi\)
−0.929389 + 0.369101i \(0.879666\pi\)
\(312\) 0 0
\(313\) 383.358i 1.22479i 0.790553 + 0.612393i \(0.209793\pi\)
−0.790553 + 0.612393i \(0.790207\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −286.747 −0.904566 −0.452283 0.891874i \(-0.649390\pi\)
−0.452283 + 0.891874i \(0.649390\pi\)
\(318\) 0 0
\(319\) 124.687i 0.390867i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 824.139i 2.55151i
\(324\) 0 0
\(325\) −410.833 −1.26410
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −301.093 + 341.212i −0.915177 + 1.03712i
\(330\) 0 0
\(331\) −145.600 −0.439880 −0.219940 0.975513i \(-0.570586\pi\)
−0.219940 + 0.975513i \(0.570586\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.55678i 0.0106173i
\(336\) 0 0
\(337\) −115.312 −0.342172 −0.171086 0.985256i \(-0.554728\pi\)
−0.171086 + 0.985256i \(0.554728\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 214.163i 0.628044i
\(342\) 0 0
\(343\) 193.180 283.426i 0.563206 0.826316i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 166.848i 0.480831i −0.970670 0.240416i \(-0.922716\pi\)
0.970670 0.240416i \(-0.0772838\pi\)
\(348\) 0 0
\(349\) 65.9305 0.188913 0.0944563 0.995529i \(-0.469889\pi\)
0.0944563 + 0.995529i \(0.469889\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −418.652 −1.18598 −0.592992 0.805209i \(-0.702053\pi\)
−0.592992 + 0.805209i \(0.702053\pi\)
\(354\) 0 0
\(355\) 44.8281i 0.126276i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 612.879 1.70718 0.853592 0.520942i \(-0.174419\pi\)
0.853592 + 0.520942i \(0.174419\pi\)
\(360\) 0 0
\(361\) −500.820 −1.38731
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13.4598 −0.0368763
\(366\) 0 0
\(367\) −114.767 −0.312716 −0.156358 0.987700i \(-0.549975\pi\)
−0.156358 + 0.987700i \(0.549975\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 268.992 + 237.364i 0.725045 + 0.639796i
\(372\) 0 0
\(373\) 546.200i 1.46434i −0.681120 0.732171i \(-0.738507\pi\)
0.681120 0.732171i \(-0.261493\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −297.781 −0.789870
\(378\) 0 0
\(379\) −250.576 −0.661150 −0.330575 0.943780i \(-0.607243\pi\)
−0.330575 + 0.943780i \(0.607243\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 423.702i 1.10627i 0.833092 + 0.553135i \(0.186569\pi\)
−0.833092 + 0.553135i \(0.813431\pi\)
\(384\) 0 0
\(385\) 17.8445 + 15.7464i 0.0463492 + 0.0408997i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −27.1194 −0.0697157 −0.0348578 0.999392i \(-0.511098\pi\)
−0.0348578 + 0.999392i \(0.511098\pi\)
\(390\) 0 0
\(391\) −210.506 −0.538378
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 17.7377 0.0449057
\(396\) 0 0
\(397\) 215.658 0.543220 0.271610 0.962407i \(-0.412444\pi\)
0.271610 + 0.962407i \(0.412444\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 423.953i 1.05724i −0.848859 0.528620i \(-0.822710\pi\)
0.848859 0.528620i \(-0.177290\pi\)
\(402\) 0 0
\(403\) −511.471 −1.26916
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −450.525 −1.10694
\(408\) 0 0
\(409\) 51.8874i 0.126864i 0.997986 + 0.0634320i \(0.0202046\pi\)
−0.997986 + 0.0634320i \(0.979795\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −143.102 126.277i −0.346495 0.305755i
\(414\) 0 0
\(415\) 57.6345i 0.138878i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −418.176 −0.998034 −0.499017 0.866592i \(-0.666306\pi\)
−0.499017 + 0.866592i \(0.666306\pi\)
\(420\) 0 0
\(421\) 48.3444i 0.114832i 0.998350 + 0.0574161i \(0.0182862\pi\)
−0.998350 + 0.0574161i \(0.981714\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 695.107 1.63555
\(426\) 0 0
\(427\) 605.568 + 534.368i 1.41819 + 1.25145i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −106.413 −0.246898 −0.123449 0.992351i \(-0.539396\pi\)
−0.123449 + 0.992351i \(0.539396\pi\)
\(432\) 0 0
\(433\) 261.405i 0.603707i 0.953354 + 0.301854i \(0.0976054\pi\)
−0.953354 + 0.301854i \(0.902395\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 220.130i 0.503731i
\(438\) 0 0
\(439\) 611.541 1.39303 0.696517 0.717541i \(-0.254732\pi\)
0.696517 + 0.717541i \(0.254732\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 695.830i 1.57072i 0.619038 + 0.785361i \(0.287523\pi\)
−0.619038 + 0.785361i \(0.712477\pi\)
\(444\) 0 0
\(445\) 17.2440i 0.0387505i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 45.4904i 0.101315i 0.998716 + 0.0506574i \(0.0161317\pi\)
−0.998716 + 0.0506574i \(0.983868\pi\)
\(450\) 0 0
\(451\) 352.844i 0.782360i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −37.6060 + 42.6168i −0.0826506 + 0.0936632i
\(456\) 0 0
\(457\) 567.174 1.24108 0.620540 0.784175i \(-0.286913\pi\)
0.620540 + 0.784175i \(0.286913\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 166.006i 0.360099i 0.983658 + 0.180050i \(0.0576258\pi\)
−0.983658 + 0.180050i \(0.942374\pi\)
\(462\) 0 0
\(463\) 194.577i 0.420254i 0.977674 + 0.210127i \(0.0673877\pi\)
−0.977674 + 0.210127i \(0.932612\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 86.2300 0.184647 0.0923234 0.995729i \(-0.470571\pi\)
0.0923234 + 0.995729i \(0.470571\pi\)
\(468\) 0 0
\(469\) 38.1489 + 33.6635i 0.0813410 + 0.0717772i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 330.334i 0.698380i
\(474\) 0 0
\(475\) 726.889i 1.53029i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 574.253i 1.19886i −0.800428 0.599429i \(-0.795394\pi\)
0.800428 0.599429i \(-0.204606\pi\)
\(480\) 0 0
\(481\) 1075.96i 2.23692i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.1068 −0.0249624
\(486\) 0 0
\(487\) 595.755i 1.22332i −0.791122 0.611658i \(-0.790503\pi\)
0.791122 0.611658i \(-0.209497\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 571.410i 1.16377i −0.813272 0.581883i \(-0.802316\pi\)
0.813272 0.581883i \(-0.197684\pi\)
\(492\) 0 0
\(493\) 503.830 1.02197
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 480.812 + 424.280i 0.967429 + 0.853683i
\(498\) 0 0
\(499\) 22.8477 0.0457870 0.0228935 0.999738i \(-0.492712\pi\)
0.0228935 + 0.999738i \(0.492712\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 688.951i 1.36968i 0.728692 + 0.684842i \(0.240129\pi\)
−0.728692 + 0.684842i \(0.759871\pi\)
\(504\) 0 0
\(505\) −26.4846 −0.0524447
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 62.9269i 0.123628i −0.998088 0.0618142i \(-0.980311\pi\)
0.998088 0.0618142i \(-0.0196886\pi\)
\(510\) 0 0
\(511\) 127.392 144.366i 0.249299 0.282516i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 57.8138i 0.112260i
\(516\) 0 0
\(517\) 451.650 0.873597
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 612.508 1.17564 0.587820 0.808992i \(-0.299986\pi\)
0.587820 + 0.808992i \(0.299986\pi\)
\(522\) 0 0
\(523\) 692.859i 1.32478i −0.749160 0.662389i \(-0.769542\pi\)
0.749160 0.662389i \(-0.230458\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 865.383 1.64209
\(528\) 0 0
\(529\) −472.773 −0.893711
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 842.675 1.58100
\(534\) 0 0
\(535\) −41.7343 −0.0780079
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −337.781 + 42.3609i −0.626681 + 0.0785917i
\(540\) 0 0
\(541\) 634.171i 1.17222i −0.810232 0.586110i \(-0.800659\pi\)
0.810232 0.586110i \(-0.199341\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −43.2349 −0.0793301
\(546\) 0 0
\(547\) 361.551 0.660971 0.330486 0.943811i \(-0.392787\pi\)
0.330486 + 0.943811i \(0.392787\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 526.866i 0.956200i
\(552\) 0 0
\(553\) −167.881 + 190.249i −0.303581 + 0.344031i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 687.553 1.23439 0.617193 0.786812i \(-0.288270\pi\)
0.617193 + 0.786812i \(0.288270\pi\)
\(558\) 0 0
\(559\) 788.915 1.41130
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 960.105 1.70534 0.852669 0.522452i \(-0.174983\pi\)
0.852669 + 0.522452i \(0.174983\pi\)
\(564\) 0 0
\(565\) −55.6187 −0.0984403
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 569.590i 1.00104i −0.865726 0.500518i \(-0.833143\pi\)
0.865726 0.500518i \(-0.166857\pi\)
\(570\) 0 0
\(571\) −413.155 −0.723564 −0.361782 0.932263i \(-0.617832\pi\)
−0.361782 + 0.932263i \(0.617832\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −185.666 −0.322897
\(576\) 0 0
\(577\) 21.1560i 0.0366654i 0.999832 + 0.0183327i \(0.00583581\pi\)
−0.999832 + 0.0183327i \(0.994164\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 618.169 + 545.487i 1.06397 + 0.938876i
\(582\) 0 0
\(583\) 356.054i 0.610728i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −395.721 −0.674141 −0.337071 0.941479i \(-0.609436\pi\)
−0.337071 + 0.941479i \(0.609436\pi\)
\(588\) 0 0
\(589\) 904.950i 1.53642i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −488.061 −0.823037 −0.411519 0.911401i \(-0.635001\pi\)
−0.411519 + 0.911401i \(0.635001\pi\)
\(594\) 0 0
\(595\) 63.6275 72.1053i 0.106937 0.121185i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −215.241 −0.359334 −0.179667 0.983727i \(-0.557502\pi\)
−0.179667 + 0.983727i \(0.557502\pi\)
\(600\) 0 0
\(601\) 810.565i 1.34869i −0.738415 0.674347i \(-0.764425\pi\)
0.738415 0.674347i \(-0.235575\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 35.5920i 0.0588298i
\(606\) 0 0
\(607\) −621.412 −1.02374 −0.511872 0.859062i \(-0.671048\pi\)
−0.511872 + 0.859062i \(0.671048\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1078.65i 1.76538i
\(612\) 0 0
\(613\) 748.837i 1.22159i 0.791787 + 0.610797i \(0.209151\pi\)
−0.791787 + 0.610797i \(0.790849\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 439.740i 0.712707i 0.934351 + 0.356353i \(0.115980\pi\)
−0.934351 + 0.356353i \(0.884020\pi\)
\(618\) 0 0
\(619\) 598.114i 0.966259i 0.875549 + 0.483129i \(0.160500\pi\)
−0.875549 + 0.483129i \(0.839500\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −184.953 163.207i −0.296875 0.261970i
\(624\) 0 0
\(625\) 607.097 0.971355
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1820.47i 2.89422i
\(630\) 0 0
\(631\) 480.690i 0.761791i −0.924618 0.380895i \(-0.875616\pi\)
0.924618 0.380895i \(-0.124384\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −112.721 −0.177513
\(636\) 0 0
\(637\) −101.168 806.701i −0.158819 1.26641i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 890.272i 1.38888i −0.719551 0.694440i \(-0.755652\pi\)
0.719551 0.694440i \(-0.244348\pi\)
\(642\) 0 0
\(643\) 748.676i 1.16435i 0.813064 + 0.582174i \(0.197798\pi\)
−0.813064 + 0.582174i \(0.802202\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1011.64i 1.56359i 0.623535 + 0.781795i \(0.285696\pi\)
−0.623535 + 0.781795i \(0.714304\pi\)
\(648\) 0 0
\(649\) 189.420i 0.291864i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −970.047 −1.48552 −0.742762 0.669556i \(-0.766485\pi\)
−0.742762 + 0.669556i \(0.766485\pi\)
\(654\) 0 0
\(655\) 32.1716i 0.0491170i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 122.648i 0.186112i −0.995661 0.0930562i \(-0.970336\pi\)
0.995661 0.0930562i \(-0.0296636\pi\)
\(660\) 0 0
\(661\) 550.866 0.833382 0.416691 0.909048i \(-0.363190\pi\)
0.416691 + 0.909048i \(0.363190\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −75.4022 66.5366i −0.113387 0.100055i
\(666\) 0 0
\(667\) −134.575 −0.201761
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 801.569i 1.19459i
\(672\) 0 0
\(673\) −929.335 −1.38088 −0.690442 0.723387i \(-0.742584\pi\)
−0.690442 + 0.723387i \(0.742584\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 426.954i 0.630656i 0.948983 + 0.315328i \(0.102115\pi\)
−0.948983 + 0.315328i \(0.897885\pi\)
\(678\) 0 0
\(679\) 114.586 129.853i 0.168756 0.191242i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1012.14i 1.48190i −0.671558 0.740952i \(-0.734375\pi\)
0.671558 0.740952i \(-0.265625\pi\)
\(684\) 0 0
\(685\) 123.288 0.179982
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 850.342 1.23417
\(690\) 0 0
\(691\) 637.724i 0.922901i 0.887166 + 0.461450i \(0.152671\pi\)
−0.887166 + 0.461450i \(0.847329\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 27.0076 0.0388599
\(696\) 0 0
\(697\) −1425.76 −2.04557
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 915.416 1.30587 0.652936 0.757413i \(-0.273537\pi\)
0.652936 + 0.757413i \(0.273537\pi\)
\(702\) 0 0
\(703\) 1903.70 2.70797
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 250.666 284.065i 0.354549 0.401790i
\(708\) 0 0
\(709\) 26.7631i 0.0377477i 0.999822 + 0.0188739i \(0.00600809\pi\)
−0.999822 + 0.0188739i \(0.993992\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −231.147 −0.324189
\(714\) 0 0
\(715\) 56.4103 0.0788955
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 812.958i 1.13068i 0.824859 + 0.565339i \(0.191255\pi\)
−0.824859 + 0.565339i \(0.808745\pi\)
\(720\) 0 0
\(721\) 620.092 + 547.184i 0.860045 + 0.758924i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 444.377 0.612934
\(726\) 0 0
\(727\) 402.292 0.553359 0.276679 0.960962i \(-0.410766\pi\)
0.276679 + 0.960962i \(0.410766\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1334.80 −1.82600
\(732\) 0 0
\(733\) 707.087 0.964648 0.482324 0.875993i \(-0.339793\pi\)
0.482324 + 0.875993i \(0.339793\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 50.4963i 0.0685161i
\(738\) 0 0
\(739\) −1178.59 −1.59484 −0.797420 0.603425i \(-0.793802\pi\)
−0.797420 + 0.603425i \(0.793802\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −227.166 −0.305741 −0.152870 0.988246i \(-0.548852\pi\)
−0.152870 + 0.988246i \(0.548852\pi\)
\(744\) 0 0
\(745\) 8.81251i 0.0118289i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 394.998 447.628i 0.527367 0.597635i
\(750\) 0 0
\(751\) 19.6849i 0.0262116i 0.999914 + 0.0131058i \(0.00417182\pi\)
−0.999914 + 0.0131058i \(0.995828\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −60.3819 −0.0799760
\(756\) 0 0
\(757\) 1077.26i 1.42307i 0.702650 + 0.711535i \(0.252000\pi\)
−0.702650 + 0.711535i \(0.748000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 98.7893 0.129815 0.0649075 0.997891i \(-0.479325\pi\)
0.0649075 + 0.997891i \(0.479325\pi\)
\(762\) 0 0
\(763\) 409.201 463.724i 0.536306 0.607764i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −452.379 −0.589803
\(768\) 0 0
\(769\) 332.048i 0.431792i 0.976416 + 0.215896i \(0.0692672\pi\)
−0.976416 + 0.215896i \(0.930733\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1460.93i 1.88995i 0.327149 + 0.944973i \(0.393912\pi\)
−0.327149 + 0.944973i \(0.606088\pi\)
\(774\) 0 0
\(775\) 763.267 0.984860
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1490.95i 1.91393i
\(780\) 0 0
\(781\) 636.434i 0.814897i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 19.3434i 0.0246413i
\(786\) 0 0
\(787\) 889.382i 1.13009i −0.825059 0.565046i \(-0.808858\pi\)
0.825059 0.565046i \(-0.191142\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 526.409 596.549i 0.665498 0.754171i
\(792\) 0 0
\(793\) 1914.33 2.41404
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1370.49i 1.71956i −0.510662 0.859782i \(-0.670600\pi\)
0.510662 0.859782i \(-0.329400\pi\)
\(798\) 0 0
\(799\) 1825.01i 2.28412i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −191.092 −0.237973
\(804\) 0 0
\(805\) −16.9951 + 19.2596i −0.0211120 + 0.0239250i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1096.60i 1.35550i −0.735291 0.677751i \(-0.762955\pi\)
0.735291 0.677751i \(-0.237045\pi\)
\(810\) 0 0
\(811\) 1357.90i 1.67436i −0.546929 0.837179i \(-0.684203\pi\)
0.546929 0.837179i \(-0.315797\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.65587i 0.00325874i
\(816\) 0 0
\(817\) 1395.83i 1.70849i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 936.137 1.14024 0.570120 0.821561i \(-0.306897\pi\)
0.570120 + 0.821561i \(0.306897\pi\)
\(822\) 0 0
\(823\) 129.080i 0.156841i 0.996920 + 0.0784207i \(0.0249877\pi\)
−0.996920 + 0.0784207i \(0.975012\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.8284i 0.0276039i −0.999905 0.0138020i \(-0.995607\pi\)
0.999905 0.0138020i \(-0.00439344\pi\)
\(828\) 0 0
\(829\) 630.043 0.760004 0.380002 0.924986i \(-0.375923\pi\)
0.380002 + 0.924986i \(0.375923\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 171.171 + 1364.90i 0.205487 + 1.63853i
\(834\) 0 0
\(835\) 76.4121 0.0915115
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 265.666i 0.316647i 0.987387 + 0.158323i \(0.0506088\pi\)
−0.987387 + 0.158323i \(0.949391\pi\)
\(840\) 0 0
\(841\) −518.905 −0.617010
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 52.0198i 0.0615619i
\(846\) 0 0
\(847\) −381.749 336.864i −0.450707 0.397715i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 486.253i 0.571390i
\(852\) 0 0
\(853\) −760.591 −0.891665 −0.445833 0.895116i \(-0.647092\pi\)
−0.445833 + 0.895116i \(0.647092\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −962.482 −1.12308 −0.561542 0.827449i \(-0.689792\pi\)
−0.561542 + 0.827449i \(0.689792\pi\)
\(858\) 0 0
\(859\) 160.713i 0.187093i −0.995615 0.0935466i \(-0.970180\pi\)
0.995615 0.0935466i \(-0.0298204\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1275.31 1.47777 0.738884 0.673832i \(-0.235353\pi\)
0.738884 + 0.673832i \(0.235353\pi\)
\(864\) 0 0
\(865\) 72.4652 0.0837748
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 251.826 0.289789
\(870\) 0 0
\(871\) 120.597 0.138458
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 112.781 127.809i 0.128893 0.146067i
\(876\) 0 0
\(877\) 1148.72i 1.30983i −0.755704 0.654913i \(-0.772705\pi\)
0.755704 0.654913i \(-0.227295\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1589.04 1.80368 0.901840 0.432070i \(-0.142217\pi\)
0.901840 + 0.432070i \(0.142217\pi\)
\(882\) 0 0
\(883\) −523.232 −0.592561 −0.296281 0.955101i \(-0.595746\pi\)
−0.296281 + 0.955101i \(0.595746\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1190.80i 1.34250i −0.741231 0.671250i \(-0.765758\pi\)
0.741231 0.671250i \(-0.234242\pi\)
\(888\) 0 0
\(889\) 1066.86 1209.01i 1.20006 1.35996i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1908.46 −2.13713
\(894\) 0 0
\(895\) −71.6831 −0.0800928
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 553.233 0.615387
\(900\) 0 0
\(901\) −1438.73 −1.59682
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 73.8691i 0.0816233i
\(906\) 0 0
\(907\) −1762.93 −1.94369 −0.971845 0.235623i \(-0.924287\pi\)
−0.971845 + 0.235623i \(0.924287\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 49.2079 0.0540152 0.0270076 0.999635i \(-0.491402\pi\)
0.0270076 + 0.999635i \(0.491402\pi\)
\(912\) 0 0
\(913\) 818.248i 0.896219i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 345.062 + 304.491i 0.376295 + 0.332052i
\(918\) 0 0
\(919\) 685.900i 0.746355i −0.927760 0.373177i \(-0.878268\pi\)
0.927760 0.373177i \(-0.121732\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1519.95 1.64675
\(924\) 0 0
\(925\) 1605.65i 1.73584i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −194.049 −0.208880 −0.104440 0.994531i \(-0.533305\pi\)
−0.104440 + 0.994531i \(0.533305\pi\)
\(930\) 0 0
\(931\) 1427.30 178.997i 1.53308 0.192263i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −95.4432 −0.102078
\(936\) 0 0
\(937\) 523.728i 0.558942i 0.960154 + 0.279471i \(0.0901590\pi\)
−0.960154 + 0.279471i \(0.909841\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 144.646i 0.153716i −0.997042 0.0768578i \(-0.975511\pi\)
0.997042 0.0768578i \(-0.0244887\pi\)
\(942\) 0 0
\(943\) 380.826 0.403845
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 177.497i 0.187431i 0.995599 + 0.0937155i \(0.0298744\pi\)
−0.995599 + 0.0937155i \(0.970126\pi\)
\(948\) 0 0
\(949\) 456.373i 0.480898i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 59.3443i 0.0622710i 0.999515 + 0.0311355i \(0.00991234\pi\)
−0.999515 + 0.0311355i \(0.990088\pi\)
\(954\) 0 0
\(955\) 119.036i 0.124645i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1166.87 + 1322.34i −1.21675 + 1.37888i
\(960\) 0 0
\(961\) −10.7613 −0.0111980
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 67.5436i 0.0699934i
\(966\) 0 0
\(967\) 1022.00i 1.05687i 0.848973 + 0.528437i \(0.177222\pi\)
−0.848973 + 0.528437i \(0.822778\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −121.308 −0.124931 −0.0624654 0.998047i \(-0.519896\pi\)
−0.0624654 + 0.998047i \(0.519896\pi\)
\(972\) 0 0
\(973\) −255.616 + 289.675i −0.262710 + 0.297714i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 485.885i 0.497323i −0.968590 0.248662i \(-0.920009\pi\)
0.968590 0.248662i \(-0.0799907\pi\)
\(978\) 0 0
\(979\) 244.816i 0.250068i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 258.044i 0.262507i 0.991349 + 0.131253i \(0.0419001\pi\)
−0.991349 + 0.131253i \(0.958100\pi\)
\(984\) 0 0
\(985\) 39.5138i 0.0401155i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 356.531 0.360496
\(990\) 0 0
\(991\) 679.844i 0.686019i 0.939332 + 0.343009i \(0.111446\pi\)
−0.939332 + 0.343009i \(0.888554\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 112.822i 0.113389i
\(996\) 0 0
\(997\) −982.612 −0.985569 −0.492784 0.870152i \(-0.664021\pi\)
−0.492784 + 0.870152i \(0.664021\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.e.c.1007.46 48
3.2 odd 2 inner 2016.3.e.c.1007.19 48
4.3 odd 2 504.3.e.c.251.23 yes 48
7.6 odd 2 inner 2016.3.e.c.1007.47 48
8.3 odd 2 inner 2016.3.e.c.1007.13 48
8.5 even 2 504.3.e.c.251.27 yes 48
12.11 even 2 504.3.e.c.251.26 yes 48
21.20 even 2 inner 2016.3.e.c.1007.14 48
24.5 odd 2 504.3.e.c.251.22 yes 48
24.11 even 2 inner 2016.3.e.c.1007.48 48
28.27 even 2 504.3.e.c.251.24 yes 48
56.13 odd 2 504.3.e.c.251.28 yes 48
56.27 even 2 inner 2016.3.e.c.1007.20 48
84.83 odd 2 504.3.e.c.251.25 yes 48
168.83 odd 2 inner 2016.3.e.c.1007.45 48
168.125 even 2 504.3.e.c.251.21 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.e.c.251.21 48 168.125 even 2
504.3.e.c.251.22 yes 48 24.5 odd 2
504.3.e.c.251.23 yes 48 4.3 odd 2
504.3.e.c.251.24 yes 48 28.27 even 2
504.3.e.c.251.25 yes 48 84.83 odd 2
504.3.e.c.251.26 yes 48 12.11 even 2
504.3.e.c.251.27 yes 48 8.5 even 2
504.3.e.c.251.28 yes 48 56.13 odd 2
2016.3.e.c.1007.13 48 8.3 odd 2 inner
2016.3.e.c.1007.14 48 21.20 even 2 inner
2016.3.e.c.1007.19 48 3.2 odd 2 inner
2016.3.e.c.1007.20 48 56.27 even 2 inner
2016.3.e.c.1007.45 48 168.83 odd 2 inner
2016.3.e.c.1007.46 48 1.1 even 1 trivial
2016.3.e.c.1007.47 48 7.6 odd 2 inner
2016.3.e.c.1007.48 48 24.11 even 2 inner