Properties

Label 2016.2.cp.b.17.3
Level $2016$
Weight $2$
Character 2016.17
Analytic conductor $16.098$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,2,Mod(17,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.cp (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 2016.17
Dual form 2016.2.cp.b.593.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.16007 + 1.82447i) q^{5} +(1.64838 - 2.06951i) q^{7} +(-0.200123 + 0.346624i) q^{11} -0.581419 q^{13} +(2.27603 - 3.94220i) q^{17} +(2.43222 + 4.21272i) q^{19} +(-6.21119 + 3.58603i) q^{23} +(4.15738 - 7.20080i) q^{25} -6.69007 q^{29} +(2.85749 + 1.64978i) q^{31} +(-1.43324 + 9.54721i) q^{35} +(-1.93278 + 1.11589i) q^{37} -4.51491 q^{41} -4.09678i q^{43} +(-2.86389 - 4.96040i) q^{47} +(-1.56571 - 6.82265i) q^{49} +(6.74170 - 11.6770i) q^{53} -1.46048i q^{55} +(7.72158 + 4.45806i) q^{59} +(-6.42386 - 11.1265i) q^{61} +(1.83733 - 1.06078i) q^{65} +(-8.30513 - 4.79497i) q^{67} +6.42019i q^{71} +(-6.18408 - 3.57038i) q^{73} +(0.387462 + 0.985523i) q^{77} +(-4.15037 - 7.18866i) q^{79} -10.3852i q^{83} +16.6102i q^{85} +(-5.25986 - 9.11034i) q^{89} +(-0.958396 + 1.20325i) q^{91} +(-15.3720 - 8.87501i) q^{95} -4.00635i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 20 q^{7} + 8 q^{25} + 36 q^{31} - 28 q^{49} + 72 q^{73} + 12 q^{79}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.16007 + 1.82447i −1.41323 + 0.815928i −0.995691 0.0927320i \(-0.970440\pi\)
−0.417537 + 0.908660i \(0.637107\pi\)
\(6\) 0 0
\(7\) 1.64838 2.06951i 0.623028 0.782200i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.200123 + 0.346624i −0.0603394 + 0.104511i −0.894617 0.446833i \(-0.852552\pi\)
0.834278 + 0.551344i \(0.185885\pi\)
\(12\) 0 0
\(13\) −0.581419 −0.161256 −0.0806282 0.996744i \(-0.525693\pi\)
−0.0806282 + 0.996744i \(0.525693\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.27603 3.94220i 0.552019 0.956124i −0.446110 0.894978i \(-0.647191\pi\)
0.998129 0.0611464i \(-0.0194756\pi\)
\(18\) 0 0
\(19\) 2.43222 + 4.21272i 0.557989 + 0.966465i 0.997664 + 0.0683081i \(0.0217601\pi\)
−0.439676 + 0.898157i \(0.644907\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.21119 + 3.58603i −1.29512 + 0.747739i −0.979557 0.201165i \(-0.935527\pi\)
−0.315565 + 0.948904i \(0.602194\pi\)
\(24\) 0 0
\(25\) 4.15738 7.20080i 0.831476 1.44016i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.69007 −1.24232 −0.621158 0.783686i \(-0.713337\pi\)
−0.621158 + 0.783686i \(0.713337\pi\)
\(30\) 0 0
\(31\) 2.85749 + 1.64978i 0.513221 + 0.296308i 0.734157 0.678980i \(-0.237578\pi\)
−0.220936 + 0.975288i \(0.570911\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.43324 + 9.54721i −0.242262 + 1.61377i
\(36\) 0 0
\(37\) −1.93278 + 1.11589i −0.317747 + 0.183451i −0.650388 0.759602i \(-0.725394\pi\)
0.332641 + 0.943054i \(0.392060\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.51491 −0.705111 −0.352556 0.935791i \(-0.614687\pi\)
−0.352556 + 0.935791i \(0.614687\pi\)
\(42\) 0 0
\(43\) 4.09678i 0.624754i −0.949958 0.312377i \(-0.898875\pi\)
0.949958 0.312377i \(-0.101125\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.86389 4.96040i −0.417741 0.723549i 0.577971 0.816057i \(-0.303845\pi\)
−0.995712 + 0.0925088i \(0.970511\pi\)
\(48\) 0 0
\(49\) −1.56571 6.82265i −0.223673 0.974664i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.74170 11.6770i 0.926043 1.60395i 0.136169 0.990686i \(-0.456521\pi\)
0.789875 0.613268i \(-0.210146\pi\)
\(54\) 0 0
\(55\) 1.46048i 0.196931i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.72158 + 4.45806i 1.00526 + 0.580390i 0.909802 0.415043i \(-0.136234\pi\)
0.0954627 + 0.995433i \(0.469567\pi\)
\(60\) 0 0
\(61\) −6.42386 11.1265i −0.822491 1.42460i −0.903822 0.427910i \(-0.859250\pi\)
0.0813302 0.996687i \(-0.474083\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.83733 1.06078i 0.227892 0.131574i
\(66\) 0 0
\(67\) −8.30513 4.79497i −1.01463 0.585798i −0.102088 0.994775i \(-0.532552\pi\)
−0.912545 + 0.408977i \(0.865886\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.42019i 0.761937i 0.924588 + 0.380968i \(0.124409\pi\)
−0.924588 + 0.380968i \(0.875591\pi\)
\(72\) 0 0
\(73\) −6.18408 3.57038i −0.723791 0.417881i 0.0923551 0.995726i \(-0.470561\pi\)
−0.816147 + 0.577845i \(0.803894\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.387462 + 0.985523i 0.0441553 + 0.112311i
\(78\) 0 0
\(79\) −4.15037 7.18866i −0.466953 0.808787i 0.532334 0.846535i \(-0.321315\pi\)
−0.999287 + 0.0377474i \(0.987982\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.3852i 1.13992i −0.821673 0.569959i \(-0.806959\pi\)
0.821673 0.569959i \(-0.193041\pi\)
\(84\) 0 0
\(85\) 16.6102i 1.80163i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.25986 9.11034i −0.557544 0.965694i −0.997701 0.0677734i \(-0.978411\pi\)
0.440157 0.897921i \(-0.354923\pi\)
\(90\) 0 0
\(91\) −0.958396 + 1.20325i −0.100467 + 0.126135i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −15.3720 8.87501i −1.57713 0.910557i
\(96\) 0 0
\(97\) 4.00635i 0.406783i −0.979097 0.203392i \(-0.934804\pi\)
0.979097 0.203392i \(-0.0651964\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.1877 + 7.03656i 1.21272 + 0.700164i 0.963351 0.268245i \(-0.0864437\pi\)
0.249368 + 0.968409i \(0.419777\pi\)
\(102\) 0 0
\(103\) 17.4850 10.0950i 1.72285 0.994686i 0.809943 0.586508i \(-0.199498\pi\)
0.912903 0.408177i \(-0.133835\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.09913 3.63581i −0.202931 0.351487i 0.746541 0.665340i \(-0.231713\pi\)
−0.949472 + 0.313853i \(0.898380\pi\)
\(108\) 0 0
\(109\) −16.0796 9.28357i −1.54015 0.889205i −0.998829 0.0483874i \(-0.984592\pi\)
−0.541319 0.840817i \(-0.682075\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.44494i 0.324073i 0.986785 + 0.162037i \(0.0518063\pi\)
−0.986785 + 0.162037i \(0.948194\pi\)
\(114\) 0 0
\(115\) 13.0852 22.6642i 1.22020 2.11345i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.40666 11.2085i −0.403958 1.02748i
\(120\) 0 0
\(121\) 5.41990 + 9.38754i 0.492718 + 0.853413i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0954i 1.08184i
\(126\) 0 0
\(127\) 3.82179 0.339129 0.169565 0.985519i \(-0.445764\pi\)
0.169565 + 0.985519i \(0.445764\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.160576 + 0.0927085i −0.0140296 + 0.00809998i −0.506998 0.861947i \(-0.669245\pi\)
0.492969 + 0.870047i \(0.335912\pi\)
\(132\) 0 0
\(133\) 12.7275 + 1.91066i 1.10361 + 0.165676i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.2672 7.65983i −1.13350 0.654424i −0.188684 0.982038i \(-0.560422\pi\)
−0.944812 + 0.327614i \(0.893755\pi\)
\(138\) 0 0
\(139\) −10.5472 −0.894602 −0.447301 0.894383i \(-0.647615\pi\)
−0.447301 + 0.894383i \(0.647615\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.116355 0.201533i 0.00973013 0.0168531i
\(144\) 0 0
\(145\) 21.1411 12.2058i 1.75567 1.01364i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.59117 7.95213i −0.376123 0.651464i 0.614371 0.789017i \(-0.289410\pi\)
−0.990494 + 0.137553i \(0.956076\pi\)
\(150\) 0 0
\(151\) −1.79999 + 3.11768i −0.146481 + 0.253713i −0.929925 0.367750i \(-0.880128\pi\)
0.783443 + 0.621463i \(0.213461\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12.0399 −0.967065
\(156\) 0 0
\(157\) −0.359090 + 0.621963i −0.0286585 + 0.0496380i −0.879999 0.474976i \(-0.842457\pi\)
0.851340 + 0.524614i \(0.175790\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.81706 + 18.7652i −0.222015 + 1.47891i
\(162\) 0 0
\(163\) −19.1125 + 11.0346i −1.49700 + 0.864296i −0.999994 0.00344810i \(-0.998902\pi\)
−0.497011 + 0.867744i \(0.665569\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.4882 1.04375 0.521875 0.853022i \(-0.325233\pi\)
0.521875 + 0.853022i \(0.325233\pi\)
\(168\) 0 0
\(169\) −12.6620 −0.973996
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.0098 + 8.08856i −1.06514 + 0.614962i −0.926851 0.375430i \(-0.877495\pi\)
−0.138294 + 0.990391i \(0.544162\pi\)
\(174\) 0 0
\(175\) −8.04917 20.4733i −0.608460 1.54764i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.872025 + 1.51039i −0.0651782 + 0.112892i −0.896773 0.442491i \(-0.854095\pi\)
0.831595 + 0.555383i \(0.187428\pi\)
\(180\) 0 0
\(181\) 9.44875 0.702320 0.351160 0.936315i \(-0.385787\pi\)
0.351160 + 0.936315i \(0.385787\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.07182 7.05260i 0.299366 0.518517i
\(186\) 0 0
\(187\) 0.910974 + 1.57785i 0.0666170 + 0.115384i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.4118 9.47537i 1.18752 0.685614i 0.229776 0.973244i \(-0.426201\pi\)
0.957742 + 0.287630i \(0.0928673\pi\)
\(192\) 0 0
\(193\) 2.66715 4.61965i 0.191986 0.332529i −0.753922 0.656964i \(-0.771841\pi\)
0.945908 + 0.324434i \(0.105174\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.80474 −0.199829 −0.0999147 0.994996i \(-0.531857\pi\)
−0.0999147 + 0.994996i \(0.531857\pi\)
\(198\) 0 0
\(199\) 6.44198 + 3.71928i 0.456660 + 0.263653i 0.710639 0.703557i \(-0.248406\pi\)
−0.253979 + 0.967210i \(0.581739\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −11.0278 + 13.8451i −0.773997 + 0.971739i
\(204\) 0 0
\(205\) 14.2675 8.23733i 0.996483 0.575320i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.94697 −0.134675
\(210\) 0 0
\(211\) 24.6986i 1.70032i 0.526521 + 0.850162i \(0.323496\pi\)
−0.526521 + 0.850162i \(0.676504\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.47446 + 12.9461i 0.509754 + 0.882920i
\(216\) 0 0
\(217\) 8.12445 3.19415i 0.551523 0.216833i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.32333 + 2.29207i −0.0890166 + 0.154181i
\(222\) 0 0
\(223\) 7.98964i 0.535026i 0.963554 + 0.267513i \(0.0862019\pi\)
−0.963554 + 0.267513i \(0.913798\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.04318 1.17963i −0.135610 0.0782947i 0.430660 0.902514i \(-0.358281\pi\)
−0.566270 + 0.824220i \(0.691614\pi\)
\(228\) 0 0
\(229\) 5.32512 + 9.22338i 0.351894 + 0.609498i 0.986581 0.163271i \(-0.0522045\pi\)
−0.634687 + 0.772769i \(0.718871\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.6645 + 7.31188i −0.829682 + 0.479017i −0.853744 0.520693i \(-0.825673\pi\)
0.0240618 + 0.999710i \(0.492340\pi\)
\(234\) 0 0
\(235\) 18.1002 + 10.4502i 1.18073 + 0.681693i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.5819i 0.749168i 0.927193 + 0.374584i \(0.122214\pi\)
−0.927193 + 0.374584i \(0.877786\pi\)
\(240\) 0 0
\(241\) 1.36690 + 0.789180i 0.0880498 + 0.0508356i 0.543378 0.839488i \(-0.317145\pi\)
−0.455329 + 0.890323i \(0.650478\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 17.3955 + 18.7035i 1.11136 + 1.19492i
\(246\) 0 0
\(247\) −1.41414 2.44935i −0.0899793 0.155849i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.9769i 1.13469i −0.823480 0.567345i \(-0.807971\pi\)
0.823480 0.567345i \(-0.192029\pi\)
\(252\) 0 0
\(253\) 2.87059i 0.180473i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.71744 6.43879i −0.231887 0.401640i 0.726476 0.687192i \(-0.241157\pi\)
−0.958363 + 0.285551i \(0.907823\pi\)
\(258\) 0 0
\(259\) −0.876604 + 5.83931i −0.0544695 + 0.362837i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.28419 4.20553i −0.449162 0.259324i 0.258314 0.966061i \(-0.416833\pi\)
−0.707476 + 0.706737i \(0.750166\pi\)
\(264\) 0 0
\(265\) 49.2001i 3.02234i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.9259 6.88541i −0.727134 0.419811i 0.0902390 0.995920i \(-0.471237\pi\)
−0.817373 + 0.576109i \(0.804570\pi\)
\(270\) 0 0
\(271\) −16.0976 + 9.29397i −0.977861 + 0.564568i −0.901624 0.432521i \(-0.857624\pi\)
−0.0762374 + 0.997090i \(0.524291\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.66398 + 2.88209i 0.100342 + 0.173797i
\(276\) 0 0
\(277\) −15.1885 8.76910i −0.912590 0.526884i −0.0313266 0.999509i \(-0.509973\pi\)
−0.881264 + 0.472625i \(0.843307\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.8388i 0.885208i 0.896717 + 0.442604i \(0.145945\pi\)
−0.896717 + 0.442604i \(0.854055\pi\)
\(282\) 0 0
\(283\) −0.293271 + 0.507960i −0.0174331 + 0.0301951i −0.874610 0.484826i \(-0.838883\pi\)
0.857177 + 0.515022i \(0.172216\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.44228 + 9.34364i −0.439304 + 0.551538i
\(288\) 0 0
\(289\) −1.86064 3.22272i −0.109449 0.189572i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.07405i 0.354850i −0.984134 0.177425i \(-0.943223\pi\)
0.984134 0.177425i \(-0.0567767\pi\)
\(294\) 0 0
\(295\) −32.5344 −1.89422
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.61130 2.08498i 0.208847 0.120578i
\(300\) 0 0
\(301\) −8.47832 6.75304i −0.488682 0.389239i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 40.5998 + 23.4403i 2.32474 + 1.34219i
\(306\) 0 0
\(307\) 19.0443 1.08691 0.543457 0.839437i \(-0.317115\pi\)
0.543457 + 0.839437i \(0.317115\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.52301 7.83409i 0.256476 0.444230i −0.708819 0.705390i \(-0.750772\pi\)
0.965295 + 0.261160i \(0.0841051\pi\)
\(312\) 0 0
\(313\) −6.45654 + 3.72768i −0.364945 + 0.210701i −0.671248 0.741233i \(-0.734241\pi\)
0.306303 + 0.951934i \(0.400908\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.40732 4.16961i −0.135209 0.234188i 0.790468 0.612503i \(-0.209837\pi\)
−0.925677 + 0.378314i \(0.876504\pi\)
\(318\) 0 0
\(319\) 1.33884 2.31894i 0.0749606 0.129836i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 22.1432 1.23208
\(324\) 0 0
\(325\) −2.41718 + 4.18668i −0.134081 + 0.232235i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −14.9863 2.24977i −0.826224 0.124034i
\(330\) 0 0
\(331\) −5.43500 + 3.13790i −0.298735 + 0.172475i −0.641874 0.766810i \(-0.721843\pi\)
0.343140 + 0.939284i \(0.388510\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 34.9931 1.91188
\(336\) 0 0
\(337\) −20.1329 −1.09671 −0.548353 0.836247i \(-0.684745\pi\)
−0.548353 + 0.836247i \(0.684745\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.14370 + 0.660317i −0.0619350 + 0.0357582i
\(342\) 0 0
\(343\) −16.7004 8.00604i −0.901737 0.432285i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.04269 15.6624i 0.485437 0.840802i −0.514423 0.857537i \(-0.671994\pi\)
0.999860 + 0.0167350i \(0.00532716\pi\)
\(348\) 0 0
\(349\) 3.24549 0.173727 0.0868635 0.996220i \(-0.472316\pi\)
0.0868635 + 0.996220i \(0.472316\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.6032 25.2934i 0.777248 1.34623i −0.156274 0.987714i \(-0.549948\pi\)
0.933522 0.358519i \(-0.116718\pi\)
\(354\) 0 0
\(355\) −11.7135 20.2883i −0.621685 1.07679i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.87600 + 5.12456i −0.468457 + 0.270464i −0.715594 0.698517i \(-0.753844\pi\)
0.247136 + 0.968981i \(0.420510\pi\)
\(360\) 0 0
\(361\) −2.33135 + 4.03802i −0.122703 + 0.212528i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 26.0562 1.36384
\(366\) 0 0
\(367\) 26.6034 + 15.3595i 1.38869 + 0.801758i 0.993167 0.116700i \(-0.0372317\pi\)
0.395518 + 0.918458i \(0.370565\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.0527 33.2000i −0.677662 1.72366i
\(372\) 0 0
\(373\) 17.5313 10.1217i 0.907737 0.524082i 0.0280346 0.999607i \(-0.491075\pi\)
0.879702 + 0.475525i \(0.157742\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.88973 0.200331
\(378\) 0 0
\(379\) 15.4020i 0.791146i −0.918435 0.395573i \(-0.870546\pi\)
0.918435 0.395573i \(-0.129454\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.96494 3.40338i −0.100404 0.173905i 0.811447 0.584426i \(-0.198680\pi\)
−0.911851 + 0.410521i \(0.865347\pi\)
\(384\) 0 0
\(385\) −3.02246 2.40741i −0.154039 0.122693i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.94490 12.0289i 0.352121 0.609891i −0.634500 0.772923i \(-0.718794\pi\)
0.986621 + 0.163032i \(0.0521273\pi\)
\(390\) 0 0
\(391\) 32.6477i 1.65106i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 26.2310 + 15.1445i 1.31982 + 0.762001i
\(396\) 0 0
\(397\) 4.40738 + 7.63380i 0.221200 + 0.383129i 0.955173 0.296050i \(-0.0956693\pi\)
−0.733973 + 0.679179i \(0.762336\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.0887 7.55674i 0.653616 0.377365i −0.136224 0.990678i \(-0.543497\pi\)
0.789840 + 0.613313i \(0.210163\pi\)
\(402\) 0 0
\(403\) −1.66140 0.959210i −0.0827602 0.0477816i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.893263i 0.0442774i
\(408\) 0 0
\(409\) −5.85435 3.38001i −0.289479 0.167131i 0.348228 0.937410i \(-0.386784\pi\)
−0.637707 + 0.770279i \(0.720117\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 21.9540 8.63131i 1.08029 0.424719i
\(414\) 0 0
\(415\) 18.9474 + 32.8179i 0.930091 + 1.61097i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.1005i 0.542293i 0.962538 + 0.271147i \(0.0874029\pi\)
−0.962538 + 0.271147i \(0.912597\pi\)
\(420\) 0 0
\(421\) 6.72143i 0.327582i −0.986495 0.163791i \(-0.947628\pi\)
0.986495 0.163791i \(-0.0523723\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −18.9247 32.7785i −0.917981 1.58999i
\(426\) 0 0
\(427\) −33.6152 5.04636i −1.62675 0.244210i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.32418 0.764518i −0.0637837 0.0368255i 0.467769 0.883851i \(-0.345058\pi\)
−0.531553 + 0.847025i \(0.678391\pi\)
\(432\) 0 0
\(433\) 19.9225i 0.957416i 0.877974 + 0.478708i \(0.158895\pi\)
−0.877974 + 0.478708i \(0.841105\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −30.2139 17.4440i −1.44533 0.834460i
\(438\) 0 0
\(439\) 14.9668 8.64107i 0.714325 0.412416i −0.0983355 0.995153i \(-0.531352\pi\)
0.812660 + 0.582738i \(0.198018\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.666057 + 1.15364i 0.0316453 + 0.0548113i 0.881414 0.472344i \(-0.156592\pi\)
−0.849769 + 0.527155i \(0.823259\pi\)
\(444\) 0 0
\(445\) 33.2431 + 19.1929i 1.57587 + 0.909831i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 38.5884i 1.82110i 0.413397 + 0.910551i \(0.364342\pi\)
−0.413397 + 0.910551i \(0.635658\pi\)
\(450\) 0 0
\(451\) 0.903540 1.56498i 0.0425460 0.0736919i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.833312 5.55092i 0.0390663 0.260231i
\(456\) 0 0
\(457\) 7.80133 + 13.5123i 0.364931 + 0.632079i 0.988765 0.149478i \(-0.0477593\pi\)
−0.623834 + 0.781557i \(0.714426\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.6616i 0.822583i −0.911504 0.411291i \(-0.865078\pi\)
0.911504 0.411291i \(-0.134922\pi\)
\(462\) 0 0
\(463\) −15.1430 −0.703753 −0.351877 0.936046i \(-0.614456\pi\)
−0.351877 + 0.936046i \(0.614456\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0392 6.95086i 0.557110 0.321647i −0.194875 0.980828i \(-0.562430\pi\)
0.751985 + 0.659181i \(0.229097\pi\)
\(468\) 0 0
\(469\) −23.6132 + 9.28360i −1.09036 + 0.428677i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.42004 + 0.819862i 0.0652936 + 0.0376973i
\(474\) 0 0
\(475\) 40.4466 1.85582
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.2782 + 26.4626i −0.698077 + 1.20911i 0.271055 + 0.962564i \(0.412627\pi\)
−0.969132 + 0.246541i \(0.920706\pi\)
\(480\) 0 0
\(481\) 1.12375 0.648799i 0.0512388 0.0295827i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.30946 + 12.6604i 0.331906 + 0.574877i
\(486\) 0 0
\(487\) −10.9031 + 18.8848i −0.494068 + 0.855751i −0.999977 0.00683637i \(-0.997824\pi\)
0.505909 + 0.862587i \(0.331157\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.38847 −0.152919 −0.0764597 0.997073i \(-0.524362\pi\)
−0.0764597 + 0.997073i \(0.524362\pi\)
\(492\) 0 0
\(493\) −15.2268 + 26.3736i −0.685781 + 1.18781i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.2866 + 10.5829i 0.595987 + 0.474708i
\(498\) 0 0
\(499\) 35.9490 20.7552i 1.60930 0.929128i 0.619770 0.784784i \(-0.287226\pi\)
0.989528 0.144344i \(-0.0461073\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.4870 0.824295 0.412147 0.911117i \(-0.364779\pi\)
0.412147 + 0.911117i \(0.364779\pi\)
\(504\) 0 0
\(505\) −51.3519 −2.28513
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.71745 3.30097i 0.253422 0.146313i −0.367908 0.929862i \(-0.619926\pi\)
0.621330 + 0.783549i \(0.286593\pi\)
\(510\) 0 0
\(511\) −17.5826 + 6.91266i −0.777809 + 0.305798i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −36.8359 + 63.8016i −1.62318 + 2.81144i
\(516\) 0 0
\(517\) 2.29252 0.100825
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.54303 + 6.13671i −0.155223 + 0.268854i −0.933140 0.359513i \(-0.882943\pi\)
0.777917 + 0.628367i \(0.216276\pi\)
\(522\) 0 0
\(523\) −12.3169 21.3336i −0.538583 0.932852i −0.998981 0.0451399i \(-0.985627\pi\)
0.460398 0.887713i \(-0.347707\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.0075 7.50988i 0.566615 0.327136i
\(528\) 0 0
\(529\) 14.2192 24.6284i 0.618227 1.07080i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.62505 0.113704
\(534\) 0 0
\(535\) 13.2668 + 7.65962i 0.573576 + 0.331154i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.67823 + 0.822658i 0.115359 + 0.0354344i
\(540\) 0 0
\(541\) −20.3549 + 11.7519i −0.875125 + 0.505254i −0.869048 0.494728i \(-0.835268\pi\)
−0.00607698 + 0.999982i \(0.501934\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 67.7504 2.90211
\(546\) 0 0
\(547\) 16.9894i 0.726412i 0.931709 + 0.363206i \(0.118318\pi\)
−0.931709 + 0.363206i \(0.881682\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −16.2717 28.1834i −0.693198 1.20065i
\(552\) 0 0
\(553\) −21.7183 3.26039i −0.923558 0.138646i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.69847 + 4.67389i −0.114338 + 0.198039i −0.917515 0.397701i \(-0.869808\pi\)
0.803177 + 0.595740i \(0.203141\pi\)
\(558\) 0 0
\(559\) 2.38195i 0.100746i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −29.2646 16.8959i −1.23336 0.712078i −0.265628 0.964076i \(-0.585579\pi\)
−0.967728 + 0.251997i \(0.918913\pi\)
\(564\) 0 0
\(565\) −6.28520 10.8863i −0.264420 0.457989i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14.2390 8.22089i 0.596930 0.344638i −0.170903 0.985288i \(-0.554668\pi\)
0.767833 + 0.640650i \(0.221335\pi\)
\(570\) 0 0
\(571\) 33.2026 + 19.1696i 1.38949 + 0.802221i 0.993257 0.115931i \(-0.0369850\pi\)
0.396230 + 0.918151i \(0.370318\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 59.6340i 2.48691i
\(576\) 0 0
\(577\) 19.2194 + 11.0963i 0.800113 + 0.461946i 0.843511 0.537112i \(-0.180485\pi\)
−0.0433975 + 0.999058i \(0.513818\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −21.4921 17.1186i −0.891644 0.710201i
\(582\) 0 0
\(583\) 2.69834 + 4.67366i 0.111754 + 0.193563i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.25736i 0.134445i −0.997738 0.0672227i \(-0.978586\pi\)
0.997738 0.0672227i \(-0.0214138\pi\)
\(588\) 0 0
\(589\) 16.0504i 0.661347i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.4634 + 33.7116i 0.799267 + 1.38437i 0.920094 + 0.391697i \(0.128112\pi\)
−0.120827 + 0.992674i \(0.538555\pi\)
\(594\) 0 0
\(595\) 34.3749 + 27.3799i 1.40923 + 1.12246i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.92743 + 5.15425i 0.364765 + 0.210597i 0.671169 0.741304i \(-0.265793\pi\)
−0.306404 + 0.951902i \(0.599126\pi\)
\(600\) 0 0
\(601\) 16.1379i 0.658277i 0.944282 + 0.329139i \(0.106758\pi\)
−0.944282 + 0.329139i \(0.893242\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −34.2546 19.7769i −1.39265 0.804045i
\(606\) 0 0
\(607\) 31.3010 18.0717i 1.27047 0.733506i 0.295393 0.955376i \(-0.404549\pi\)
0.975076 + 0.221870i \(0.0712159\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.66512 + 2.88407i 0.0673634 + 0.116677i
\(612\) 0 0
\(613\) 1.33431 + 0.770363i 0.0538922 + 0.0311147i 0.526704 0.850049i \(-0.323428\pi\)
−0.472812 + 0.881163i \(0.656761\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.1412i 1.61602i −0.589165 0.808012i \(-0.700543\pi\)
0.589165 0.808012i \(-0.299457\pi\)
\(618\) 0 0
\(619\) −18.4948 + 32.0339i −0.743368 + 1.28755i 0.207586 + 0.978217i \(0.433439\pi\)
−0.950953 + 0.309334i \(0.899894\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −27.5241 4.13196i −1.10273 0.165543i
\(624\) 0 0
\(625\) −1.28074 2.21830i −0.0512295 0.0887321i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.1592i 0.405074i
\(630\) 0 0
\(631\) −31.1044 −1.23825 −0.619123 0.785294i \(-0.712512\pi\)
−0.619123 + 0.785294i \(0.712512\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12.0771 + 6.97274i −0.479267 + 0.276705i
\(636\) 0 0
\(637\) 0.910334 + 3.96681i 0.0360688 + 0.157171i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.44022 + 1.98621i 0.135881 + 0.0784507i 0.566399 0.824131i \(-0.308336\pi\)
−0.430519 + 0.902582i \(0.641669\pi\)
\(642\) 0 0
\(643\) −47.5503 −1.87520 −0.937600 0.347717i \(-0.886957\pi\)
−0.937600 + 0.347717i \(0.886957\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.9097 + 36.2166i −0.822044 + 1.42382i 0.0821142 + 0.996623i \(0.473833\pi\)
−0.904158 + 0.427199i \(0.859501\pi\)
\(648\) 0 0
\(649\) −3.09054 + 1.78432i −0.121314 + 0.0700408i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.6456 + 18.4388i 0.416596 + 0.721565i 0.995595 0.0937632i \(-0.0298896\pi\)
−0.578999 + 0.815329i \(0.696556\pi\)
\(654\) 0 0
\(655\) 0.338288 0.585932i 0.0132180 0.0228943i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 50.0936 1.95137 0.975685 0.219179i \(-0.0703378\pi\)
0.975685 + 0.219179i \(0.0703378\pi\)
\(660\) 0 0
\(661\) 11.9756 20.7423i 0.465797 0.806784i −0.533440 0.845838i \(-0.679101\pi\)
0.999237 + 0.0390540i \(0.0124344\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −43.7057 + 17.1830i −1.69483 + 0.666330i
\(666\) 0 0
\(667\) 41.5533 23.9908i 1.60895 0.928927i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.14226 0.198515
\(672\) 0 0
\(673\) −2.60756 −0.100514 −0.0502570 0.998736i \(-0.516004\pi\)
−0.0502570 + 0.998736i \(0.516004\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13.5947 + 7.84890i −0.522486 + 0.301658i −0.737951 0.674854i \(-0.764207\pi\)
0.215465 + 0.976512i \(0.430873\pi\)
\(678\) 0 0
\(679\) −8.29116 6.60397i −0.318186 0.253437i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.7229 + 18.5726i −0.410300 + 0.710661i −0.994922 0.100645i \(-0.967909\pi\)
0.584622 + 0.811306i \(0.301243\pi\)
\(684\) 0 0
\(685\) 55.9005 2.13585
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.91975 + 6.78920i −0.149330 + 0.258648i
\(690\) 0 0
\(691\) 12.6075 + 21.8368i 0.479611 + 0.830710i 0.999727 0.0233857i \(-0.00744459\pi\)
−0.520116 + 0.854096i \(0.674111\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 33.3300 19.2431i 1.26428 0.729931i
\(696\) 0 0
\(697\) −10.2761 + 17.7987i −0.389235 + 0.674174i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.6820 1.27215 0.636076 0.771626i \(-0.280556\pi\)
0.636076 + 0.771626i \(0.280556\pi\)
\(702\) 0 0
\(703\) −9.40187 5.42818i −0.354598 0.204727i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 34.6521 13.6236i 1.30323 0.512367i
\(708\) 0 0
\(709\) −33.1687 + 19.1499i −1.24568 + 0.719191i −0.970244 0.242130i \(-0.922154\pi\)
−0.275431 + 0.961321i \(0.588821\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −23.6646 −0.886245
\(714\) 0 0
\(715\) 0.849148i 0.0317563i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.40747 + 5.90191i 0.127077 + 0.220104i 0.922543 0.385894i \(-0.126107\pi\)
−0.795466 + 0.605998i \(0.792774\pi\)
\(720\) 0 0
\(721\) 7.93024 52.8256i 0.295338 1.96733i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −27.8132 + 48.1738i −1.03296 + 1.78913i
\(726\) 0 0
\(727\) 44.3315i 1.64416i 0.569369 + 0.822082i \(0.307188\pi\)
−0.569369 + 0.822082i \(0.692812\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.1504 9.32441i −0.597342 0.344876i
\(732\) 0 0
\(733\) 4.98689 + 8.63755i 0.184195 + 0.319035i 0.943305 0.331927i \(-0.107699\pi\)
−0.759110 + 0.650962i \(0.774366\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.32410 1.91917i 0.122445 0.0706935i
\(738\) 0 0
\(739\) −37.1489 21.4480i −1.36655 0.788976i −0.376061 0.926595i \(-0.622722\pi\)
−0.990485 + 0.137619i \(0.956055\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.2075i 0.411165i −0.978640 0.205582i \(-0.934091\pi\)
0.978640 0.205582i \(-0.0659088\pi\)
\(744\) 0 0
\(745\) 29.0169 + 16.7529i 1.06310 + 0.613778i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −10.9845 1.64901i −0.401365 0.0602534i
\(750\) 0 0
\(751\) −18.5560 32.1399i −0.677117 1.17280i −0.975845 0.218462i \(-0.929896\pi\)
0.298729 0.954338i \(-0.403437\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.1361i 0.478073i
\(756\) 0 0
\(757\) 20.8257i 0.756924i −0.925617 0.378462i \(-0.876453\pi\)
0.925617 0.378462i \(-0.123547\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.26978 12.5916i −0.263529 0.456446i 0.703648 0.710549i \(-0.251553\pi\)
−0.967177 + 0.254103i \(0.918220\pi\)
\(762\) 0 0
\(763\) −45.7177 + 17.9740i −1.65509 + 0.650704i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.48947 2.59200i −0.162105 0.0935916i
\(768\) 0 0
\(769\) 2.11604i 0.0763063i 0.999272 + 0.0381532i \(0.0121475\pi\)
−0.999272 + 0.0381532i \(0.987853\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18.3194 10.5767i −0.658902 0.380417i 0.132957 0.991122i \(-0.457553\pi\)
−0.791858 + 0.610705i \(0.790886\pi\)
\(774\) 0 0
\(775\) 23.7594 13.7175i 0.853462 0.492747i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10.9812 19.0201i −0.393444 0.681465i
\(780\) 0 0
\(781\) −2.22539 1.28483i −0.0796308 0.0459748i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.62060i 0.0935331i
\(786\) 0 0
\(787\) 15.1516 26.2433i 0.540096 0.935473i −0.458802 0.888538i \(-0.651721\pi\)
0.998898 0.0469348i \(-0.0149453\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.12933 + 5.67856i 0.253490 + 0.201906i
\(792\) 0 0
\(793\) 3.73495 + 6.46913i 0.132632 + 0.229725i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.8964i 0.456812i −0.973566 0.228406i \(-0.926649\pi\)
0.973566 0.228406i \(-0.0733514\pi\)
\(798\) 0 0
\(799\) −26.0732 −0.922403
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.47516 1.42903i 0.0873463 0.0504294i
\(804\) 0 0
\(805\) −25.3345 64.4391i −0.892922 2.27118i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −31.3922 18.1243i −1.10369 0.637216i −0.166502 0.986041i \(-0.553247\pi\)
−0.937188 + 0.348825i \(0.886581\pi\)
\(810\) 0 0
\(811\) −5.48133 −0.192475 −0.0962377 0.995358i \(-0.530681\pi\)
−0.0962377 + 0.995358i \(0.530681\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 40.2646 69.7403i 1.41041 2.44290i
\(816\) 0 0
\(817\) 17.2586 9.96427i 0.603803 0.348606i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.95824 + 10.3200i 0.207944 + 0.360169i 0.951067 0.308986i \(-0.0999895\pi\)
−0.743123 + 0.669155i \(0.766656\pi\)
\(822\) 0 0
\(823\) 20.9931 36.3612i 0.731775 1.26747i −0.224349 0.974509i \(-0.572025\pi\)
0.956124 0.292963i \(-0.0946412\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.7749 0.652869 0.326434 0.945220i \(-0.394153\pi\)
0.326434 + 0.945220i \(0.394153\pi\)
\(828\) 0 0
\(829\) 7.45588 12.9140i 0.258953 0.448520i −0.707009 0.707205i \(-0.749956\pi\)
0.965962 + 0.258685i \(0.0832891\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −30.4599 9.35621i −1.05537 0.324173i
\(834\) 0 0
\(835\) −42.6238 + 24.6089i −1.47506 + 0.851625i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −28.4322 −0.981587 −0.490794 0.871276i \(-0.663293\pi\)
−0.490794 + 0.871276i \(0.663293\pi\)
\(840\) 0 0
\(841\) 15.7571 0.543347
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 40.0127 23.1014i 1.37648 0.794711i
\(846\) 0 0
\(847\) 28.3616 + 4.25768i 0.974517 + 0.146296i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.00324 13.8620i 0.274347 0.475184i
\(852\) 0 0
\(853\) 9.45822 0.323843 0.161922 0.986804i \(-0.448231\pi\)
0.161922 + 0.986804i \(0.448231\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 19.8068 34.3064i 0.676588 1.17188i −0.299415 0.954123i \(-0.596791\pi\)
0.976002 0.217761i \(-0.0698753\pi\)
\(858\) 0 0
\(859\) −17.1446 29.6953i −0.584965 1.01319i −0.994880 0.101066i \(-0.967775\pi\)
0.409914 0.912124i \(-0.365559\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.9385 + 17.8623i −1.05316 + 0.608041i −0.923532 0.383522i \(-0.874711\pi\)
−0.129627 + 0.991563i \(0.541378\pi\)
\(864\) 0 0
\(865\) 29.5147 51.1209i 1.00353 1.73816i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.32235 0.112703
\(870\) 0 0
\(871\) 4.82875 + 2.78788i 0.163616 + 0.0944638i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 25.0315 + 19.9377i 0.846218 + 0.674018i
\(876\) 0 0
\(877\) 13.3688 7.71847i 0.451431 0.260634i −0.257003 0.966411i \(-0.582735\pi\)
0.708435 + 0.705777i \(0.249402\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.47237 0.0832962 0.0416481 0.999132i \(-0.486739\pi\)
0.0416481 + 0.999132i \(0.486739\pi\)
\(882\) 0 0
\(883\) 22.3515i 0.752187i −0.926582 0.376094i \(-0.877267\pi\)
0.926582 0.376094i \(-0.122733\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.2912 19.5570i −0.379122 0.656658i 0.611813 0.791003i \(-0.290441\pi\)
−0.990935 + 0.134344i \(0.957107\pi\)
\(888\) 0 0
\(889\) 6.29975 7.90922i 0.211287 0.265267i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.9312 24.1295i 0.466189 0.807464i
\(894\) 0 0
\(895\) 6.36394i 0.212723i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −19.1168 11.0371i −0.637582 0.368108i
\(900\) 0 0
\(901\) −30.6886 53.1543i −1.02239 1.77083i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −29.8588 + 17.2390i −0.992539 + 0.573042i
\(906\) 0 0
\(907\) 8.75724 + 5.05599i 0.290779 + 0.167882i 0.638293 0.769793i \(-0.279641\pi\)
−0.347514 + 0.937675i \(0.612974\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 28.5297i 0.945230i −0.881269 0.472615i \(-0.843310\pi\)
0.881269 0.472615i \(-0.156690\pi\)
\(912\) 0 0
\(913\) 3.59974 + 2.07831i 0.119134 + 0.0687820i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.0728286 + 0.485131i −0.00240501 + 0.0160204i
\(918\) 0 0
\(919\) −13.4674 23.3263i −0.444249 0.769463i 0.553750 0.832683i \(-0.313196\pi\)
−0.998000 + 0.0632203i \(0.979863\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.73282i 0.122867i
\(924\) 0 0
\(925\) 18.5567i 0.610142i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −11.2786 19.5350i −0.370038 0.640924i 0.619533 0.784970i \(-0.287322\pi\)
−0.989571 + 0.144046i \(0.953989\pi\)
\(930\) 0 0
\(931\) 24.9338 23.1901i 0.817171 0.760024i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.75749 3.32409i −0.188290 0.108709i
\(936\) 0 0
\(937\) 25.6419i 0.837684i 0.908059 + 0.418842i \(0.137564\pi\)
−0.908059 + 0.418842i \(0.862436\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 49.1787 + 28.3933i 1.60318 + 0.925596i 0.990846 + 0.134996i \(0.0431022\pi\)
0.612333 + 0.790600i \(0.290231\pi\)
\(942\) 0 0
\(943\) 28.0430 16.1906i 0.913205 0.527239i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.32282 9.21939i −0.172968 0.299590i 0.766488 0.642259i \(-0.222002\pi\)
−0.939456 + 0.342669i \(0.888669\pi\)
\(948\) 0 0
\(949\) 3.59554 + 2.07588i 0.116716 + 0.0673861i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 31.4456i 1.01862i 0.860582 + 0.509312i \(0.170100\pi\)
−0.860582 + 0.509312i \(0.829900\pi\)
\(954\) 0 0
\(955\) −34.5750 + 59.8857i −1.11882 + 1.93786i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −37.7214 + 14.8303i −1.21809 + 0.478896i
\(960\) 0 0
\(961\) −10.0565 17.4183i −0.324403 0.561882i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.4646i 0.626587i
\(966\) 0 0
\(967\) −2.45245 −0.0788655 −0.0394327 0.999222i \(-0.512555\pi\)
−0.0394327 + 0.999222i \(0.512555\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −28.2257 + 16.2961i −0.905807 + 0.522968i −0.879080 0.476675i \(-0.841842\pi\)
−0.0267274 + 0.999643i \(0.508509\pi\)
\(972\) 0 0
\(973\) −17.3858 + 21.8275i −0.557362 + 0.699758i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.83921 5.10332i −0.282791 0.163270i 0.351895 0.936039i \(-0.385537\pi\)
−0.634686 + 0.772770i \(0.718871\pi\)
\(978\) 0 0
\(979\) 4.21048 0.134568
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.76849 4.79516i 0.0883010 0.152942i −0.818492 0.574518i \(-0.805190\pi\)
0.906793 + 0.421576i \(0.138523\pi\)
\(984\) 0 0
\(985\) 8.86318 5.11716i 0.282405 0.163046i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.6912 + 25.4459i 0.467153 + 0.809132i
\(990\) 0 0
\(991\) 6.53951 11.3268i 0.207734 0.359806i −0.743266 0.668996i \(-0.766724\pi\)
0.951000 + 0.309189i \(0.100058\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −27.1429 −0.860487
\(996\) 0 0
\(997\) −3.01429 + 5.22091i −0.0954636 + 0.165348i −0.909802 0.415043i \(-0.863767\pi\)
0.814338 + 0.580390i \(0.197100\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.2.cp.b.17.3 56
3.2 odd 2 inner 2016.2.cp.b.17.25 56
4.3 odd 2 504.2.ch.b.269.3 56
7.5 odd 6 inner 2016.2.cp.b.593.4 56
8.3 odd 2 504.2.ch.b.269.8 yes 56
8.5 even 2 inner 2016.2.cp.b.17.26 56
12.11 even 2 504.2.ch.b.269.26 yes 56
21.5 even 6 inner 2016.2.cp.b.593.26 56
24.5 odd 2 inner 2016.2.cp.b.17.4 56
24.11 even 2 504.2.ch.b.269.21 yes 56
28.19 even 6 504.2.ch.b.341.21 yes 56
56.5 odd 6 inner 2016.2.cp.b.593.25 56
56.19 even 6 504.2.ch.b.341.26 yes 56
84.47 odd 6 504.2.ch.b.341.8 yes 56
168.5 even 6 inner 2016.2.cp.b.593.3 56
168.131 odd 6 504.2.ch.b.341.3 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.ch.b.269.3 56 4.3 odd 2
504.2.ch.b.269.8 yes 56 8.3 odd 2
504.2.ch.b.269.21 yes 56 24.11 even 2
504.2.ch.b.269.26 yes 56 12.11 even 2
504.2.ch.b.341.3 yes 56 168.131 odd 6
504.2.ch.b.341.8 yes 56 84.47 odd 6
504.2.ch.b.341.21 yes 56 28.19 even 6
504.2.ch.b.341.26 yes 56 56.19 even 6
2016.2.cp.b.17.3 56 1.1 even 1 trivial
2016.2.cp.b.17.4 56 24.5 odd 2 inner
2016.2.cp.b.17.25 56 3.2 odd 2 inner
2016.2.cp.b.17.26 56 8.5 even 2 inner
2016.2.cp.b.593.3 56 168.5 even 6 inner
2016.2.cp.b.593.4 56 7.5 odd 6 inner
2016.2.cp.b.593.25 56 56.5 odd 6 inner
2016.2.cp.b.593.26 56 21.5 even 6 inner