Properties

Label 504.2.ch.b.269.21
Level $504$
Weight $2$
Character 504.269
Analytic conductor $4.024$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(269,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.269"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.ch (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.21
Character \(\chi\) \(=\) 504.269
Dual form 504.2.ch.b.341.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.896824 - 1.09348i) q^{2} +(-0.391414 - 1.96132i) q^{4} +(-3.16007 + 1.82447i) q^{5} +(-1.64838 + 2.06951i) q^{7} +(-2.49571 - 1.33096i) q^{8} +(-0.839002 + 5.09172i) q^{10} +(0.200123 - 0.346624i) q^{11} +0.581419 q^{13} +(0.784669 + 3.65846i) q^{14} +(-3.69359 + 1.53538i) q^{16} +(-2.27603 + 3.94220i) q^{17} +(2.43222 + 4.21272i) q^{19} +(4.81528 + 5.48381i) q^{20} +(-0.199552 - 0.529692i) q^{22} +(-6.21119 + 3.58603i) q^{23} +(4.15738 - 7.20080i) q^{25} +(0.521430 - 0.635772i) q^{26} +(4.70417 + 2.42297i) q^{28} -6.69007 q^{29} +(-2.85749 - 1.64978i) q^{31} +(-1.63359 + 5.41585i) q^{32} +(2.26954 + 6.02426i) q^{34} +(1.43324 - 9.54721i) q^{35} +(1.93278 - 1.11589i) q^{37} +(6.78781 + 1.11848i) q^{38} +(10.3149 - 0.347416i) q^{40} +4.51491 q^{41} -4.09678i q^{43} +(-0.758173 - 0.256833i) q^{44} +(-1.64907 + 10.0079i) q^{46} +(-2.86389 - 4.96040i) q^{47} +(-1.56571 - 6.82265i) q^{49} +(-4.14552 - 11.0039i) q^{50} +(-0.227575 - 1.14035i) q^{52} +(6.74170 - 11.6770i) q^{53} +1.46048i q^{55} +(6.86829 - 2.97096i) q^{56} +(-5.99982 + 7.31549i) q^{58} +(-7.72158 - 4.45806i) q^{59} +(6.42386 + 11.1265i) q^{61} +(-4.36667 + 1.64507i) q^{62} +(4.45710 + 6.64336i) q^{64} +(-1.83733 + 1.06078i) q^{65} +(-8.30513 - 4.79497i) q^{67} +(8.62281 + 2.92100i) q^{68} +(-9.15435 - 10.1294i) q^{70} +6.42019i q^{71} +(-6.18408 - 3.57038i) q^{73} +(0.513154 - 3.11422i) q^{74} +(7.31051 - 6.41929i) q^{76} +(0.387462 + 0.985523i) q^{77} +(4.15037 + 7.18866i) q^{79} +(8.87076 - 11.5908i) q^{80} +(4.04908 - 4.93699i) q^{82} +10.3852i q^{83} -16.6102i q^{85} +(-4.47977 - 3.67409i) q^{86} +(-0.960790 + 0.598715i) q^{88} +(5.25986 + 9.11034i) q^{89} +(-0.958396 + 1.20325i) q^{91} +(9.46452 + 10.7785i) q^{92} +(-7.99252 - 1.31699i) q^{94} +(-15.3720 - 8.87501i) q^{95} -4.00635i q^{97} +(-8.86463 - 4.40663i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{4} - 20 q^{7} + 20 q^{16} - 16 q^{22} + 8 q^{25} + 36 q^{28} - 36 q^{31} + 60 q^{40} - 8 q^{46} - 28 q^{49} + 36 q^{52} - 44 q^{58} + 40 q^{64} - 60 q^{70} + 72 q^{73} - 12 q^{79} - 36 q^{82}+ \cdots - 180 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.896824 1.09348i 0.634150 0.773210i
\(3\) 0 0
\(4\) −0.391414 1.96132i −0.195707 0.980662i
\(5\) −3.16007 + 1.82447i −1.41323 + 0.815928i −0.995691 0.0927320i \(-0.970440\pi\)
−0.417537 + 0.908660i \(0.637107\pi\)
\(6\) 0 0
\(7\) −1.64838 + 2.06951i −0.623028 + 0.782200i
\(8\) −2.49571 1.33096i −0.882366 0.470565i
\(9\) 0 0
\(10\) −0.839002 + 5.09172i −0.265316 + 1.61014i
\(11\) 0.200123 0.346624i 0.0603394 0.104511i −0.834278 0.551344i \(-0.814115\pi\)
0.894617 + 0.446833i \(0.147448\pi\)
\(12\) 0 0
\(13\) 0.581419 0.161256 0.0806282 0.996744i \(-0.474307\pi\)
0.0806282 + 0.996744i \(0.474307\pi\)
\(14\) 0.784669 + 3.65846i 0.209712 + 0.977763i
\(15\) 0 0
\(16\) −3.69359 + 1.53538i −0.923397 + 0.383845i
\(17\) −2.27603 + 3.94220i −0.552019 + 0.956124i 0.446110 + 0.894978i \(0.352809\pi\)
−0.998129 + 0.0611464i \(0.980524\pi\)
\(18\) 0 0
\(19\) 2.43222 + 4.21272i 0.557989 + 0.966465i 0.997664 + 0.0683081i \(0.0217601\pi\)
−0.439676 + 0.898157i \(0.644907\pi\)
\(20\) 4.81528 + 5.48381i 1.07673 + 1.22622i
\(21\) 0 0
\(22\) −0.199552 0.529692i −0.0425447 0.112931i
\(23\) −6.21119 + 3.58603i −1.29512 + 0.747739i −0.979557 0.201165i \(-0.935527\pi\)
−0.315565 + 0.948904i \(0.602194\pi\)
\(24\) 0 0
\(25\) 4.15738 7.20080i 0.831476 1.44016i
\(26\) 0.521430 0.635772i 0.102261 0.124685i
\(27\) 0 0
\(28\) 4.70417 + 2.42297i 0.889005 + 0.457898i
\(29\) −6.69007 −1.24232 −0.621158 0.783686i \(-0.713337\pi\)
−0.621158 + 0.783686i \(0.713337\pi\)
\(30\) 0 0
\(31\) −2.85749 1.64978i −0.513221 0.296308i 0.220936 0.975288i \(-0.429089\pi\)
−0.734157 + 0.678980i \(0.762422\pi\)
\(32\) −1.63359 + 5.41585i −0.288780 + 0.957396i
\(33\) 0 0
\(34\) 2.26954 + 6.02426i 0.389222 + 1.03315i
\(35\) 1.43324 9.54721i 0.242262 1.61377i
\(36\) 0 0
\(37\) 1.93278 1.11589i 0.317747 0.183451i −0.332641 0.943054i \(-0.607940\pi\)
0.650388 + 0.759602i \(0.274606\pi\)
\(38\) 6.78781 + 1.11848i 1.10113 + 0.181441i
\(39\) 0 0
\(40\) 10.3149 0.347416i 1.63093 0.0549314i
\(41\) 4.51491 0.705111 0.352556 0.935791i \(-0.385313\pi\)
0.352556 + 0.935791i \(0.385313\pi\)
\(42\) 0 0
\(43\) 4.09678i 0.624754i −0.949958 0.312377i \(-0.898875\pi\)
0.949958 0.312377i \(-0.101125\pi\)
\(44\) −0.758173 0.256833i −0.114299 0.0387191i
\(45\) 0 0
\(46\) −1.64907 + 10.0079i −0.243143 + 1.47558i
\(47\) −2.86389 4.96040i −0.417741 0.723549i 0.577971 0.816057i \(-0.303845\pi\)
−0.995712 + 0.0925088i \(0.970511\pi\)
\(48\) 0 0
\(49\) −1.56571 6.82265i −0.223673 0.974664i
\(50\) −4.14552 11.0039i −0.586265 1.55618i
\(51\) 0 0
\(52\) −0.227575 1.14035i −0.0315590 0.158138i
\(53\) 6.74170 11.6770i 0.926043 1.60395i 0.136169 0.990686i \(-0.456521\pi\)
0.789875 0.613268i \(-0.210146\pi\)
\(54\) 0 0
\(55\) 1.46048i 0.196931i
\(56\) 6.86829 2.97096i 0.917814 0.397011i
\(57\) 0 0
\(58\) −5.99982 + 7.31549i −0.787814 + 0.960570i
\(59\) −7.72158 4.45806i −1.00526 0.580390i −0.0954627 0.995433i \(-0.530433\pi\)
−0.909802 + 0.415043i \(0.863766\pi\)
\(60\) 0 0
\(61\) 6.42386 + 11.1265i 0.822491 + 1.42460i 0.903822 + 0.427910i \(0.140750\pi\)
−0.0813302 + 0.996687i \(0.525917\pi\)
\(62\) −4.36667 + 1.64507i −0.554568 + 0.208924i
\(63\) 0 0
\(64\) 4.45710 + 6.64336i 0.557138 + 0.830420i
\(65\) −1.83733 + 1.06078i −0.227892 + 0.131574i
\(66\) 0 0
\(67\) −8.30513 4.79497i −1.01463 0.585798i −0.102088 0.994775i \(-0.532552\pi\)
−0.912545 + 0.408977i \(0.865886\pi\)
\(68\) 8.62281 + 2.92100i 1.04567 + 0.354224i
\(69\) 0 0
\(70\) −9.15435 10.1294i −1.09415 1.21069i
\(71\) 6.42019i 0.761937i 0.924588 + 0.380968i \(0.124409\pi\)
−0.924588 + 0.380968i \(0.875591\pi\)
\(72\) 0 0
\(73\) −6.18408 3.57038i −0.723791 0.417881i 0.0923551 0.995726i \(-0.470561\pi\)
−0.816147 + 0.577845i \(0.803894\pi\)
\(74\) 0.513154 3.11422i 0.0596529 0.362021i
\(75\) 0 0
\(76\) 7.31051 6.41929i 0.838573 0.736343i
\(77\) 0.387462 + 0.985523i 0.0441553 + 0.112311i
\(78\) 0 0
\(79\) 4.15037 + 7.18866i 0.466953 + 0.808787i 0.999287 0.0377474i \(-0.0120182\pi\)
−0.532334 + 0.846535i \(0.678685\pi\)
\(80\) 8.87076 11.5908i 0.991782 1.29589i
\(81\) 0 0
\(82\) 4.04908 4.93699i 0.447146 0.545199i
\(83\) 10.3852i 1.13992i 0.821673 + 0.569959i \(0.193041\pi\)
−0.821673 + 0.569959i \(0.806959\pi\)
\(84\) 0 0
\(85\) 16.6102i 1.80163i
\(86\) −4.47977 3.67409i −0.483066 0.396188i
\(87\) 0 0
\(88\) −0.960790 + 0.598715i −0.102421 + 0.0638233i
\(89\) 5.25986 + 9.11034i 0.557544 + 0.965694i 0.997701 + 0.0677734i \(0.0215895\pi\)
−0.440157 + 0.897921i \(0.645077\pi\)
\(90\) 0 0
\(91\) −0.958396 + 1.20325i −0.100467 + 0.126135i
\(92\) 9.46452 + 10.7785i 0.986744 + 1.12374i
\(93\) 0 0
\(94\) −7.99252 1.31699i −0.824365 0.135837i
\(95\) −15.3720 8.87501i −1.57713 0.910557i
\(96\) 0 0
\(97\) 4.00635i 0.406783i −0.979097 0.203392i \(-0.934804\pi\)
0.979097 0.203392i \(-0.0651964\pi\)
\(98\) −8.86463 4.40663i −0.895462 0.445137i
\(99\) 0 0
\(100\) −15.7504 5.33548i −1.57504 0.533548i
\(101\) 12.1877 + 7.03656i 1.21272 + 0.700164i 0.963351 0.268245i \(-0.0864437\pi\)
0.249368 + 0.968409i \(0.419777\pi\)
\(102\) 0 0
\(103\) −17.4850 + 10.0950i −1.72285 + 0.994686i −0.809943 + 0.586508i \(0.800502\pi\)
−0.912903 + 0.408177i \(0.866165\pi\)
\(104\) −1.45105 0.773843i −0.142287 0.0758816i
\(105\) 0 0
\(106\) −6.72246 17.8441i −0.652943 1.73317i
\(107\) 2.09913 + 3.63581i 0.202931 + 0.351487i 0.949472 0.313853i \(-0.101620\pi\)
−0.746541 + 0.665340i \(0.768287\pi\)
\(108\) 0 0
\(109\) 16.0796 + 9.28357i 1.54015 + 0.889205i 0.998829 + 0.0483874i \(0.0154082\pi\)
0.541319 + 0.840817i \(0.317925\pi\)
\(110\) 1.59701 + 1.30979i 0.152269 + 0.124884i
\(111\) 0 0
\(112\) 2.91095 10.1748i 0.275058 0.961428i
\(113\) 3.44494i 0.324073i −0.986785 0.162037i \(-0.948194\pi\)
0.986785 0.162037i \(-0.0518063\pi\)
\(114\) 0 0
\(115\) 13.0852 22.6642i 1.22020 2.11345i
\(116\) 2.61859 + 13.1214i 0.243130 + 1.21829i
\(117\) 0 0
\(118\) −11.7997 + 4.44533i −1.08625 + 0.409226i
\(119\) −4.40666 11.2085i −0.403958 1.02748i
\(120\) 0 0
\(121\) 5.41990 + 9.38754i 0.492718 + 0.853413i
\(122\) 17.9277 + 2.95408i 1.62310 + 0.267450i
\(123\) 0 0
\(124\) −2.11728 + 6.25022i −0.190137 + 0.561286i
\(125\) 12.0954i 1.08184i
\(126\) 0 0
\(127\) −3.82179 −0.339129 −0.169565 0.985519i \(-0.554236\pi\)
−0.169565 + 0.985519i \(0.554236\pi\)
\(128\) 11.2616 + 1.08415i 0.995398 + 0.0958264i
\(129\) 0 0
\(130\) −0.487811 + 2.96042i −0.0427839 + 0.259646i
\(131\) 0.160576 0.0927085i 0.0140296 0.00809998i −0.492969 0.870047i \(-0.664088\pi\)
0.506998 + 0.861947i \(0.330755\pi\)
\(132\) 0 0
\(133\) −12.7275 1.91066i −1.10361 0.165676i
\(134\) −12.6915 + 4.78128i −1.09637 + 0.413040i
\(135\) 0 0
\(136\) 10.9272 6.80928i 0.937001 0.583891i
\(137\) 13.2672 + 7.65983i 1.13350 + 0.654424i 0.944812 0.327614i \(-0.106245\pi\)
0.188684 + 0.982038i \(0.439578\pi\)
\(138\) 0 0
\(139\) −10.5472 −0.894602 −0.447301 0.894383i \(-0.647615\pi\)
−0.447301 + 0.894383i \(0.647615\pi\)
\(140\) −19.2862 + 0.925864i −1.62998 + 0.0782498i
\(141\) 0 0
\(142\) 7.02038 + 5.75778i 0.589137 + 0.483182i
\(143\) 0.116355 0.201533i 0.00973013 0.0168531i
\(144\) 0 0
\(145\) 21.1411 12.2058i 1.75567 1.01364i
\(146\) −9.45018 + 3.56019i −0.782102 + 0.294643i
\(147\) 0 0
\(148\) −2.94514 3.35403i −0.242089 0.275700i
\(149\) −4.59117 7.95213i −0.376123 0.651464i 0.614371 0.789017i \(-0.289410\pi\)
−0.990494 + 0.137553i \(0.956076\pi\)
\(150\) 0 0
\(151\) 1.79999 3.11768i 0.146481 0.253713i −0.783443 0.621463i \(-0.786539\pi\)
0.929925 + 0.367750i \(0.119872\pi\)
\(152\) −0.463144 13.7509i −0.0375659 1.11534i
\(153\) 0 0
\(154\) 1.42514 + 0.460157i 0.114841 + 0.0370805i
\(155\) 12.0399 0.967065
\(156\) 0 0
\(157\) 0.359090 0.621963i 0.0286585 0.0496380i −0.851340 0.524614i \(-0.824210\pi\)
0.879999 + 0.474976i \(0.157543\pi\)
\(158\) 11.5828 + 1.90859i 0.921481 + 0.151839i
\(159\) 0 0
\(160\) −4.71880 20.0949i −0.373054 1.58864i
\(161\) 2.81706 18.7652i 0.222015 1.47891i
\(162\) 0 0
\(163\) −19.1125 + 11.0346i −1.49700 + 0.864296i −0.999994 0.00344810i \(-0.998902\pi\)
−0.497011 + 0.867744i \(0.665569\pi\)
\(164\) −1.76720 8.85521i −0.137995 0.691476i
\(165\) 0 0
\(166\) 11.3560 + 9.31365i 0.881396 + 0.722879i
\(167\) 13.4882 1.04375 0.521875 0.853022i \(-0.325233\pi\)
0.521875 + 0.853022i \(0.325233\pi\)
\(168\) 0 0
\(169\) −12.6620 −0.973996
\(170\) −18.1630 14.8964i −1.39304 1.14250i
\(171\) 0 0
\(172\) −8.03512 + 1.60354i −0.612673 + 0.122269i
\(173\) −14.0098 + 8.08856i −1.06514 + 0.614962i −0.926851 0.375430i \(-0.877495\pi\)
−0.138294 + 0.990391i \(0.544162\pi\)
\(174\) 0 0
\(175\) 8.04917 + 20.4733i 0.608460 + 1.54764i
\(176\) −0.206974 + 1.58755i −0.0156013 + 0.119666i
\(177\) 0 0
\(178\) 14.6792 + 2.41880i 1.10025 + 0.181297i
\(179\) 0.872025 1.51039i 0.0651782 0.112892i −0.831595 0.555383i \(-0.812572\pi\)
0.896773 + 0.442491i \(0.145905\pi\)
\(180\) 0 0
\(181\) −9.44875 −0.702320 −0.351160 0.936315i \(-0.614213\pi\)
−0.351160 + 0.936315i \(0.614213\pi\)
\(182\) 0.456221 + 2.12709i 0.0338174 + 0.157671i
\(183\) 0 0
\(184\) 20.2742 0.682853i 1.49463 0.0503406i
\(185\) −4.07182 + 7.05260i −0.299366 + 0.518517i
\(186\) 0 0
\(187\) 0.910974 + 1.57785i 0.0666170 + 0.115384i
\(188\) −8.60799 + 7.55858i −0.627802 + 0.551266i
\(189\) 0 0
\(190\) −23.4906 + 8.84968i −1.70419 + 0.642023i
\(191\) 16.4118 9.47537i 1.18752 0.685614i 0.229776 0.973244i \(-0.426201\pi\)
0.957742 + 0.287630i \(0.0928673\pi\)
\(192\) 0 0
\(193\) 2.66715 4.61965i 0.191986 0.332529i −0.753922 0.656964i \(-0.771841\pi\)
0.945908 + 0.324434i \(0.105174\pi\)
\(194\) −4.38088 3.59299i −0.314529 0.257962i
\(195\) 0 0
\(196\) −12.7686 + 5.74135i −0.912042 + 0.410097i
\(197\) −2.80474 −0.199829 −0.0999147 0.994996i \(-0.531857\pi\)
−0.0999147 + 0.994996i \(0.531857\pi\)
\(198\) 0 0
\(199\) −6.44198 3.71928i −0.456660 0.263653i 0.253979 0.967210i \(-0.418261\pi\)
−0.710639 + 0.703557i \(0.751594\pi\)
\(200\) −19.9596 + 12.4378i −1.41135 + 0.879484i
\(201\) 0 0
\(202\) 18.6246 7.01647i 1.31042 0.493677i
\(203\) 11.0278 13.8451i 0.773997 0.971739i
\(204\) 0 0
\(205\) −14.2675 + 8.23733i −0.996483 + 0.575320i
\(206\) −4.64227 + 28.1729i −0.323442 + 1.96290i
\(207\) 0 0
\(208\) −2.14752 + 0.892699i −0.148904 + 0.0618975i
\(209\) 1.94697 0.134675
\(210\) 0 0
\(211\) 24.6986i 1.70032i 0.526521 + 0.850162i \(0.323496\pi\)
−0.526521 + 0.850162i \(0.676504\pi\)
\(212\) −25.5411 8.65213i −1.75417 0.594231i
\(213\) 0 0
\(214\) 5.85825 + 0.965309i 0.400462 + 0.0659872i
\(215\) 7.47446 + 12.9461i 0.509754 + 0.882920i
\(216\) 0 0
\(217\) 8.12445 3.19415i 0.551523 0.216833i
\(218\) 24.5720 9.25707i 1.66423 0.626968i
\(219\) 0 0
\(220\) 2.86447 0.571651i 0.193122 0.0385407i
\(221\) −1.32333 + 2.29207i −0.0890166 + 0.154181i
\(222\) 0 0
\(223\) 7.98964i 0.535026i −0.963554 0.267513i \(-0.913798\pi\)
0.963554 0.267513i \(-0.0862019\pi\)
\(224\) −8.51537 12.3081i −0.568957 0.822367i
\(225\) 0 0
\(226\) −3.76699 3.08951i −0.250577 0.205511i
\(227\) 2.04318 + 1.17963i 0.135610 + 0.0782947i 0.566270 0.824220i \(-0.308386\pi\)
−0.430660 + 0.902514i \(0.641719\pi\)
\(228\) 0 0
\(229\) −5.32512 9.22338i −0.351894 0.609498i 0.634687 0.772769i \(-0.281129\pi\)
−0.986581 + 0.163271i \(0.947796\pi\)
\(230\) −13.0479 34.6343i −0.860351 2.28372i
\(231\) 0 0
\(232\) 16.6965 + 8.90420i 1.09618 + 0.584589i
\(233\) 12.6645 7.31188i 0.829682 0.479017i −0.0240618 0.999710i \(-0.507660\pi\)
0.853744 + 0.520693i \(0.174327\pi\)
\(234\) 0 0
\(235\) 18.1002 + 10.4502i 1.18073 + 0.681693i
\(236\) −5.72136 + 16.8895i −0.372429 + 1.09941i
\(237\) 0 0
\(238\) −16.2083 5.23344i −1.05063 0.339233i
\(239\) 11.5819i 0.749168i 0.927193 + 0.374584i \(0.122214\pi\)
−0.927193 + 0.374584i \(0.877786\pi\)
\(240\) 0 0
\(241\) 1.36690 + 0.789180i 0.0880498 + 0.0508356i 0.543378 0.839488i \(-0.317145\pi\)
−0.455329 + 0.890323i \(0.650478\pi\)
\(242\) 15.1258 + 2.49240i 0.972325 + 0.160217i
\(243\) 0 0
\(244\) 19.3082 16.9543i 1.23608 1.08539i
\(245\) 17.3955 + 18.7035i 1.11136 + 1.19492i
\(246\) 0 0
\(247\) 1.41414 + 2.44935i 0.0899793 + 0.155849i
\(248\) 4.93569 + 7.92056i 0.313416 + 0.502956i
\(249\) 0 0
\(250\) 13.2261 + 10.8474i 0.836492 + 0.686051i
\(251\) 17.9769i 1.13469i 0.823480 + 0.567345i \(0.192029\pi\)
−0.823480 + 0.567345i \(0.807971\pi\)
\(252\) 0 0
\(253\) 2.87059i 0.180473i
\(254\) −3.42747 + 4.17907i −0.215059 + 0.262218i
\(255\) 0 0
\(256\) 11.2852 11.3421i 0.705326 0.708883i
\(257\) 3.71744 + 6.43879i 0.231887 + 0.401640i 0.958363 0.285551i \(-0.0921766\pi\)
−0.726476 + 0.687192i \(0.758843\pi\)
\(258\) 0 0
\(259\) −0.876604 + 5.83931i −0.0544695 + 0.362837i
\(260\) 2.79969 + 3.18839i 0.173629 + 0.197735i
\(261\) 0 0
\(262\) 0.0426330 0.258730i 0.00263388 0.0159844i
\(263\) −7.28419 4.20553i −0.449162 0.259324i 0.258314 0.966061i \(-0.416833\pi\)
−0.707476 + 0.706737i \(0.750166\pi\)
\(264\) 0 0
\(265\) 49.2001i 3.02234i
\(266\) −13.5036 + 12.2037i −0.827957 + 0.748260i
\(267\) 0 0
\(268\) −6.15374 + 18.1659i −0.375900 + 1.10966i
\(269\) −11.9259 6.88541i −0.727134 0.419811i 0.0902390 0.995920i \(-0.471237\pi\)
−0.817373 + 0.576109i \(0.804570\pi\)
\(270\) 0 0
\(271\) 16.0976 9.29397i 0.977861 0.564568i 0.0762374 0.997090i \(-0.475709\pi\)
0.901624 + 0.432521i \(0.142376\pi\)
\(272\) 2.35395 18.0555i 0.142729 1.09477i
\(273\) 0 0
\(274\) 20.2743 7.63797i 1.22481 0.461427i
\(275\) −1.66398 2.88209i −0.100342 0.173797i
\(276\) 0 0
\(277\) 15.1885 + 8.76910i 0.912590 + 0.526884i 0.881264 0.472625i \(-0.156693\pi\)
0.0313266 + 0.999509i \(0.490027\pi\)
\(278\) −9.45898 + 11.5332i −0.567312 + 0.691715i
\(279\) 0 0
\(280\) −16.2839 + 21.9194i −0.973148 + 1.30994i
\(281\) 14.8388i 0.885208i −0.896717 0.442604i \(-0.854055\pi\)
0.896717 0.442604i \(-0.145945\pi\)
\(282\) 0 0
\(283\) −0.293271 + 0.507960i −0.0174331 + 0.0301951i −0.874610 0.484826i \(-0.838883\pi\)
0.857177 + 0.515022i \(0.172216\pi\)
\(284\) 12.5921 2.51295i 0.747203 0.149116i
\(285\) 0 0
\(286\) −0.116023 0.307973i −0.00686060 0.0182108i
\(287\) −7.44228 + 9.34364i −0.439304 + 0.551538i
\(288\) 0 0
\(289\) −1.86064 3.22272i −0.109449 0.189572i
\(290\) 5.61298 34.0640i 0.329606 2.00030i
\(291\) 0 0
\(292\) −4.58214 + 13.5265i −0.268149 + 0.791577i
\(293\) 6.07405i 0.354850i −0.984134 0.177425i \(-0.943223\pi\)
0.984134 0.177425i \(-0.0567767\pi\)
\(294\) 0 0
\(295\) 32.5344 1.89422
\(296\) −6.30885 + 0.212488i −0.366695 + 0.0123506i
\(297\) 0 0
\(298\) −12.8130 2.11130i −0.742237 0.122304i
\(299\) −3.61130 + 2.08498i −0.208847 + 0.120578i
\(300\) 0 0
\(301\) 8.47832 + 6.75304i 0.488682 + 0.389239i
\(302\) −1.79485 4.76427i −0.103282 0.274153i
\(303\) 0 0
\(304\) −15.4517 11.8257i −0.886218 0.678250i
\(305\) −40.5998 23.4403i −2.32474 1.34219i
\(306\) 0 0
\(307\) 19.0443 1.08691 0.543457 0.839437i \(-0.317115\pi\)
0.543457 + 0.839437i \(0.317115\pi\)
\(308\) 1.78127 1.14569i 0.101497 0.0652815i
\(309\) 0 0
\(310\) 10.7976 13.1654i 0.613264 0.747744i
\(311\) 4.52301 7.83409i 0.256476 0.444230i −0.708819 0.705390i \(-0.750772\pi\)
0.965295 + 0.261160i \(0.0841051\pi\)
\(312\) 0 0
\(313\) −6.45654 + 3.72768i −0.364945 + 0.210701i −0.671248 0.741233i \(-0.734241\pi\)
0.306303 + 0.951934i \(0.400908\pi\)
\(314\) −0.358065 0.950450i −0.0202068 0.0536370i
\(315\) 0 0
\(316\) 12.4748 10.9540i 0.701761 0.616209i
\(317\) −2.40732 4.16961i −0.135209 0.234188i 0.790468 0.612503i \(-0.209837\pi\)
−0.925677 + 0.378314i \(0.876504\pi\)
\(318\) 0 0
\(319\) −1.33884 + 2.31894i −0.0749606 + 0.129836i
\(320\) −26.2054 12.8617i −1.46493 0.718989i
\(321\) 0 0
\(322\) −17.9931 19.9095i −1.00271 1.10951i
\(323\) −22.1432 −1.23208
\(324\) 0 0
\(325\) 2.41718 4.18668i 0.134081 0.232235i
\(326\) −5.07437 + 30.7953i −0.281044 + 1.70559i
\(327\) 0 0
\(328\) −11.2679 6.00916i −0.622166 0.331800i
\(329\) 14.9863 + 2.24977i 0.826224 + 0.124034i
\(330\) 0 0
\(331\) −5.43500 + 3.13790i −0.298735 + 0.172475i −0.641874 0.766810i \(-0.721843\pi\)
0.343140 + 0.939284i \(0.388510\pi\)
\(332\) 20.3687 4.06490i 1.11788 0.223090i
\(333\) 0 0
\(334\) 12.0966 14.7492i 0.661895 0.807039i
\(335\) 34.9931 1.91188
\(336\) 0 0
\(337\) −20.1329 −1.09671 −0.548353 0.836247i \(-0.684745\pi\)
−0.548353 + 0.836247i \(0.684745\pi\)
\(338\) −11.3555 + 13.8456i −0.617660 + 0.753104i
\(339\) 0 0
\(340\) −32.5780 + 6.50147i −1.76679 + 0.352592i
\(341\) −1.14370 + 0.660317i −0.0619350 + 0.0357582i
\(342\) 0 0
\(343\) 16.7004 + 8.00604i 0.901737 + 0.432285i
\(344\) −5.45265 + 10.2244i −0.293987 + 0.551261i
\(345\) 0 0
\(346\) −3.71961 + 22.5735i −0.199967 + 1.21356i
\(347\) −9.04269 + 15.6624i −0.485437 + 0.840802i −0.999860 0.0167350i \(-0.994673\pi\)
0.514423 + 0.857537i \(0.328006\pi\)
\(348\) 0 0
\(349\) −3.24549 −0.173727 −0.0868635 0.996220i \(-0.527684\pi\)
−0.0868635 + 0.996220i \(0.527684\pi\)
\(350\) 29.6060 + 9.55935i 1.58251 + 0.510969i
\(351\) 0 0
\(352\) 1.55034 + 1.65008i 0.0826335 + 0.0879494i
\(353\) −14.6032 + 25.2934i −0.777248 + 1.34623i 0.156274 + 0.987714i \(0.450052\pi\)
−0.933522 + 0.358519i \(0.883282\pi\)
\(354\) 0 0
\(355\) −11.7135 20.2883i −0.621685 1.07679i
\(356\) 15.8096 13.8822i 0.837905 0.735756i
\(357\) 0 0
\(358\) −0.869536 2.30810i −0.0459564 0.121987i
\(359\) −8.87600 + 5.12456i −0.468457 + 0.270464i −0.715594 0.698517i \(-0.753844\pi\)
0.247136 + 0.968981i \(0.420510\pi\)
\(360\) 0 0
\(361\) −2.33135 + 4.03802i −0.122703 + 0.212528i
\(362\) −8.47386 + 10.3321i −0.445376 + 0.543041i
\(363\) 0 0
\(364\) 2.73509 + 1.40876i 0.143358 + 0.0738390i
\(365\) 26.0562 1.36384
\(366\) 0 0
\(367\) −26.6034 15.3595i −1.38869 0.801758i −0.395518 0.918458i \(-0.629435\pi\)
−0.993167 + 0.116700i \(0.962768\pi\)
\(368\) 17.4357 22.7819i 0.908896 1.18759i
\(369\) 0 0
\(370\) 4.06020 + 10.7774i 0.211080 + 0.560291i
\(371\) 13.0527 + 33.2000i 0.677662 + 1.72366i
\(372\) 0 0
\(373\) −17.5313 + 10.1217i −0.907737 + 0.524082i −0.879702 0.475525i \(-0.842258\pi\)
−0.0280346 + 0.999607i \(0.508925\pi\)
\(374\) 2.54234 + 0.418921i 0.131461 + 0.0216619i
\(375\) 0 0
\(376\) 0.545343 + 16.1914i 0.0281239 + 0.835008i
\(377\) −3.88973 −0.200331
\(378\) 0 0
\(379\) 15.4020i 0.791146i −0.918435 0.395573i \(-0.870546\pi\)
0.918435 0.395573i \(-0.129454\pi\)
\(380\) −11.3900 + 33.6232i −0.584293 + 1.72484i
\(381\) 0 0
\(382\) 4.35735 26.4438i 0.222941 1.35298i
\(383\) −1.96494 3.40338i −0.100404 0.173905i 0.811447 0.584426i \(-0.198680\pi\)
−0.911851 + 0.410521i \(0.865347\pi\)
\(384\) 0 0
\(385\) −3.02246 2.40741i −0.154039 0.122693i
\(386\) −2.65954 7.05950i −0.135367 0.359319i
\(387\) 0 0
\(388\) −7.85775 + 1.56814i −0.398917 + 0.0796103i
\(389\) 6.94490 12.0289i 0.352121 0.609891i −0.634500 0.772923i \(-0.718794\pi\)
0.986621 + 0.163032i \(0.0521273\pi\)
\(390\) 0 0
\(391\) 32.6477i 1.65106i
\(392\) −5.17310 + 19.1112i −0.261281 + 0.965263i
\(393\) 0 0
\(394\) −2.51536 + 3.06694i −0.126722 + 0.154510i
\(395\) −26.2310 15.1445i −1.31982 0.762001i
\(396\) 0 0
\(397\) −4.40738 7.63380i −0.221200 0.383129i 0.733973 0.679179i \(-0.237664\pi\)
−0.955173 + 0.296050i \(0.904331\pi\)
\(398\) −9.84430 + 3.70867i −0.493450 + 0.185899i
\(399\) 0 0
\(400\) −4.29970 + 32.9800i −0.214985 + 1.64900i
\(401\) −13.0887 + 7.55674i −0.653616 + 0.377365i −0.789840 0.613313i \(-0.789837\pi\)
0.136224 + 0.990678i \(0.456503\pi\)
\(402\) 0 0
\(403\) −1.66140 0.959210i −0.0827602 0.0477816i
\(404\) 9.03054 26.6582i 0.449286 1.32629i
\(405\) 0 0
\(406\) −5.24949 24.4753i −0.260528 1.21469i
\(407\) 0.893263i 0.0442774i
\(408\) 0 0
\(409\) −5.85435 3.38001i −0.289479 0.167131i 0.348228 0.937410i \(-0.386784\pi\)
−0.637707 + 0.770279i \(0.720117\pi\)
\(410\) −3.78802 + 22.9887i −0.187077 + 1.13533i
\(411\) 0 0
\(412\) 26.6434 + 30.3424i 1.31262 + 1.49486i
\(413\) 21.9540 8.63131i 1.08029 0.424719i
\(414\) 0 0
\(415\) −18.9474 32.8179i −0.930091 1.61097i
\(416\) −0.949797 + 3.14887i −0.0465676 + 0.154386i
\(417\) 0 0
\(418\) 1.74609 2.12898i 0.0854041 0.104132i
\(419\) 11.1005i 0.542293i −0.962538 0.271147i \(-0.912597\pi\)
0.962538 0.271147i \(-0.0874029\pi\)
\(420\) 0 0
\(421\) 6.72143i 0.327582i 0.986495 + 0.163791i \(0.0523723\pi\)
−0.986495 + 0.163791i \(0.947628\pi\)
\(422\) 27.0076 + 22.1503i 1.31471 + 1.07826i
\(423\) 0 0
\(424\) −32.3668 + 20.1694i −1.57187 + 0.979511i
\(425\) 18.9247 + 32.7785i 0.917981 + 1.58999i
\(426\) 0 0
\(427\) −33.6152 5.04636i −1.62675 0.244210i
\(428\) 6.30937 5.54019i 0.304975 0.267795i
\(429\) 0 0
\(430\) 20.8597 + 3.43721i 1.00594 + 0.165757i
\(431\) −1.32418 0.764518i −0.0637837 0.0368255i 0.467769 0.883851i \(-0.345058\pi\)
−0.531553 + 0.847025i \(0.678391\pi\)
\(432\) 0 0
\(433\) 19.9225i 0.957416i 0.877974 + 0.478708i \(0.158895\pi\)
−0.877974 + 0.478708i \(0.841105\pi\)
\(434\) 3.79344 11.7485i 0.182091 0.563948i
\(435\) 0 0
\(436\) 11.9143 35.1711i 0.570592 1.68439i
\(437\) −30.2139 17.4440i −1.44533 0.834460i
\(438\) 0 0
\(439\) −14.9668 + 8.64107i −0.714325 + 0.412416i −0.812660 0.582738i \(-0.801982\pi\)
0.0983355 + 0.995153i \(0.468648\pi\)
\(440\) 1.94383 3.64492i 0.0926685 0.173765i
\(441\) 0 0
\(442\) 1.31955 + 3.50262i 0.0627646 + 0.166603i
\(443\) −0.666057 1.15364i −0.0316453 0.0548113i 0.849769 0.527155i \(-0.176741\pi\)
−0.881414 + 0.472344i \(0.843408\pi\)
\(444\) 0 0
\(445\) −33.2431 19.1929i −1.57587 0.909831i
\(446\) −8.73655 7.16530i −0.413688 0.339287i
\(447\) 0 0
\(448\) −21.0955 1.72675i −0.996667 0.0815813i
\(449\) 38.5884i 1.82110i −0.413397 0.910551i \(-0.635658\pi\)
0.413397 0.910551i \(-0.364342\pi\)
\(450\) 0 0
\(451\) 0.903540 1.56498i 0.0425460 0.0736919i
\(452\) −6.75666 + 1.34840i −0.317806 + 0.0634234i
\(453\) 0 0
\(454\) 3.12228 1.17626i 0.146536 0.0552047i
\(455\) 0.833312 5.55092i 0.0390663 0.260231i
\(456\) 0 0
\(457\) 7.80133 + 13.5123i 0.364931 + 0.632079i 0.988765 0.149478i \(-0.0477593\pi\)
−0.623834 + 0.781557i \(0.714426\pi\)
\(458\) −14.8613 2.44881i −0.694423 0.114425i
\(459\) 0 0
\(460\) −49.5737 16.7932i −2.31139 0.782989i
\(461\) 17.6616i 0.822583i −0.911504 0.411291i \(-0.865078\pi\)
0.911504 0.411291i \(-0.134922\pi\)
\(462\) 0 0
\(463\) 15.1430 0.703753 0.351877 0.936046i \(-0.385544\pi\)
0.351877 + 0.936046i \(0.385544\pi\)
\(464\) 24.7104 10.2718i 1.14715 0.476857i
\(465\) 0 0
\(466\) 3.36244 20.4059i 0.155762 0.945287i
\(467\) −12.0392 + 6.95086i −0.557110 + 0.321647i −0.751985 0.659181i \(-0.770903\pi\)
0.194875 + 0.980828i \(0.437570\pi\)
\(468\) 0 0
\(469\) 23.6132 9.28360i 1.09036 0.428677i
\(470\) 27.6598 10.4203i 1.27585 0.480654i
\(471\) 0 0
\(472\) 13.3373 + 21.4031i 0.613900 + 0.985158i
\(473\) −1.42004 0.819862i −0.0652936 0.0376973i
\(474\) 0 0
\(475\) 40.4466 1.85582
\(476\) −20.2587 + 13.0300i −0.928554 + 0.597231i
\(477\) 0 0
\(478\) 12.6646 + 10.3869i 0.579264 + 0.475085i
\(479\) −15.2782 + 26.4626i −0.698077 + 1.20911i 0.271055 + 0.962564i \(0.412627\pi\)
−0.969132 + 0.246541i \(0.920706\pi\)
\(480\) 0 0
\(481\) 1.12375 0.648799i 0.0512388 0.0295827i
\(482\) 2.08882 0.786928i 0.0951434 0.0358436i
\(483\) 0 0
\(484\) 16.2906 14.3046i 0.740482 0.650209i
\(485\) 7.30946 + 12.6604i 0.331906 + 0.574877i
\(486\) 0 0
\(487\) 10.9031 18.8848i 0.494068 0.855751i −0.505909 0.862587i \(-0.668843\pi\)
0.999977 + 0.00683637i \(0.00217610\pi\)
\(488\) −1.22323 36.3183i −0.0553732 1.64405i
\(489\) 0 0
\(490\) 36.0526 2.24796i 1.62869 0.101552i
\(491\) 3.38847 0.152919 0.0764597 0.997073i \(-0.475638\pi\)
0.0764597 + 0.997073i \(0.475638\pi\)
\(492\) 0 0
\(493\) 15.2268 26.3736i 0.685781 1.18781i
\(494\) 3.94656 + 0.650305i 0.177564 + 0.0292586i
\(495\) 0 0
\(496\) 13.0874 + 1.70625i 0.587644 + 0.0766129i
\(497\) −13.2866 10.5829i −0.595987 0.474708i
\(498\) 0 0
\(499\) 35.9490 20.7552i 1.60930 0.929128i 0.619770 0.784784i \(-0.287226\pi\)
0.989528 0.144344i \(-0.0461073\pi\)
\(500\) 23.7230 4.73430i 1.06092 0.211724i
\(501\) 0 0
\(502\) 19.6574 + 16.1221i 0.877354 + 0.719564i
\(503\) 18.4870 0.824295 0.412147 0.911117i \(-0.364779\pi\)
0.412147 + 0.911117i \(0.364779\pi\)
\(504\) 0 0
\(505\) −51.3519 −2.28513
\(506\) 3.13895 + 2.57442i 0.139543 + 0.114447i
\(507\) 0 0
\(508\) 1.49590 + 7.49577i 0.0663700 + 0.332571i
\(509\) 5.71745 3.30097i 0.253422 0.146313i −0.367908 0.929862i \(-0.619926\pi\)
0.621330 + 0.783549i \(0.286593\pi\)
\(510\) 0 0
\(511\) 17.5826 6.91266i 0.777809 0.305798i
\(512\) −2.28159 22.5121i −0.100833 0.994903i
\(513\) 0 0
\(514\) 10.3746 + 1.70950i 0.457604 + 0.0754029i
\(515\) 36.8359 63.8016i 1.62318 2.81144i
\(516\) 0 0
\(517\) −2.29252 −0.100825
\(518\) 5.59903 + 6.19538i 0.246007 + 0.272209i
\(519\) 0 0
\(520\) 5.99728 0.201994i 0.262998 0.00885804i
\(521\) 3.54303 6.13671i 0.155223 0.268854i −0.777917 0.628367i \(-0.783724\pi\)
0.933140 + 0.359513i \(0.117057\pi\)
\(522\) 0 0
\(523\) −12.3169 21.3336i −0.538583 0.932852i −0.998981 0.0451399i \(-0.985627\pi\)
0.460398 0.887713i \(-0.347707\pi\)
\(524\) −0.244683 0.278654i −0.0106890 0.0121731i
\(525\) 0 0
\(526\) −11.1313 + 4.19352i −0.485348 + 0.182846i
\(527\) 13.0075 7.50988i 0.566615 0.327136i
\(528\) 0 0
\(529\) 14.2192 24.6284i 0.618227 1.07080i
\(530\) 53.7995 + 44.1238i 2.33690 + 1.91662i
\(531\) 0 0
\(532\) 1.23428 + 25.7105i 0.0535127 + 1.11469i
\(533\) 2.62505 0.113704
\(534\) 0 0
\(535\) −13.2668 7.65962i −0.573576 0.331154i
\(536\) 14.3453 + 23.0206i 0.619621 + 0.994338i
\(537\) 0 0
\(538\) −18.2245 + 6.86576i −0.785714 + 0.296004i
\(539\) −2.67823 0.822658i −0.115359 0.0354344i
\(540\) 0 0
\(541\) 20.3549 11.7519i 0.875125 0.505254i 0.00607698 0.999982i \(-0.498066\pi\)
0.869048 + 0.494728i \(0.164732\pi\)
\(542\) 4.27393 25.9375i 0.183581 1.11411i
\(543\) 0 0
\(544\) −17.6323 18.7666i −0.755977 0.804610i
\(545\) −67.7504 −2.90211
\(546\) 0 0
\(547\) 16.9894i 0.726412i 0.931709 + 0.363206i \(0.118318\pi\)
−0.931709 + 0.363206i \(0.881682\pi\)
\(548\) 9.83044 29.0195i 0.419936 1.23965i
\(549\) 0 0
\(550\) −4.64382 0.765198i −0.198013 0.0326281i
\(551\) −16.2717 28.1834i −0.693198 1.20065i
\(552\) 0 0
\(553\) −21.7183 3.26039i −0.923558 0.138646i
\(554\) 23.2103 8.74407i 0.986111 0.371500i
\(555\) 0 0
\(556\) 4.12833 + 20.6865i 0.175080 + 0.877303i
\(557\) −2.69847 + 4.67389i −0.114338 + 0.198039i −0.917515 0.397701i \(-0.869808\pi\)
0.803177 + 0.595740i \(0.203141\pi\)
\(558\) 0 0
\(559\) 2.38195i 0.100746i
\(560\) 9.36480 + 37.4640i 0.395735 + 1.58314i
\(561\) 0 0
\(562\) −16.2260 13.3078i −0.684452 0.561355i
\(563\) 29.2646 + 16.8959i 1.23336 + 0.712078i 0.967728 0.251997i \(-0.0810874\pi\)
0.265628 + 0.964076i \(0.414421\pi\)
\(564\) 0 0
\(565\) 6.28520 + 10.8863i 0.264420 + 0.457989i
\(566\) 0.292434 + 0.776237i 0.0122919 + 0.0326277i
\(567\) 0 0
\(568\) 8.54501 16.0229i 0.358540 0.672307i
\(569\) −14.2390 + 8.22089i −0.596930 + 0.344638i −0.767833 0.640650i \(-0.778665\pi\)
0.170903 + 0.985288i \(0.445332\pi\)
\(570\) 0 0
\(571\) 33.2026 + 19.1696i 1.38949 + 0.802221i 0.993257 0.115931i \(-0.0369850\pi\)
0.396230 + 0.918151i \(0.370318\pi\)
\(572\) −0.440816 0.149328i −0.0184314 0.00624370i
\(573\) 0 0
\(574\) 3.54271 + 16.5176i 0.147870 + 0.689432i
\(575\) 59.6340i 2.48691i
\(576\) 0 0
\(577\) 19.2194 + 11.0963i 0.800113 + 0.461946i 0.843511 0.537112i \(-0.180485\pi\)
−0.0433975 + 0.999058i \(0.513818\pi\)
\(578\) −5.19266 0.855634i −0.215986 0.0355897i
\(579\) 0 0
\(580\) −32.2145 36.6871i −1.33764 1.52335i
\(581\) −21.4921 17.1186i −0.891644 0.710201i
\(582\) 0 0
\(583\) −2.69834 4.67366i −0.111754 0.193563i
\(584\) 10.6816 + 17.1414i 0.442009 + 0.709315i
\(585\) 0 0
\(586\) −6.64188 5.44736i −0.274374 0.225028i
\(587\) 3.25736i 0.134445i 0.997738 + 0.0672227i \(0.0214138\pi\)
−0.997738 + 0.0672227i \(0.978586\pi\)
\(588\) 0 0
\(589\) 16.0504i 0.661347i
\(590\) 29.1776 35.5758i 1.20122 1.46463i
\(591\) 0 0
\(592\) −5.42558 + 7.08919i −0.222990 + 0.291364i
\(593\) −19.4634 33.7116i −0.799267 1.38437i −0.920094 0.391697i \(-0.871888\pi\)
0.120827 0.992674i \(-0.461445\pi\)
\(594\) 0 0
\(595\) 34.3749 + 27.3799i 1.40923 + 1.12246i
\(596\) −13.7997 + 12.1173i −0.565257 + 0.496346i
\(597\) 0 0
\(598\) −0.958802 + 5.81876i −0.0392083 + 0.237947i
\(599\) 8.92743 + 5.15425i 0.364765 + 0.210597i 0.671169 0.741304i \(-0.265793\pi\)
−0.306404 + 0.951902i \(0.599126\pi\)
\(600\) 0 0
\(601\) 16.1379i 0.658277i 0.944282 + 0.329139i \(0.106758\pi\)
−0.944282 + 0.329139i \(0.893242\pi\)
\(602\) 14.9879 3.21462i 0.610861 0.131018i
\(603\) 0 0
\(604\) −6.81932 2.31007i −0.277474 0.0939953i
\(605\) −34.2546 19.7769i −1.39265 0.804045i
\(606\) 0 0
\(607\) −31.3010 + 18.0717i −1.27047 + 0.733506i −0.975076 0.221870i \(-0.928784\pi\)
−0.295393 + 0.955376i \(0.595451\pi\)
\(608\) −26.7887 + 6.29067i −1.08642 + 0.255120i
\(609\) 0 0
\(610\) −62.0424 + 23.3734i −2.51202 + 0.946361i
\(611\) −1.66512 2.88407i −0.0673634 0.116677i
\(612\) 0 0
\(613\) −1.33431 0.770363i −0.0538922 0.0311147i 0.472812 0.881163i \(-0.343239\pi\)
−0.526704 + 0.850049i \(0.676572\pi\)
\(614\) 17.0794 20.8246i 0.689267 0.840413i
\(615\) 0 0
\(616\) 0.344699 2.97527i 0.0138883 0.119877i
\(617\) 40.1412i 1.61602i 0.589165 + 0.808012i \(0.299457\pi\)
−0.589165 + 0.808012i \(0.700543\pi\)
\(618\) 0 0
\(619\) −18.4948 + 32.0339i −0.743368 + 1.28755i 0.207586 + 0.978217i \(0.433439\pi\)
−0.950953 + 0.309334i \(0.899894\pi\)
\(620\) −4.71257 23.6141i −0.189261 0.948364i
\(621\) 0 0
\(622\) −4.51010 11.9716i −0.180839 0.480019i
\(623\) −27.5241 4.13196i −1.10273 0.165543i
\(624\) 0 0
\(625\) −1.28074 2.21830i −0.0512295 0.0887321i
\(626\) −1.71421 + 10.4032i −0.0685138 + 0.415795i
\(627\) 0 0
\(628\) −1.36042 0.460848i −0.0542868 0.0183898i
\(629\) 10.1592i 0.405074i
\(630\) 0 0
\(631\) 31.1044 1.23825 0.619123 0.785294i \(-0.287488\pi\)
0.619123 + 0.785294i \(0.287488\pi\)
\(632\) −0.790316 23.4648i −0.0314371 0.933378i
\(633\) 0 0
\(634\) −6.71834 1.10703i −0.266819 0.0439659i
\(635\) 12.0771 6.97274i 0.479267 0.276705i
\(636\) 0 0
\(637\) −0.910334 3.96681i −0.0360688 0.157171i
\(638\) 1.33502 + 3.54368i 0.0528539 + 0.140296i
\(639\) 0 0
\(640\) −37.5656 + 17.1205i −1.48491 + 0.676748i
\(641\) −3.44022 1.98621i −0.135881 0.0784507i 0.430519 0.902582i \(-0.358331\pi\)
−0.566399 + 0.824131i \(0.691664\pi\)
\(642\) 0 0
\(643\) −47.5503 −1.87520 −0.937600 0.347717i \(-0.886957\pi\)
−0.937600 + 0.347717i \(0.886957\pi\)
\(644\) −37.9073 + 1.81980i −1.49376 + 0.0717103i
\(645\) 0 0
\(646\) −19.8586 + 24.2132i −0.781324 + 0.952657i
\(647\) −20.9097 + 36.2166i −0.822044 + 1.42382i 0.0821142 + 0.996623i \(0.473833\pi\)
−0.904158 + 0.427199i \(0.859501\pi\)
\(648\) 0 0
\(649\) −3.09054 + 1.78432i −0.121314 + 0.0700408i
\(650\) −2.41028 6.39786i −0.0945390 0.250945i
\(651\) 0 0
\(652\) 29.1233 + 33.1667i 1.14056 + 1.29891i
\(653\) 10.6456 + 18.4388i 0.416596 + 0.721565i 0.995595 0.0937632i \(-0.0298896\pi\)
−0.578999 + 0.815329i \(0.696556\pi\)
\(654\) 0 0
\(655\) −0.338288 + 0.585932i −0.0132180 + 0.0228943i
\(656\) −16.6762 + 6.93211i −0.651098 + 0.270654i
\(657\) 0 0
\(658\) 15.9002 14.3697i 0.619854 0.560188i
\(659\) −50.0936 −1.95137 −0.975685 0.219179i \(-0.929662\pi\)
−0.975685 + 0.219179i \(0.929662\pi\)
\(660\) 0 0
\(661\) −11.9756 + 20.7423i −0.465797 + 0.806784i −0.999237 0.0390540i \(-0.987566\pi\)
0.533440 + 0.845838i \(0.320899\pi\)
\(662\) −1.44300 + 8.75723i −0.0560836 + 0.340359i
\(663\) 0 0
\(664\) 13.8222 25.9183i 0.536405 1.00582i
\(665\) 43.7057 17.1830i 1.69483 0.666330i
\(666\) 0 0
\(667\) 41.5533 23.9908i 1.60895 0.928927i
\(668\) −5.27949 26.4548i −0.204269 1.02357i
\(669\) 0 0
\(670\) 31.3826 38.2644i 1.21242 1.47828i
\(671\) 5.14226 0.198515
\(672\) 0 0
\(673\) −2.60756 −0.100514 −0.0502570 0.998736i \(-0.516004\pi\)
−0.0502570 + 0.998736i \(0.516004\pi\)
\(674\) −18.0556 + 22.0150i −0.695477 + 0.847985i
\(675\) 0 0
\(676\) 4.95607 + 24.8342i 0.190618 + 0.955162i
\(677\) −13.5947 + 7.84890i −0.522486 + 0.301658i −0.737951 0.674854i \(-0.764207\pi\)
0.215465 + 0.976512i \(0.430873\pi\)
\(678\) 0 0
\(679\) 8.29116 + 6.60397i 0.318186 + 0.253437i
\(680\) −22.1075 + 41.4542i −0.847783 + 1.58970i
\(681\) 0 0
\(682\) −0.303654 + 1.84281i −0.0116275 + 0.0705648i
\(683\) 10.7229 18.5726i 0.410300 0.710661i −0.584622 0.811306i \(-0.698757\pi\)
0.994922 + 0.100645i \(0.0320905\pi\)
\(684\) 0 0
\(685\) −55.9005 −2.13585
\(686\) 23.7318 11.0816i 0.906084 0.423098i
\(687\) 0 0
\(688\) 6.29012 + 15.1318i 0.239809 + 0.576896i
\(689\) 3.91975 6.78920i 0.149330 0.258648i
\(690\) 0 0
\(691\) 12.6075 + 21.8368i 0.479611 + 0.830710i 0.999727 0.0233857i \(-0.00744459\pi\)
−0.520116 + 0.854096i \(0.674111\pi\)
\(692\) 21.3479 + 24.3118i 0.811526 + 0.924195i
\(693\) 0 0
\(694\) 9.01688 + 23.9344i 0.342276 + 0.908539i
\(695\) 33.3300 19.2431i 1.26428 0.729931i
\(696\) 0 0
\(697\) −10.2761 + 17.7987i −0.389235 + 0.674174i
\(698\) −2.91063 + 3.54889i −0.110169 + 0.134327i
\(699\) 0 0
\(700\) 37.0043 23.8006i 1.39863 0.899578i
\(701\) 33.6820 1.27215 0.636076 0.771626i \(-0.280556\pi\)
0.636076 + 0.771626i \(0.280556\pi\)
\(702\) 0 0
\(703\) 9.40187 + 5.42818i 0.354598 + 0.204727i
\(704\) 3.19472 0.215447i 0.120405 0.00811996i
\(705\) 0 0
\(706\) 14.5615 + 38.6521i 0.548029 + 1.45469i
\(707\) −34.6521 + 13.6236i −1.30323 + 0.512367i
\(708\) 0 0
\(709\) 33.1687 19.1499i 1.24568 0.719191i 0.275431 0.961321i \(-0.411179\pi\)
0.970244 + 0.242130i \(0.0778460\pi\)
\(710\) −32.6898 5.38655i −1.22683 0.202154i
\(711\) 0 0
\(712\) −1.00158 29.7374i −0.0375360 1.11446i
\(713\) 23.6646 0.886245
\(714\) 0 0
\(715\) 0.849148i 0.0317563i
\(716\) −3.30369 1.11914i −0.123465 0.0418241i
\(717\) 0 0
\(718\) −2.35658 + 14.3016i −0.0879469 + 0.533731i
\(719\) 3.40747 + 5.90191i 0.127077 + 0.220104i 0.922543 0.385894i \(-0.126107\pi\)
−0.795466 + 0.605998i \(0.792774\pi\)
\(720\) 0 0
\(721\) 7.93024 52.8256i 0.295338 1.96733i
\(722\) 2.32470 + 6.17069i 0.0865164 + 0.229649i
\(723\) 0 0
\(724\) 3.69837 + 18.5321i 0.137449 + 0.688739i
\(725\) −27.8132 + 48.1738i −1.03296 + 1.78913i
\(726\) 0 0
\(727\) 44.3315i 1.64416i −0.569369 0.822082i \(-0.692812\pi\)
0.569369 0.822082i \(-0.307188\pi\)
\(728\) 3.99335 1.72737i 0.148003 0.0640207i
\(729\) 0 0
\(730\) 23.3678 28.4920i 0.864882 1.05454i
\(731\) 16.1504 + 9.32441i 0.597342 + 0.344876i
\(732\) 0 0
\(733\) −4.98689 8.63755i −0.184195 0.319035i 0.759110 0.650962i \(-0.225634\pi\)
−0.943305 + 0.331927i \(0.892301\pi\)
\(734\) −40.6539 + 15.3156i −1.50056 + 0.565310i
\(735\) 0 0
\(736\) −9.27489 39.4969i −0.341877 1.45588i
\(737\) −3.32410 + 1.91917i −0.122445 + 0.0706935i
\(738\) 0 0
\(739\) −37.1489 21.4480i −1.36655 0.788976i −0.376061 0.926595i \(-0.622722\pi\)
−0.990485 + 0.137619i \(0.956055\pi\)
\(740\) 15.4262 + 5.22567i 0.567078 + 0.192100i
\(741\) 0 0
\(742\) 48.0096 + 15.5016i 1.76249 + 0.569083i
\(743\) 11.2075i 0.411165i −0.978640 0.205582i \(-0.934091\pi\)
0.978640 0.205582i \(-0.0659088\pi\)
\(744\) 0 0
\(745\) 29.0169 + 16.7529i 1.06310 + 0.613778i
\(746\) −4.65457 + 28.2476i −0.170416 + 1.03422i
\(747\) 0 0
\(748\) 2.73811 2.40431i 0.100115 0.0879103i
\(749\) −10.9845 1.64901i −0.401365 0.0602534i
\(750\) 0 0
\(751\) 18.5560 + 32.1399i 0.677117 + 1.17280i 0.975845 + 0.218462i \(0.0701041\pi\)
−0.298729 + 0.954338i \(0.596563\pi\)
\(752\) 18.1941 + 13.9245i 0.663472 + 0.507775i
\(753\) 0 0
\(754\) −3.48840 + 4.25336i −0.127040 + 0.154898i
\(755\) 13.1361i 0.478073i
\(756\) 0 0
\(757\) 20.8257i 0.756924i 0.925617 + 0.378462i \(0.123547\pi\)
−0.925617 + 0.378462i \(0.876453\pi\)
\(758\) −16.8418 13.8128i −0.611722 0.501705i
\(759\) 0 0
\(760\) 26.5517 + 42.6089i 0.963130 + 1.54559i
\(761\) 7.26978 + 12.5916i 0.263529 + 0.456446i 0.967177 0.254103i \(-0.0817801\pi\)
−0.703648 + 0.710549i \(0.748447\pi\)
\(762\) 0 0
\(763\) −45.7177 + 17.9740i −1.65509 + 0.650704i
\(764\) −25.0081 28.4801i −0.904761 1.03037i
\(765\) 0 0
\(766\) −5.48376 0.903600i −0.198136 0.0326484i
\(767\) −4.48947 2.59200i −0.162105 0.0935916i
\(768\) 0 0
\(769\) 2.11604i 0.0763063i 0.999272 + 0.0381532i \(0.0121475\pi\)
−0.999272 + 0.0381532i \(0.987853\pi\)
\(770\) −5.34309 + 1.14599i −0.192551 + 0.0412986i
\(771\) 0 0
\(772\) −10.1046 3.42296i −0.363672 0.123195i
\(773\) −18.3194 10.5767i −0.658902 0.380417i 0.132957 0.991122i \(-0.457553\pi\)
−0.791858 + 0.610705i \(0.790886\pi\)
\(774\) 0 0
\(775\) −23.7594 + 13.7175i −0.853462 + 0.492747i
\(776\) −5.33228 + 9.99867i −0.191418 + 0.358931i
\(777\) 0 0
\(778\) −6.92508 18.3820i −0.248276 0.659026i
\(779\) 10.9812 + 19.0201i 0.393444 + 0.681465i
\(780\) 0 0
\(781\) 2.22539 + 1.28483i 0.0796308 + 0.0459748i
\(782\) −35.6997 29.2792i −1.27662 1.04702i
\(783\) 0 0
\(784\) 16.2585 + 22.7961i 0.580659 + 0.814147i
\(785\) 2.62060i 0.0935331i
\(786\) 0 0
\(787\) 15.1516 26.2433i 0.540096 0.935473i −0.458802 0.888538i \(-0.651721\pi\)
0.998898 0.0469348i \(-0.0149453\pi\)
\(788\) 1.09781 + 5.50100i 0.0391080 + 0.195965i
\(789\) 0 0
\(790\) −40.0848 + 15.1012i −1.42615 + 0.537278i
\(791\) 7.12933 + 5.67856i 0.253490 + 0.201906i
\(792\) 0 0
\(793\) 3.73495 + 6.46913i 0.132632 + 0.229725i
\(794\) −12.3001 2.02678i −0.436513 0.0719277i
\(795\) 0 0
\(796\) −4.77323 + 14.0906i −0.169183 + 0.499428i
\(797\) 12.8964i 0.456812i −0.973566 0.228406i \(-0.926649\pi\)
0.973566 0.228406i \(-0.0733514\pi\)
\(798\) 0 0
\(799\) 26.0732 0.922403
\(800\) 32.2070 + 34.2789i 1.13869 + 1.21194i
\(801\) 0 0
\(802\) −3.47504 + 21.0893i −0.122708 + 0.744689i
\(803\) −2.47516 + 1.42903i −0.0873463 + 0.0504294i
\(804\) 0 0
\(805\) 25.3345 + 64.4391i 0.892922 + 2.27118i
\(806\) −2.53886 + 0.956472i −0.0894277 + 0.0336903i
\(807\) 0 0
\(808\) −21.0515 33.7825i −0.740589 1.18846i
\(809\) 31.3922 + 18.1243i 1.10369 + 0.637216i 0.937188 0.348825i \(-0.113419\pi\)
0.166502 + 0.986041i \(0.446753\pi\)
\(810\) 0 0
\(811\) −5.48133 −0.192475 −0.0962377 0.995358i \(-0.530681\pi\)
−0.0962377 + 0.995358i \(0.530681\pi\)
\(812\) −31.4712 16.2098i −1.10442 0.568853i
\(813\) 0 0
\(814\) −0.976769 0.801099i −0.0342357 0.0280785i
\(815\) 40.2646 69.7403i 1.41041 2.44290i
\(816\) 0 0
\(817\) 17.2586 9.96427i 0.603803 0.348606i
\(818\) −8.94631 + 3.37036i −0.312800 + 0.117842i
\(819\) 0 0
\(820\) 21.7406 + 24.7589i 0.759213 + 0.864619i
\(821\) 5.95824 + 10.3200i 0.207944 + 0.360169i 0.951067 0.308986i \(-0.0999895\pi\)
−0.743123 + 0.669155i \(0.766656\pi\)
\(822\) 0 0
\(823\) −20.9931 + 36.3612i −0.731775 + 1.26747i 0.224349 + 0.974509i \(0.427975\pi\)
−0.956124 + 0.292963i \(0.905359\pi\)
\(824\) 57.0733 1.92229i 1.98824 0.0669660i
\(825\) 0 0
\(826\) 10.2507 31.7472i 0.356668 1.10463i
\(827\) −18.7749 −0.652869 −0.326434 0.945220i \(-0.605847\pi\)
−0.326434 + 0.945220i \(0.605847\pi\)
\(828\) 0 0
\(829\) −7.45588 + 12.9140i −0.258953 + 0.448520i −0.965962 0.258685i \(-0.916711\pi\)
0.707009 + 0.707205i \(0.250044\pi\)
\(830\) −52.8783 8.71316i −1.83543 0.302438i
\(831\) 0 0
\(832\) 2.59144 + 3.86257i 0.0898421 + 0.133911i
\(833\) 30.4599 + 9.35621i 1.05537 + 0.324173i
\(834\) 0 0
\(835\) −42.6238 + 24.6089i −1.47506 + 0.851625i
\(836\) −0.762073 3.81865i −0.0263568 0.132071i
\(837\) 0 0
\(838\) −12.1382 9.95517i −0.419307 0.343895i
\(839\) −28.4322 −0.981587 −0.490794 0.871276i \(-0.663293\pi\)
−0.490794 + 0.871276i \(0.663293\pi\)
\(840\) 0 0
\(841\) 15.7571 0.543347
\(842\) 7.34977 + 6.02794i 0.253290 + 0.207736i
\(843\) 0 0
\(844\) 48.4421 9.66740i 1.66744 0.332766i
\(845\) 40.0127 23.1014i 1.37648 0.794711i
\(846\) 0 0
\(847\) −28.3616 4.25768i −0.974517 0.146296i
\(848\) −6.97248 + 53.4810i −0.239436 + 1.83654i
\(849\) 0 0
\(850\) 52.8148 + 8.70270i 1.81153 + 0.298500i
\(851\) −8.00324 + 13.8620i −0.274347 + 0.475184i
\(852\) 0 0
\(853\) −9.45822 −0.323843 −0.161922 0.986804i \(-0.551769\pi\)
−0.161922 + 0.986804i \(0.551769\pi\)
\(854\) −35.6650 + 32.2320i −1.22043 + 1.10296i
\(855\) 0 0
\(856\) −0.399718 11.8678i −0.0136621 0.405632i
\(857\) −19.8068 + 34.3064i −0.676588 + 1.17188i 0.299415 + 0.954123i \(0.403209\pi\)
−0.976002 + 0.217761i \(0.930125\pi\)
\(858\) 0 0
\(859\) −17.1446 29.6953i −0.584965 1.01319i −0.994880 0.101066i \(-0.967775\pi\)
0.409914 0.912124i \(-0.365559\pi\)
\(860\) 22.4660 19.7271i 0.766084 0.672690i
\(861\) 0 0
\(862\) −2.02355 + 0.762336i −0.0689223 + 0.0259653i
\(863\) −30.9385 + 17.8623i −1.05316 + 0.608041i −0.923532 0.383522i \(-0.874711\pi\)
−0.129627 + 0.991563i \(0.541378\pi\)
\(864\) 0 0
\(865\) 29.5147 51.1209i 1.00353 1.73816i
\(866\) 21.7850 + 17.8670i 0.740283 + 0.607145i
\(867\) 0 0
\(868\) −9.44479 14.6844i −0.320577 0.498422i
\(869\) 3.32235 0.112703
\(870\) 0 0
\(871\) −4.82875 2.78788i −0.163616 0.0944638i
\(872\) −27.7740 44.5704i −0.940545 1.50934i
\(873\) 0 0
\(874\) −46.1713 + 17.3942i −1.56177 + 0.588368i
\(875\) −25.0315 19.9377i −0.846218 0.674018i
\(876\) 0 0
\(877\) −13.3688 + 7.71847i −0.451431 + 0.260634i −0.708435 0.705777i \(-0.750598\pi\)
0.257003 + 0.966411i \(0.417265\pi\)
\(878\) −3.97369 + 24.1154i −0.134105 + 0.813857i
\(879\) 0 0
\(880\) −2.24239 5.39440i −0.0755908 0.181845i
\(881\) −2.47237 −0.0832962 −0.0416481 0.999132i \(-0.513261\pi\)
−0.0416481 + 0.999132i \(0.513261\pi\)
\(882\) 0 0
\(883\) 22.3515i 0.752187i −0.926582 0.376094i \(-0.877267\pi\)
0.926582 0.376094i \(-0.122733\pi\)
\(884\) 5.01346 + 1.69833i 0.168621 + 0.0571209i
\(885\) 0 0
\(886\) −1.85883 0.306293i −0.0624485 0.0102901i
\(887\) −11.2912 19.5570i −0.379122 0.656658i 0.611813 0.791003i \(-0.290441\pi\)
−0.990935 + 0.134344i \(0.957107\pi\)
\(888\) 0 0
\(889\) 6.29975 7.90922i 0.211287 0.265267i
\(890\) −50.8003 + 19.1381i −1.70283 + 0.641512i
\(891\) 0 0
\(892\) −15.6703 + 3.12726i −0.524680 + 0.104708i
\(893\) 13.9312 24.1295i 0.466189 0.807464i
\(894\) 0 0
\(895\) 6.36394i 0.212723i
\(896\) −20.8071 + 21.5190i −0.695116 + 0.718898i
\(897\) 0 0
\(898\) −42.1958 34.6070i −1.40809 1.15485i
\(899\) 19.1168 + 11.0371i 0.637582 + 0.368108i
\(900\) 0 0
\(901\) 30.6886 + 53.1543i 1.02239 + 1.77083i
\(902\) −0.900961 2.39151i −0.0299987 0.0796287i
\(903\) 0 0
\(904\) −4.58508 + 8.59757i −0.152497 + 0.285951i
\(905\) 29.8588 17.2390i 0.992539 0.573042i
\(906\) 0 0
\(907\) 8.75724 + 5.05599i 0.290779 + 0.167882i 0.638293 0.769793i \(-0.279641\pi\)
−0.347514 + 0.937675i \(0.612974\pi\)
\(908\) 1.51391 4.46906i 0.0502408 0.148311i
\(909\) 0 0
\(910\) −5.32251 5.88941i −0.176440 0.195232i
\(911\) 28.5297i 0.945230i −0.881269 0.472615i \(-0.843310\pi\)
0.881269 0.472615i \(-0.156690\pi\)
\(912\) 0 0
\(913\) 3.59974 + 2.07831i 0.119134 + 0.0687820i
\(914\) 21.7719 + 3.58752i 0.720151 + 0.118665i
\(915\) 0 0
\(916\) −16.0057 + 14.0544i −0.528844 + 0.464372i
\(917\) −0.0728286 + 0.485131i −0.00240501 + 0.0160204i
\(918\) 0 0
\(919\) 13.4674 + 23.3263i 0.444249 + 0.769463i 0.998000 0.0632203i \(-0.0201371\pi\)
−0.553750 + 0.832683i \(0.686804\pi\)
\(920\) −62.8220 + 39.1475i −2.07118 + 1.29065i
\(921\) 0 0
\(922\) −19.3127 15.8393i −0.636029 0.521641i
\(923\) 3.73282i 0.122867i
\(924\) 0 0
\(925\) 18.5567i 0.610142i
\(926\) 13.5806 16.5586i 0.446285 0.544149i
\(927\) 0 0
\(928\) 10.9288 36.2324i 0.358755 1.18939i
\(929\) 11.2786 + 19.5350i 0.370038 + 0.640924i 0.989571 0.144046i \(-0.0460114\pi\)
−0.619533 + 0.784970i \(0.712678\pi\)
\(930\) 0 0
\(931\) 24.9338 23.1901i 0.817171 0.760024i
\(932\) −19.2981 21.9773i −0.632129 0.719891i
\(933\) 0 0
\(934\) −3.19642 + 19.3984i −0.104590 + 0.634735i
\(935\) −5.75749 3.32409i −0.188290 0.108709i
\(936\) 0 0
\(937\) 25.6419i 0.837684i 0.908059 + 0.418842i \(0.137564\pi\)
−0.908059 + 0.418842i \(0.862436\pi\)
\(938\) 11.0254 34.1464i 0.359992 1.11492i
\(939\) 0 0
\(940\) 13.4115 39.5907i 0.437434 1.29131i
\(941\) 49.1787 + 28.3933i 1.60318 + 0.925596i 0.990846 + 0.134996i \(0.0431022\pi\)
0.612333 + 0.790600i \(0.290231\pi\)
\(942\) 0 0
\(943\) −28.0430 + 16.1906i −0.913205 + 0.527239i
\(944\) 35.3652 + 4.61067i 1.15104 + 0.150064i
\(945\) 0 0
\(946\) −2.17003 + 0.817522i −0.0705539 + 0.0265799i
\(947\) 5.32282 + 9.21939i 0.172968 + 0.299590i 0.939456 0.342669i \(-0.111331\pi\)
−0.766488 + 0.642259i \(0.777998\pi\)
\(948\) 0 0
\(949\) −3.59554 2.07588i −0.116716 0.0673861i
\(950\) 36.2735 44.2277i 1.17687 1.43494i
\(951\) 0 0
\(952\) −3.92031 + 33.8382i −0.127058 + 1.09670i
\(953\) 31.4456i 1.01862i −0.860582 0.509312i \(-0.829900\pi\)
0.860582 0.509312i \(-0.170100\pi\)
\(954\) 0 0
\(955\) −34.5750 + 59.8857i −1.11882 + 1.93786i
\(956\) 22.7158 4.53330i 0.734681 0.146617i
\(957\) 0 0
\(958\) 15.2346 + 40.4387i 0.492206 + 1.30651i
\(959\) −37.7214 + 14.8303i −1.21809 + 0.478896i
\(960\) 0 0
\(961\) −10.0565 17.4183i −0.324403 0.561882i
\(962\) 0.298357 1.81067i 0.00961942 0.0583782i
\(963\) 0 0
\(964\) 1.01281 2.98983i 0.0326206 0.0962960i
\(965\) 19.4646i 0.626587i
\(966\) 0 0
\(967\) 2.45245 0.0788655 0.0394327 0.999222i \(-0.487445\pi\)
0.0394327 + 0.999222i \(0.487445\pi\)
\(968\) −1.03206 30.6422i −0.0331717 0.984878i
\(969\) 0 0
\(970\) 20.3992 + 3.36133i 0.654979 + 0.107926i
\(971\) 28.2257 16.2961i 0.905807 0.522968i 0.0267274 0.999643i \(-0.491491\pi\)
0.879080 + 0.476675i \(0.158158\pi\)
\(972\) 0 0
\(973\) 17.3858 21.8275i 0.557362 0.699758i
\(974\) −10.8720 28.8587i −0.348362 0.924693i
\(975\) 0 0
\(976\) −40.8105 31.2335i −1.30631 0.999760i
\(977\) 8.83921 + 5.10332i 0.282791 + 0.163270i 0.634686 0.772770i \(-0.281129\pi\)
−0.351895 + 0.936039i \(0.614463\pi\)
\(978\) 0 0
\(979\) 4.21048 0.134568
\(980\) 29.8748 41.4390i 0.954315 1.32372i
\(981\) 0 0
\(982\) 3.03886 3.70524i 0.0969739 0.118239i
\(983\) 2.76849 4.79516i 0.0883010 0.152942i −0.818492 0.574518i \(-0.805190\pi\)
0.906793 + 0.421576i \(0.138523\pi\)
\(984\) 0 0
\(985\) 8.86318 5.11716i 0.282405 0.163046i
\(986\) −15.1834 40.3028i −0.483536 1.28350i
\(987\) 0 0
\(988\) 4.25047 3.73229i 0.135225 0.118740i
\(989\) 14.6912 + 25.4459i 0.467153 + 0.809132i
\(990\) 0 0
\(991\) −6.53951 + 11.3268i −0.207734 + 0.359806i −0.951000 0.309189i \(-0.899942\pi\)
0.743266 + 0.668996i \(0.233276\pi\)
\(992\) 13.6029 12.7807i 0.431892 0.405788i
\(993\) 0 0
\(994\) −23.4880 + 5.03773i −0.744994 + 0.159787i
\(995\) 27.1429 0.860487
\(996\) 0 0
\(997\) 3.01429 5.22091i 0.0954636 0.165348i −0.814338 0.580390i \(-0.802900\pi\)
0.909802 + 0.415043i \(0.136233\pi\)
\(998\) 9.54447 57.9233i 0.302125 1.83353i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.ch.b.269.21 yes 56
3.2 odd 2 inner 504.2.ch.b.269.8 yes 56
4.3 odd 2 2016.2.cp.b.17.4 56
7.5 odd 6 inner 504.2.ch.b.341.3 yes 56
8.3 odd 2 2016.2.cp.b.17.25 56
8.5 even 2 inner 504.2.ch.b.269.26 yes 56
12.11 even 2 2016.2.cp.b.17.26 56
21.5 even 6 inner 504.2.ch.b.341.26 yes 56
24.5 odd 2 inner 504.2.ch.b.269.3 56
24.11 even 2 2016.2.cp.b.17.3 56
28.19 even 6 2016.2.cp.b.593.3 56
56.5 odd 6 inner 504.2.ch.b.341.8 yes 56
56.19 even 6 2016.2.cp.b.593.26 56
84.47 odd 6 2016.2.cp.b.593.25 56
168.5 even 6 inner 504.2.ch.b.341.21 yes 56
168.131 odd 6 2016.2.cp.b.593.4 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.ch.b.269.3 56 24.5 odd 2 inner
504.2.ch.b.269.8 yes 56 3.2 odd 2 inner
504.2.ch.b.269.21 yes 56 1.1 even 1 trivial
504.2.ch.b.269.26 yes 56 8.5 even 2 inner
504.2.ch.b.341.3 yes 56 7.5 odd 6 inner
504.2.ch.b.341.8 yes 56 56.5 odd 6 inner
504.2.ch.b.341.21 yes 56 168.5 even 6 inner
504.2.ch.b.341.26 yes 56 21.5 even 6 inner
2016.2.cp.b.17.3 56 24.11 even 2
2016.2.cp.b.17.4 56 4.3 odd 2
2016.2.cp.b.17.25 56 8.3 odd 2
2016.2.cp.b.17.26 56 12.11 even 2
2016.2.cp.b.593.3 56 28.19 even 6
2016.2.cp.b.593.4 56 168.131 odd 6
2016.2.cp.b.593.25 56 84.47 odd 6
2016.2.cp.b.593.26 56 56.19 even 6