Properties

Label 2016.2.c.e.1009.6
Level $2016$
Weight $2$
Character 2016.1009
Analytic conductor $16.098$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,2,Mod(1009,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.1009"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-8,0,0,0,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.386672896.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} - 2x^{5} + 2x^{4} - 4x^{3} - 4x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1009.6
Root \(1.40961 - 0.114062i\) of defining polynomial
Character \(\chi\) \(=\) 2016.1009
Dual form 2016.2.c.e.1009.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.12875i q^{5} -1.00000 q^{7} -4.76717i q^{11} +0.456247i q^{13} -0.415006 q^{17} +7.63843i q^{19} +1.58499 q^{23} +3.72593 q^{25} -6.72593i q^{29} +5.89592 q^{31} -1.12875i q^{35} +5.89592i q^{37} +0.415006 q^{41} -9.43967i q^{43} +11.2769 q^{47} +1.00000 q^{49} -7.63843i q^{53} +5.38093 q^{55} +4.00000i q^{59} -1.80125i q^{61} -0.514988 q^{65} +8.09467i q^{67} +10.2068 q^{71} -3.34500 q^{73} +4.76717i q^{77} +4.83001 q^{79} +5.53434i q^{83} -0.468436i q^{85} -4.92999 q^{89} -0.456247i q^{91} -8.62185 q^{95} +16.4468 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} - 4 q^{17} + 12 q^{23} - 24 q^{25} - 8 q^{31} + 4 q^{41} + 8 q^{49} + 8 q^{55} + 16 q^{65} - 28 q^{71} - 8 q^{73} + 40 q^{79} - 20 q^{89} + 40 q^{95} + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.12875i 0.504791i 0.967624 + 0.252395i \(0.0812184\pi\)
−0.967624 + 0.252395i \(0.918782\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 4.76717i − 1.43736i −0.695343 0.718678i \(-0.744747\pi\)
0.695343 0.718678i \(-0.255253\pi\)
\(12\) 0 0
\(13\) 0.456247i 0.126540i 0.997996 + 0.0632701i \(0.0201530\pi\)
−0.997996 + 0.0632701i \(0.979847\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.415006 −0.100654 −0.0503268 0.998733i \(-0.516026\pi\)
−0.0503268 + 0.998733i \(0.516026\pi\)
\(18\) 0 0
\(19\) 7.63843i 1.75237i 0.481970 + 0.876187i \(0.339921\pi\)
−0.481970 + 0.876187i \(0.660079\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.58499 0.330494 0.165247 0.986252i \(-0.447158\pi\)
0.165247 + 0.986252i \(0.447158\pi\)
\(24\) 0 0
\(25\) 3.72593 0.745186
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 6.72593i − 1.24897i −0.781035 0.624487i \(-0.785308\pi\)
0.781035 0.624487i \(-0.214692\pi\)
\(30\) 0 0
\(31\) 5.89592 1.05894 0.529469 0.848329i \(-0.322391\pi\)
0.529469 + 0.848329i \(0.322391\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 1.12875i − 0.190793i
\(36\) 0 0
\(37\) 5.89592i 0.969283i 0.874713 + 0.484642i \(0.161050\pi\)
−0.874713 + 0.484642i \(0.838950\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.415006 0.0648130 0.0324065 0.999475i \(-0.489683\pi\)
0.0324065 + 0.999475i \(0.489683\pi\)
\(42\) 0 0
\(43\) − 9.43967i − 1.43954i −0.694214 0.719768i \(-0.744248\pi\)
0.694214 0.719768i \(-0.255752\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.2769 1.64490 0.822449 0.568839i \(-0.192607\pi\)
0.822449 + 0.568839i \(0.192607\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 7.63843i − 1.04922i −0.851343 0.524609i \(-0.824211\pi\)
0.851343 0.524609i \(-0.175789\pi\)
\(54\) 0 0
\(55\) 5.38093 0.725565
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000i 0.520756i 0.965507 + 0.260378i \(0.0838471\pi\)
−0.965507 + 0.260378i \(0.916153\pi\)
\(60\) 0 0
\(61\) − 1.80125i − 0.230626i −0.993329 0.115313i \(-0.963213\pi\)
0.993329 0.115313i \(-0.0367871\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.514988 −0.0638764
\(66\) 0 0
\(67\) 8.09467i 0.988922i 0.869200 + 0.494461i \(0.164634\pi\)
−0.869200 + 0.494461i \(0.835366\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.2068 1.21133 0.605665 0.795720i \(-0.292907\pi\)
0.605665 + 0.795720i \(0.292907\pi\)
\(72\) 0 0
\(73\) −3.34500 −0.391503 −0.195751 0.980654i \(-0.562715\pi\)
−0.195751 + 0.980654i \(0.562715\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.76717i 0.543270i
\(78\) 0 0
\(79\) 4.83001 0.543419 0.271709 0.962379i \(-0.412411\pi\)
0.271709 + 0.962379i \(0.412411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.53434i 0.607473i 0.952756 + 0.303737i \(0.0982343\pi\)
−0.952756 + 0.303737i \(0.901766\pi\)
\(84\) 0 0
\(85\) − 0.468436i − 0.0508090i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.92999 −0.522578 −0.261289 0.965261i \(-0.584148\pi\)
−0.261289 + 0.965261i \(0.584148\pi\)
\(90\) 0 0
\(91\) − 0.456247i − 0.0478277i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.62185 −0.884583
\(96\) 0 0
\(97\) 16.4468 1.66992 0.834962 0.550308i \(-0.185490\pi\)
0.834962 + 0.550308i \(0.185490\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.4056i 1.63242i 0.577757 + 0.816209i \(0.303928\pi\)
−0.577757 + 0.816209i \(0.696072\pi\)
\(102\) 0 0
\(103\) 17.1728 1.69208 0.846042 0.533117i \(-0.178979\pi\)
0.846042 + 0.533117i \(0.178979\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.7672i 1.23425i 0.786865 + 0.617125i \(0.211703\pi\)
−0.786865 + 0.617125i \(0.788297\pi\)
\(108\) 0 0
\(109\) 7.27685i 0.696996i 0.937310 + 0.348498i \(0.113308\pi\)
−0.937310 + 0.348498i \(0.886692\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.34500 0.314671 0.157336 0.987545i \(-0.449710\pi\)
0.157336 + 0.987545i \(0.449710\pi\)
\(114\) 0 0
\(115\) 1.78906i 0.166830i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.415006 0.0380435
\(120\) 0 0
\(121\) −11.7259 −1.06599
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.84937i 0.880954i
\(126\) 0 0
\(127\) 10.4468 0.927007 0.463504 0.886095i \(-0.346592\pi\)
0.463504 + 0.886095i \(0.346592\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 6.25749i − 0.546720i −0.961912 0.273360i \(-0.911865\pi\)
0.961912 0.273360i \(-0.0881350\pi\)
\(132\) 0 0
\(133\) − 7.63843i − 0.662335i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.9618 1.10740 0.553702 0.832715i \(-0.313215\pi\)
0.553702 + 0.832715i \(0.313215\pi\)
\(138\) 0 0
\(139\) − 18.3644i − 1.55764i −0.627245 0.778822i \(-0.715817\pi\)
0.627245 0.778822i \(-0.284183\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.17501 0.181883
\(144\) 0 0
\(145\) 7.59187 0.630471
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 15.6384i − 1.28115i −0.767896 0.640575i \(-0.778696\pi\)
0.767896 0.640575i \(-0.221304\pi\)
\(150\) 0 0
\(151\) −15.2769 −1.24321 −0.621606 0.783330i \(-0.713520\pi\)
−0.621606 + 0.783330i \(0.713520\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.65500i 0.534543i
\(156\) 0 0
\(157\) − 21.7824i − 1.73843i −0.494437 0.869214i \(-0.664626\pi\)
0.494437 0.869214i \(-0.335374\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.58499 −0.124915
\(162\) 0 0
\(163\) − 4.60966i − 0.361056i −0.983570 0.180528i \(-0.942219\pi\)
0.983570 0.180528i \(-0.0577807\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −22.9618 −1.77684 −0.888420 0.459032i \(-0.848196\pi\)
−0.888420 + 0.459032i \(0.848196\pi\)
\(168\) 0 0
\(169\) 12.7918 0.983988
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 0.216252i − 0.0164413i −0.999966 0.00822067i \(-0.997383\pi\)
0.999966 0.00822067i \(-0.00261675\pi\)
\(174\) 0 0
\(175\) −3.72593 −0.281654
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 22.6165i − 1.69044i −0.534419 0.845220i \(-0.679470\pi\)
0.534419 0.845220i \(-0.320530\pi\)
\(180\) 0 0
\(181\) − 7.73310i − 0.574797i −0.957811 0.287398i \(-0.907210\pi\)
0.957811 0.287398i \(-0.0927903\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.65500 −0.489285
\(186\) 0 0
\(187\) 1.97840i 0.144675i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.2068 0.738541 0.369271 0.929322i \(-0.379608\pi\)
0.369271 + 0.929322i \(0.379608\pi\)
\(192\) 0 0
\(193\) 5.96407 0.429303 0.214651 0.976691i \(-0.431138\pi\)
0.214651 + 0.976691i \(0.431138\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.8084i 1.34004i 0.742341 + 0.670022i \(0.233715\pi\)
−0.742341 + 0.670022i \(0.766285\pi\)
\(198\) 0 0
\(199\) −3.27685 −0.232290 −0.116145 0.993232i \(-0.537054\pi\)
−0.116145 + 0.993232i \(0.537054\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.72593i 0.472068i
\(204\) 0 0
\(205\) 0.468436i 0.0327170i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 36.4137 2.51879
\(210\) 0 0
\(211\) 10.1628i 0.699637i 0.936817 + 0.349819i \(0.113757\pi\)
−0.936817 + 0.349819i \(0.886243\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 10.6550 0.726665
\(216\) 0 0
\(217\) −5.89592 −0.400241
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 0.189345i − 0.0127367i
\(222\) 0 0
\(223\) −21.9668 −1.47101 −0.735504 0.677520i \(-0.763055\pi\)
−0.735504 + 0.677520i \(0.763055\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 7.91752i − 0.525504i −0.964863 0.262752i \(-0.915370\pi\)
0.964863 0.262752i \(-0.0846301\pi\)
\(228\) 0 0
\(229\) 13.1606i 0.869676i 0.900509 + 0.434838i \(0.143194\pi\)
−0.900509 + 0.434838i \(0.856806\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.2769 −1.13184 −0.565922 0.824459i \(-0.691480\pi\)
−0.565922 + 0.824459i \(0.691480\pi\)
\(234\) 0 0
\(235\) 12.7287i 0.830330i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.5219 −0.680603 −0.340301 0.940316i \(-0.610529\pi\)
−0.340301 + 0.940316i \(0.610529\pi\)
\(240\) 0 0
\(241\) −6.10686 −0.393378 −0.196689 0.980466i \(-0.563019\pi\)
−0.196689 + 0.980466i \(0.563019\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.12875i 0.0721130i
\(246\) 0 0
\(247\) −3.48501 −0.221746
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.8743i 1.25446i 0.778836 + 0.627228i \(0.215811\pi\)
−0.778836 + 0.627228i \(0.784189\pi\)
\(252\) 0 0
\(253\) − 7.55594i − 0.475038i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.7550 0.920391 0.460195 0.887818i \(-0.347779\pi\)
0.460195 + 0.887818i \(0.347779\pi\)
\(258\) 0 0
\(259\) − 5.89592i − 0.366355i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −15.7600 −0.971804 −0.485902 0.874013i \(-0.661509\pi\)
−0.485902 + 0.874013i \(0.661509\pi\)
\(264\) 0 0
\(265\) 8.62185 0.529636
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 21.8331i − 1.33119i −0.746315 0.665593i \(-0.768179\pi\)
0.746315 0.665593i \(-0.231821\pi\)
\(270\) 0 0
\(271\) 18.8328 1.14401 0.572005 0.820250i \(-0.306166\pi\)
0.572005 + 0.820250i \(0.306166\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 17.7622i − 1.07110i
\(276\) 0 0
\(277\) 24.4684i 1.47017i 0.677977 + 0.735083i \(0.262857\pi\)
−0.677977 + 0.735083i \(0.737143\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −14.5150 −0.865892 −0.432946 0.901420i \(-0.642526\pi\)
−0.432946 + 0.901420i \(0.642526\pi\)
\(282\) 0 0
\(283\) − 16.5509i − 0.983850i −0.870638 0.491925i \(-0.836293\pi\)
0.870638 0.491925i \(-0.163707\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.415006 −0.0244970
\(288\) 0 0
\(289\) −16.8278 −0.989869
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.44377i 0.551711i 0.961199 + 0.275855i \(0.0889611\pi\)
−0.961199 + 0.275855i \(0.911039\pi\)
\(294\) 0 0
\(295\) −4.51499 −0.262873
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.723150i 0.0418208i
\(300\) 0 0
\(301\) 9.43967i 0.544094i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.03315 0.116418
\(306\) 0 0
\(307\) 0.361575i 0.0206362i 0.999947 + 0.0103181i \(0.00328441\pi\)
−0.999947 + 0.0103181i \(0.996716\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.2769 −0.639452 −0.319726 0.947510i \(-0.603591\pi\)
−0.319726 + 0.947510i \(0.603591\pi\)
\(312\) 0 0
\(313\) 25.5837 1.44607 0.723037 0.690809i \(-0.242745\pi\)
0.723037 + 0.690809i \(0.242745\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.361575i 0.0203081i 0.999948 + 0.0101540i \(0.00323218\pi\)
−0.999948 + 0.0101540i \(0.996768\pi\)
\(318\) 0 0
\(319\) −32.0637 −1.79522
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 3.16999i − 0.176383i
\(324\) 0 0
\(325\) 1.69995i 0.0942960i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −11.2769 −0.621713
\(330\) 0 0
\(331\) 7.80403i 0.428948i 0.976730 + 0.214474i \(0.0688037\pi\)
−0.976730 + 0.214474i \(0.931196\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.13684 −0.499199
\(336\) 0 0
\(337\) 8.76186 0.477289 0.238645 0.971107i \(-0.423297\pi\)
0.238645 + 0.971107i \(0.423297\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 28.1069i − 1.52207i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2.07717i − 0.111509i −0.998445 0.0557543i \(-0.982244\pi\)
0.998445 0.0557543i \(-0.0177563\pi\)
\(348\) 0 0
\(349\) 18.7381i 1.00303i 0.865149 + 0.501514i \(0.167224\pi\)
−0.865149 + 0.501514i \(0.832776\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.2450 0.704961 0.352481 0.935819i \(-0.385338\pi\)
0.352481 + 0.935819i \(0.385338\pi\)
\(354\) 0 0
\(355\) 11.5209i 0.611468i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.69186 −0.300405 −0.150202 0.988655i \(-0.547993\pi\)
−0.150202 + 0.988655i \(0.547993\pi\)
\(360\) 0 0
\(361\) −39.3455 −2.07082
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 3.77566i − 0.197627i
\(366\) 0 0
\(367\) −11.2769 −0.588647 −0.294323 0.955706i \(-0.595094\pi\)
−0.294323 + 0.955706i \(0.595094\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.63843i 0.396567i
\(372\) 0 0
\(373\) 7.08751i 0.366977i 0.983022 + 0.183489i \(0.0587390\pi\)
−0.983022 + 0.183489i \(0.941261\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.06869 0.158046
\(378\) 0 0
\(379\) − 6.67781i − 0.343016i −0.985183 0.171508i \(-0.945136\pi\)
0.985183 0.171508i \(-0.0548639\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.6550 −0.953226 −0.476613 0.879113i \(-0.658136\pi\)
−0.476613 + 0.879113i \(0.658136\pi\)
\(384\) 0 0
\(385\) −5.38093 −0.274238
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 20.3428i − 1.03142i −0.856764 0.515709i \(-0.827528\pi\)
0.856764 0.515709i \(-0.172472\pi\)
\(390\) 0 0
\(391\) −0.657782 −0.0332654
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.45186i 0.274313i
\(396\) 0 0
\(397\) 10.9031i 0.547210i 0.961842 + 0.273605i \(0.0882161\pi\)
−0.961842 + 0.273605i \(0.911784\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −29.1756 −1.45696 −0.728479 0.685068i \(-0.759772\pi\)
−0.728479 + 0.685068i \(0.759772\pi\)
\(402\) 0 0
\(403\) 2.69000i 0.133998i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 28.1069 1.39321
\(408\) 0 0
\(409\) −31.7237 −1.56864 −0.784318 0.620359i \(-0.786987\pi\)
−0.784318 + 0.620359i \(0.786987\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 4.00000i − 0.196827i
\(414\) 0 0
\(415\) −6.24687 −0.306647
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 19.2769i − 0.941736i −0.882204 0.470868i \(-0.843941\pi\)
0.882204 0.470868i \(-0.156059\pi\)
\(420\) 0 0
\(421\) − 19.3234i − 0.941765i −0.882196 0.470882i \(-0.843936\pi\)
0.882196 0.470882i \(-0.156064\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.54628 −0.0750057
\(426\) 0 0
\(427\) 1.80125i 0.0871684i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.4150 0.694346 0.347173 0.937801i \(-0.387142\pi\)
0.347173 + 0.937801i \(0.387142\pi\)
\(432\) 0 0
\(433\) −9.27685 −0.445817 −0.222908 0.974839i \(-0.571555\pi\)
−0.222908 + 0.974839i \(0.571555\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.1069i 0.579150i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 15.6465i − 0.743388i −0.928355 0.371694i \(-0.878777\pi\)
0.928355 0.371694i \(-0.121223\pi\)
\(444\) 0 0
\(445\) − 5.56472i − 0.263793i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.6550 0.597226 0.298613 0.954374i \(-0.403476\pi\)
0.298613 + 0.954374i \(0.403476\pi\)
\(450\) 0 0
\(451\) − 1.97840i − 0.0931594i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.514988 0.0241430
\(456\) 0 0
\(457\) −23.9237 −1.11910 −0.559551 0.828796i \(-0.689026\pi\)
−0.559551 + 0.828796i \(0.689026\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.74558i 0.314173i 0.987585 + 0.157086i \(0.0502101\pi\)
−0.987585 + 0.157086i \(0.949790\pi\)
\(462\) 0 0
\(463\) 11.1700 0.519113 0.259557 0.965728i \(-0.416424\pi\)
0.259557 + 0.965728i \(0.416424\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 3.70935i − 0.171648i −0.996310 0.0858242i \(-0.972648\pi\)
0.996310 0.0858242i \(-0.0273523\pi\)
\(468\) 0 0
\(469\) − 8.09467i − 0.373777i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −45.0005 −2.06913
\(474\) 0 0
\(475\) 28.4602i 1.30585i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.17501 −0.0993788 −0.0496894 0.998765i \(-0.515823\pi\)
−0.0496894 + 0.998765i \(0.515823\pi\)
\(480\) 0 0
\(481\) −2.69000 −0.122653
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.5643i 0.842962i
\(486\) 0 0
\(487\) 4.51499 0.204594 0.102297 0.994754i \(-0.467381\pi\)
0.102297 + 0.994754i \(0.467381\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.91221i 0.0862967i 0.999069 + 0.0431483i \(0.0137388\pi\)
−0.999069 + 0.0431483i \(0.986261\pi\)
\(492\) 0 0
\(493\) 2.79130i 0.125714i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.2068 −0.457840
\(498\) 0 0
\(499\) 27.4065i 1.22688i 0.789740 + 0.613442i \(0.210216\pi\)
−0.789740 + 0.613442i \(0.789784\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.1368 0.764094 0.382047 0.924143i \(-0.375219\pi\)
0.382047 + 0.924143i \(0.375219\pi\)
\(504\) 0 0
\(505\) −18.5178 −0.824030
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.6437i 0.959342i 0.877449 + 0.479671i \(0.159244\pi\)
−0.877449 + 0.479671i \(0.840756\pi\)
\(510\) 0 0
\(511\) 3.34500 0.147974
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.3837i 0.854148i
\(516\) 0 0
\(517\) − 53.7587i − 2.36430i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.3137 −1.24045 −0.620223 0.784426i \(-0.712958\pi\)
−0.620223 + 0.784426i \(0.712958\pi\)
\(522\) 0 0
\(523\) − 15.0687i − 0.658908i −0.944172 0.329454i \(-0.893135\pi\)
0.944172 0.329454i \(-0.106865\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.44684 −0.106586
\(528\) 0 0
\(529\) −20.4878 −0.890774
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.189345i 0.00820145i
\(534\) 0 0
\(535\) −14.4109 −0.623038
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 4.76717i − 0.205337i
\(540\) 0 0
\(541\) − 46.2990i − 1.99055i −0.0971017 0.995274i \(-0.530957\pi\)
0.0971017 0.995274i \(-0.469043\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.21372 −0.351837
\(546\) 0 0
\(547\) 2.03714i 0.0871020i 0.999051 + 0.0435510i \(0.0138671\pi\)
−0.999051 + 0.0435510i \(0.986133\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 51.3755 2.18867
\(552\) 0 0
\(553\) −4.83001 −0.205393
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.1234i 0.471315i 0.971836 + 0.235658i \(0.0757244\pi\)
−0.971836 + 0.235658i \(0.924276\pi\)
\(558\) 0 0
\(559\) 4.30683 0.182159
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 37.2437i 1.56963i 0.619727 + 0.784817i \(0.287243\pi\)
−0.619727 + 0.784817i \(0.712757\pi\)
\(564\) 0 0
\(565\) 3.77566i 0.158843i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.9369 −0.961564 −0.480782 0.876840i \(-0.659647\pi\)
−0.480782 + 0.876840i \(0.659647\pi\)
\(570\) 0 0
\(571\) − 35.1634i − 1.47154i −0.677231 0.735770i \(-0.736820\pi\)
0.677231 0.735770i \(-0.263180\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.90558 0.246280
\(576\) 0 0
\(577\) 13.7918 0.574162 0.287081 0.957906i \(-0.407315\pi\)
0.287081 + 0.957906i \(0.407315\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 5.53434i − 0.229603i
\(582\) 0 0
\(583\) −36.4137 −1.50810
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 26.9862i − 1.11384i −0.830566 0.556920i \(-0.811983\pi\)
0.830566 0.556920i \(-0.188017\pi\)
\(588\) 0 0
\(589\) 45.0355i 1.85566i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.8337 1.30725 0.653627 0.756817i \(-0.273247\pi\)
0.653627 + 0.756817i \(0.273247\pi\)
\(594\) 0 0
\(595\) 0.468436i 0.0192040i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −34.9006 −1.42600 −0.712999 0.701165i \(-0.752664\pi\)
−0.712999 + 0.701165i \(0.752664\pi\)
\(600\) 0 0
\(601\) −0.175010 −0.00713881 −0.00356941 0.999994i \(-0.501136\pi\)
−0.00356941 + 0.999994i \(0.501136\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 13.2356i − 0.538104i
\(606\) 0 0
\(607\) 32.1705 1.30576 0.652881 0.757461i \(-0.273560\pi\)
0.652881 + 0.757461i \(0.273560\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.14503i 0.208146i
\(612\) 0 0
\(613\) − 8.37869i − 0.338412i −0.985581 0.169206i \(-0.945880\pi\)
0.985581 0.169206i \(-0.0541203\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −28.9618 −1.16596 −0.582980 0.812487i \(-0.698113\pi\)
−0.582980 + 0.812487i \(0.698113\pi\)
\(618\) 0 0
\(619\) − 6.85497i − 0.275524i −0.990465 0.137762i \(-0.956009\pi\)
0.990465 0.137762i \(-0.0439910\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.92999 0.197516
\(624\) 0 0
\(625\) 7.51221 0.300488
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 2.44684i − 0.0975619i
\(630\) 0 0
\(631\) 40.2055 1.60056 0.800278 0.599629i \(-0.204685\pi\)
0.800278 + 0.599629i \(0.204685\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11.7918i 0.467945i
\(636\) 0 0
\(637\) 0.456247i 0.0180772i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.0737 0.950854 0.475427 0.879755i \(-0.342294\pi\)
0.475427 + 0.879755i \(0.342294\pi\)
\(642\) 0 0
\(643\) − 23.7559i − 0.936841i −0.883506 0.468421i \(-0.844823\pi\)
0.883506 0.468421i \(-0.155177\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −32.6218 −1.28250 −0.641249 0.767333i \(-0.721583\pi\)
−0.641249 + 0.767333i \(0.721583\pi\)
\(648\) 0 0
\(649\) 19.0687 0.748512
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.4109i 0.563942i 0.959423 + 0.281971i \(0.0909883\pi\)
−0.959423 + 0.281971i \(0.909012\pi\)
\(654\) 0 0
\(655\) 7.06313 0.275979
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23.3315i 0.908866i 0.890781 + 0.454433i \(0.150158\pi\)
−0.890781 + 0.454433i \(0.849842\pi\)
\(660\) 0 0
\(661\) 44.1468i 1.71711i 0.512721 + 0.858555i \(0.328638\pi\)
−0.512721 + 0.858555i \(0.671362\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.62185 0.334341
\(666\) 0 0
\(667\) − 10.6606i − 0.412779i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.58685 −0.331492
\(672\) 0 0
\(673\) 11.6960 0.450846 0.225423 0.974261i \(-0.427624\pi\)
0.225423 + 0.974261i \(0.427624\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 0.648756i − 0.0249337i −0.999922 0.0124669i \(-0.996032\pi\)
0.999922 0.0124669i \(-0.00396843\pi\)
\(678\) 0 0
\(679\) −16.4468 −0.631172
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.4909i 0.860589i 0.902689 + 0.430294i \(0.141590\pi\)
−0.902689 + 0.430294i \(0.858410\pi\)
\(684\) 0 0
\(685\) 14.6306i 0.559007i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.48501 0.132768
\(690\) 0 0
\(691\) − 45.2681i − 1.72208i −0.508538 0.861039i \(-0.669814\pi\)
0.508538 0.861039i \(-0.330186\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 20.7287 0.786285
\(696\) 0 0
\(697\) −0.172230 −0.00652366
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.03091i 0.0389370i 0.999810 + 0.0194685i \(0.00619740\pi\)
−0.999810 + 0.0194685i \(0.993803\pi\)
\(702\) 0 0
\(703\) −45.0355 −1.69855
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 16.4056i − 0.616996i
\(708\) 0 0
\(709\) − 10.5481i − 0.396144i −0.980188 0.198072i \(-0.936532\pi\)
0.980188 0.198072i \(-0.0634679\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.34500 0.349973
\(714\) 0 0
\(715\) 2.45504i 0.0918131i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.00502 −0.261243 −0.130622 0.991432i \(-0.541697\pi\)
−0.130622 + 0.991432i \(0.541697\pi\)
\(720\) 0 0
\(721\) −17.1728 −0.639547
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 25.0603i − 0.930718i
\(726\) 0 0
\(727\) 17.8028 0.660270 0.330135 0.943934i \(-0.392906\pi\)
0.330135 + 0.943934i \(0.392906\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.91752i 0.144895i
\(732\) 0 0
\(733\) − 34.3300i − 1.26801i −0.773330 0.634004i \(-0.781410\pi\)
0.773330 0.634004i \(-0.218590\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 38.5887 1.42143
\(738\) 0 0
\(739\) − 0.0946726i − 0.00348259i −0.999998 0.00174129i \(-0.999446\pi\)
0.999998 0.00174129i \(-0.000554271\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.2755 −0.487032 −0.243516 0.969897i \(-0.578301\pi\)
−0.243516 + 0.969897i \(0.578301\pi\)
\(744\) 0 0
\(745\) 17.6518 0.646713
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 12.7672i − 0.466502i
\(750\) 0 0
\(751\) −15.4187 −0.562637 −0.281318 0.959615i \(-0.590772\pi\)
−0.281318 + 0.959615i \(0.590772\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 17.2437i − 0.627562i
\(756\) 0 0
\(757\) − 9.96685i − 0.362251i −0.983460 0.181126i \(-0.942026\pi\)
0.983460 0.181126i \(-0.0579741\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23.4837 −0.851283 −0.425642 0.904892i \(-0.639952\pi\)
−0.425642 + 0.904892i \(0.639952\pi\)
\(762\) 0 0
\(763\) − 7.27685i − 0.263440i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.82499 −0.0658966
\(768\) 0 0
\(769\) 22.9369 0.827125 0.413562 0.910476i \(-0.364284\pi\)
0.413562 + 0.910476i \(0.364284\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 35.0956i 1.26230i 0.775660 + 0.631150i \(0.217417\pi\)
−0.775660 + 0.631150i \(0.782583\pi\)
\(774\) 0 0
\(775\) 21.9678 0.789106
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.16999i 0.113577i
\(780\) 0 0
\(781\) − 48.6578i − 1.74111i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 24.5869 0.877542
\(786\) 0 0
\(787\) 17.9480i 0.639778i 0.947455 + 0.319889i \(0.103646\pi\)
−0.947455 + 0.319889i \(0.896354\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.34500 −0.118934
\(792\) 0 0
\(793\) 0.821814 0.0291835
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 34.4199i − 1.21922i −0.792703 0.609608i \(-0.791327\pi\)
0.792703 0.609608i \(-0.208673\pi\)
\(798\) 0 0
\(799\) −4.67996 −0.165565
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 15.9462i 0.562729i
\(804\) 0 0
\(805\) − 1.78906i − 0.0630560i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.89314 −0.0665592 −0.0332796 0.999446i \(-0.510595\pi\)
−0.0332796 + 0.999446i \(0.510595\pi\)
\(810\) 0 0
\(811\) 10.3400i 0.363086i 0.983383 + 0.181543i \(0.0581091\pi\)
−0.983383 + 0.181543i \(0.941891\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.20314 0.182258
\(816\) 0 0
\(817\) 72.1042 2.52261
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.40029i 0.0837706i 0.999122 + 0.0418853i \(0.0133364\pi\)
−0.999122 + 0.0418853i \(0.986664\pi\)
\(822\) 0 0
\(823\) −25.8655 −0.901616 −0.450808 0.892621i \(-0.648864\pi\)
−0.450808 + 0.892621i \(0.648864\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 17.0928i − 0.594375i −0.954819 0.297188i \(-0.903951\pi\)
0.954819 0.297188i \(-0.0960487\pi\)
\(828\) 0 0
\(829\) 41.8893i 1.45488i 0.686174 + 0.727438i \(0.259289\pi\)
−0.686174 + 0.727438i \(0.740711\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.415006 −0.0143791
\(834\) 0 0
\(835\) − 25.9181i − 0.896933i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.5500 −0.847560 −0.423780 0.905765i \(-0.639297\pi\)
−0.423780 + 0.905765i \(0.639297\pi\)
\(840\) 0 0
\(841\) −16.2381 −0.559936
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 14.4387i 0.496708i
\(846\) 0 0
\(847\) 11.7259 0.402908
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 9.34500i 0.320342i
\(852\) 0 0
\(853\) 38.7193i 1.32572i 0.748742 + 0.662862i \(0.230658\pi\)
−0.748742 + 0.662862i \(0.769342\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45.2074 1.54425 0.772127 0.635468i \(-0.219193\pi\)
0.772127 + 0.635468i \(0.219193\pi\)
\(858\) 0 0
\(859\) 57.1890i 1.95126i 0.219418 + 0.975631i \(0.429584\pi\)
−0.219418 + 0.975631i \(0.570416\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −45.1106 −1.53558 −0.767791 0.640701i \(-0.778644\pi\)
−0.767791 + 0.640701i \(0.778644\pi\)
\(864\) 0 0
\(865\) 0.244094 0.00829944
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 23.0255i − 0.781086i
\(870\) 0 0
\(871\) −3.69317 −0.125138
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 9.84937i − 0.332969i
\(876\) 0 0
\(877\) 17.6600i 0.596337i 0.954513 + 0.298168i \(0.0963757\pi\)
−0.954513 + 0.298168i \(0.903624\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −6.78998 −0.228760 −0.114380 0.993437i \(-0.536488\pi\)
−0.114380 + 0.993437i \(0.536488\pi\)
\(882\) 0 0
\(883\) 28.6015i 0.962516i 0.876579 + 0.481258i \(0.159820\pi\)
−0.876579 + 0.481258i \(0.840180\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23.5919 0.792138 0.396069 0.918221i \(-0.370374\pi\)
0.396069 + 0.918221i \(0.370374\pi\)
\(888\) 0 0
\(889\) −10.4468 −0.350376
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 86.1374i 2.88248i
\(894\) 0 0
\(895\) 25.5284 0.853319
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 39.6555i − 1.32259i
\(900\) 0 0
\(901\) 3.16999i 0.105608i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.72871 0.290152
\(906\) 0 0
\(907\) 2.02096i 0.0671050i 0.999437 + 0.0335525i \(0.0106821\pi\)
−0.999437 + 0.0335525i \(0.989318\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 52.5524 1.74114 0.870569 0.492046i \(-0.163751\pi\)
0.870569 + 0.492046i \(0.163751\pi\)
\(912\) 0 0
\(913\) 26.3832 0.873156
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.25749i 0.206641i
\(918\) 0 0
\(919\) −21.5237 −0.710002 −0.355001 0.934866i \(-0.615520\pi\)
−0.355001 + 0.934866i \(0.615520\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.65685i 0.153282i
\(924\) 0 0
\(925\) 21.9678i 0.722296i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15.7500 0.516739 0.258370 0.966046i \(-0.416815\pi\)
0.258370 + 0.966046i \(0.416815\pi\)
\(930\) 0 0
\(931\) 7.63843i 0.250339i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.23312 −0.0730307
\(936\) 0 0
\(937\) 17.0687 0.557610 0.278805 0.960348i \(-0.410062\pi\)
0.278805 + 0.960348i \(0.410062\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 26.5456i − 0.865362i −0.901547 0.432681i \(-0.857568\pi\)
0.901547 0.432681i \(-0.142432\pi\)
\(942\) 0 0
\(943\) 0.657782 0.0214203
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.3265i 0.660522i 0.943890 + 0.330261i \(0.107137\pi\)
−0.943890 + 0.330261i \(0.892863\pi\)
\(948\) 0 0
\(949\) − 1.52615i − 0.0495408i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38.6855 1.25315 0.626573 0.779362i \(-0.284457\pi\)
0.626573 + 0.779362i \(0.284457\pi\)
\(954\) 0 0
\(955\) 11.5209i 0.372809i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.9618 −0.418559
\(960\) 0 0
\(961\) 3.76186 0.121350
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.73192i 0.216708i
\(966\) 0 0
\(967\) 26.6606 0.857346 0.428673 0.903460i \(-0.358981\pi\)
0.428673 + 0.903460i \(0.358981\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.27685i 0.105159i 0.998617 + 0.0525796i \(0.0167443\pi\)
−0.998617 + 0.0525796i \(0.983256\pi\)
\(972\) 0 0
\(973\) 18.3644i 0.588734i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −12.0387 −0.385153 −0.192576 0.981282i \(-0.561684\pi\)
−0.192576 + 0.981282i \(0.561684\pi\)
\(978\) 0 0
\(979\) 23.5021i 0.751131i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.42188 0.141036 0.0705181 0.997510i \(-0.477535\pi\)
0.0705181 + 0.997510i \(0.477535\pi\)
\(984\) 0 0
\(985\) −21.2299 −0.676442
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 14.9618i − 0.475758i
\(990\) 0 0
\(991\) 9.10184 0.289129 0.144565 0.989495i \(-0.453822\pi\)
0.144565 + 0.989495i \(0.453822\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 3.69873i − 0.117258i
\(996\) 0 0
\(997\) − 42.8556i − 1.35725i −0.734485 0.678625i \(-0.762576\pi\)
0.734485 0.678625i \(-0.237424\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.2.c.e.1009.6 8
3.2 odd 2 672.2.c.b.337.6 8
4.3 odd 2 504.2.c.f.253.7 8
8.3 odd 2 504.2.c.f.253.8 8
8.5 even 2 inner 2016.2.c.e.1009.3 8
12.11 even 2 168.2.c.b.85.2 yes 8
21.20 even 2 4704.2.c.c.2353.3 8
24.5 odd 2 672.2.c.b.337.3 8
24.11 even 2 168.2.c.b.85.1 8
48.5 odd 4 5376.2.a.bq.1.3 4
48.11 even 4 5376.2.a.bm.1.3 4
48.29 odd 4 5376.2.a.bl.1.2 4
48.35 even 4 5376.2.a.bp.1.2 4
84.83 odd 2 1176.2.c.c.589.2 8
168.83 odd 2 1176.2.c.c.589.1 8
168.125 even 2 4704.2.c.c.2353.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.c.b.85.1 8 24.11 even 2
168.2.c.b.85.2 yes 8 12.11 even 2
504.2.c.f.253.7 8 4.3 odd 2
504.2.c.f.253.8 8 8.3 odd 2
672.2.c.b.337.3 8 24.5 odd 2
672.2.c.b.337.6 8 3.2 odd 2
1176.2.c.c.589.1 8 168.83 odd 2
1176.2.c.c.589.2 8 84.83 odd 2
2016.2.c.e.1009.3 8 8.5 even 2 inner
2016.2.c.e.1009.6 8 1.1 even 1 trivial
4704.2.c.c.2353.3 8 21.20 even 2
4704.2.c.c.2353.6 8 168.125 even 2
5376.2.a.bl.1.2 4 48.29 odd 4
5376.2.a.bm.1.3 4 48.11 even 4
5376.2.a.bp.1.2 4 48.35 even 4
5376.2.a.bq.1.3 4 48.5 odd 4