Properties

Label 2-2016-8.5-c1-0-14
Degree $2$
Conductor $2016$
Sign $0.996 - 0.0806i$
Analytic cond. $16.0978$
Root an. cond. $4.01221$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.12i·5-s − 7-s − 4.76i·11-s + 0.456i·13-s − 0.415·17-s + 7.63i·19-s + 1.58·23-s + 3.72·25-s − 6.72i·29-s + 5.89·31-s − 1.12i·35-s + 5.89i·37-s + 0.415·41-s − 9.43i·43-s + 11.2·47-s + ⋯
L(s)  = 1  + 0.504i·5-s − 0.377·7-s − 1.43i·11-s + 0.126i·13-s − 0.100·17-s + 1.75i·19-s + 0.330·23-s + 0.745·25-s − 1.24i·29-s + 1.05·31-s − 0.190i·35-s + 0.969i·37-s + 0.0648·41-s − 1.43i·43-s + 1.64·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0806i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0806i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2016\)    =    \(2^{5} \cdot 3^{2} \cdot 7\)
Sign: $0.996 - 0.0806i$
Analytic conductor: \(16.0978\)
Root analytic conductor: \(4.01221\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2016} (1009, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2016,\ (\ :1/2),\ 0.996 - 0.0806i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.650014974\)
\(L(\frac12)\) \(\approx\) \(1.650014974\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 - 1.12iT - 5T^{2} \)
11 \( 1 + 4.76iT - 11T^{2} \)
13 \( 1 - 0.456iT - 13T^{2} \)
17 \( 1 + 0.415T + 17T^{2} \)
19 \( 1 - 7.63iT - 19T^{2} \)
23 \( 1 - 1.58T + 23T^{2} \)
29 \( 1 + 6.72iT - 29T^{2} \)
31 \( 1 - 5.89T + 31T^{2} \)
37 \( 1 - 5.89iT - 37T^{2} \)
41 \( 1 - 0.415T + 41T^{2} \)
43 \( 1 + 9.43iT - 43T^{2} \)
47 \( 1 - 11.2T + 47T^{2} \)
53 \( 1 + 7.63iT - 53T^{2} \)
59 \( 1 - 4iT - 59T^{2} \)
61 \( 1 + 1.80iT - 61T^{2} \)
67 \( 1 - 8.09iT - 67T^{2} \)
71 \( 1 - 10.2T + 71T^{2} \)
73 \( 1 + 3.34T + 73T^{2} \)
79 \( 1 - 4.83T + 79T^{2} \)
83 \( 1 - 5.53iT - 83T^{2} \)
89 \( 1 + 4.92T + 89T^{2} \)
97 \( 1 - 16.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.060297316618011360393908267875, −8.383244326301526406932086338756, −7.68893255201751616763650769989, −6.63396725537727447962734466408, −6.09970454820497602871831609113, −5.31265918490980503961840664810, −4.02302140691680418599375545910, −3.33331824525136858158142700221, −2.38436653837675331480194855860, −0.854943387791684233019425816412, 0.873376450381500187089627446108, 2.24344426066357262656921425869, 3.17737185504720546932259692444, 4.59479440538624739880361937631, 4.78647708173012603618860300187, 5.98894136767419643234945281007, 6.99786744355401008955885573196, 7.34388447148809585935172946547, 8.541630237300879767005009060131, 9.166963177113108615260778276429

Graph of the $Z$-function along the critical line