Properties

Label 201.4.a.c
Level $201$
Weight $4$
Character orbit 201.a
Self dual yes
Analytic conductor $11.859$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [201,4,Mod(1,201)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("201.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(201, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 201 = 3 \cdot 67 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 201.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.8593839112\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 38x^{5} + 18x^{4} + 373x^{3} - 151x^{2} - 956x + 498 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 3 q^{3} + (\beta_{2} + \beta_1 + 3) q^{4} + (\beta_{5} - \beta_{2} + 1) q^{5} + 3 \beta_1 q^{6} + ( - \beta_{6} - 2 \beta_{5} + \beta_{4} - 4) q^{7} + (2 \beta_{6} - \beta_{5} - 2 \beta_{4} + \cdots - 6) q^{8}+ \cdots + (18 \beta_{6} - 9 \beta_{5} + \cdots - 171) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} - 21 q^{3} + 21 q^{4} + 11 q^{5} + 3 q^{6} - 33 q^{7} - 45 q^{8} + 63 q^{9} - 51 q^{10} - 130 q^{11} - 63 q^{12} + 16 q^{13} + 5 q^{14} - 33 q^{15} + 77 q^{16} + 90 q^{17} - 9 q^{18} - 132 q^{19}+ \cdots - 1170 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 38x^{5} + 18x^{4} + 373x^{3} - 151x^{2} - 956x + 498 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 47\nu^{5} + 27\nu^{4} + 1339\nu^{3} - 408\nu^{2} - 6314\nu + 1966 ) / 466 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -25\nu^{6} + 10\nu^{5} + 956\nu^{4} + 310\nu^{3} - 9139\nu^{2} - 5250\nu + 17954 ) / 932 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -35\nu^{6} + 14\nu^{5} + 1152\nu^{4} + 434\nu^{3} - 7389\nu^{2} - 4554\nu + 4818 ) / 932 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -87\nu^{6} + 128\nu^{5} + 3010\nu^{4} - 2556\nu^{3} - 23919\nu^{2} + 13418\nu + 32134 ) / 1864 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{6} + \beta_{5} + 2\beta_{4} - \beta_{3} + \beta_{2} + 18\beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -5\beta_{5} + 7\beta_{4} + 29\beta_{2} + 44\beta _1 + 210 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -58\beta_{6} + 22\beta_{5} + 67\beta_{4} - 39\beta_{3} + 53\beta_{2} + 427\beta _1 + 343 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -48\beta_{6} - 170\beta_{5} + 282\beta_{4} - 28\beta_{3} + 777\beta_{2} + 1501\beta _1 + 4939 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.41567
3.01477
1.85609
0.535294
−2.11972
−3.26131
−4.44080
−5.41567 −3.00000 21.3295 −5.98460 16.2470 0.240383 −72.1883 9.00000 32.4106
1.2 −3.01477 −3.00000 1.08886 14.7190 9.04432 −32.2394 20.8355 9.00000 −44.3744
1.3 −1.85609 −3.00000 −4.55494 −4.35854 5.56826 17.6123 23.3031 9.00000 8.08983
1.4 −0.535294 −3.00000 −7.71346 12.7037 1.60588 −8.67573 8.41132 9.00000 −6.80020
1.5 2.11972 −3.00000 −3.50678 1.76139 −6.35917 22.2326 −24.3912 9.00000 3.73365
1.6 3.26131 −3.00000 2.63612 7.83356 −9.78392 −27.8825 −17.4933 9.00000 25.5476
1.7 4.44080 −3.00000 11.7207 −15.6745 −13.3224 −4.28763 16.5228 9.00000 −69.6071
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(67\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 201.4.a.c 7
3.b odd 2 1 603.4.a.c 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
201.4.a.c 7 1.a even 1 1 trivial
603.4.a.c 7 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{7} + T_{2}^{6} - 38T_{2}^{5} - 18T_{2}^{4} + 373T_{2}^{3} + 151T_{2}^{2} - 956T_{2} - 498 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(201))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + T^{6} + \cdots - 498 \) Copy content Toggle raw display
$3$ \( (T + 3)^{7} \) Copy content Toggle raw display
$5$ \( T^{7} - 11 T^{6} + \cdots + 1054848 \) Copy content Toggle raw display
$7$ \( T^{7} + 33 T^{6} + \cdots - 3147392 \) Copy content Toggle raw display
$11$ \( T^{7} + \cdots + 3855752448 \) Copy content Toggle raw display
$13$ \( T^{7} + \cdots + 36060533248 \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots + 47177769168 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots + 2352293777728 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots + 176992942356 \) Copy content Toggle raw display
$29$ \( T^{7} + \cdots - 154337966321664 \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots + 6536744991936 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots + 18\!\cdots\!52 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots + 17\!\cdots\!28 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots + 15\!\cdots\!28 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots - 50\!\cdots\!08 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots + 42\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots + 18\!\cdots\!88 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots + 34\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( (T - 67)^{7} \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots - 10\!\cdots\!92 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots + 22\!\cdots\!52 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots + 18\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots + 50\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots - 19\!\cdots\!92 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots - 88\!\cdots\!16 \) Copy content Toggle raw display
show more
show less