Defining parameters
| Level: | \( N \) | \(=\) | \( 201 = 3 \cdot 67 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 201.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(90\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(201))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 70 | 34 | 36 |
| Cusp forms | 66 | 34 | 32 |
| Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(67\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(19\) | \(9\) | \(10\) | \(18\) | \(9\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(16\) | \(8\) | \(8\) | \(15\) | \(8\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(16\) | \(6\) | \(10\) | \(15\) | \(6\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(19\) | \(11\) | \(8\) | \(18\) | \(11\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(38\) | \(20\) | \(18\) | \(36\) | \(20\) | \(16\) | \(2\) | \(0\) | \(2\) | ||||
| Minus space | \(-\) | \(32\) | \(14\) | \(18\) | \(30\) | \(14\) | \(16\) | \(2\) | \(0\) | \(2\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(201))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 67 | |||||||
| 201.4.a.a | $1$ | $11.859$ | \(\Q\) | None | \(-4\) | \(-3\) | \(-19\) | \(13\) | $+$ | $-$ | \(q-4q^{2}-3q^{3}+8q^{4}-19q^{5}+12q^{6}+\cdots\) | |
| 201.4.a.b | $6$ | $11.859$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-5\) | \(18\) | \(-12\) | \(-62\) | $-$ | $+$ | \(q+(-1+\beta _{1})q^{2}+3q^{3}+(2-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) | |
| 201.4.a.c | $7$ | $11.859$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(-1\) | \(-21\) | \(11\) | \(-33\) | $+$ | $-$ | \(q-\beta _{1}q^{2}-3q^{3}+(3+\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
| 201.4.a.d | $9$ | $11.859$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(3\) | \(-27\) | \(12\) | \(8\) | $+$ | $+$ | \(q+\beta _{1}q^{2}-3q^{3}+(5+\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
| 201.4.a.e | $11$ | $11.859$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(3\) | \(33\) | \(8\) | \(78\) | $-$ | $-$ | \(q+\beta _{1}q^{2}+3q^{3}+(6+\beta _{2})q^{4}+(1-\beta _{3}+\cdots)q^{5}+\cdots\) | |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(201))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(201)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(67))\)\(^{\oplus 2}\)