Properties

Label 201.4.a
Level $201$
Weight $4$
Character orbit 201.a
Rep. character $\chi_{201}(1,\cdot)$
Character field $\Q$
Dimension $34$
Newform subspaces $5$
Sturm bound $90$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 201 = 3 \cdot 67 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 201.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(90\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(201))\).

Total New Old
Modular forms 70 34 36
Cusp forms 66 34 32
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(67\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(19\)\(9\)\(10\)\(18\)\(9\)\(9\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(16\)\(8\)\(8\)\(15\)\(8\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(16\)\(6\)\(10\)\(15\)\(6\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(19\)\(11\)\(8\)\(18\)\(11\)\(7\)\(1\)\(0\)\(1\)
Plus space\(+\)\(38\)\(20\)\(18\)\(36\)\(20\)\(16\)\(2\)\(0\)\(2\)
Minus space\(-\)\(32\)\(14\)\(18\)\(30\)\(14\)\(16\)\(2\)\(0\)\(2\)

Trace form

\( 34 q - 4 q^{2} + 156 q^{4} + 4 q^{7} - 48 q^{8} + 306 q^{9} - 12 q^{10} + 24 q^{12} - 144 q^{13} + 192 q^{14} - 24 q^{15} + 644 q^{16} - 8 q^{17} - 36 q^{18} + 60 q^{19} - 32 q^{20} + 84 q^{21} - 152 q^{22}+ \cdots - 1628 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(201))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 67
201.4.a.a 201.a 1.a $1$ $11.859$ \(\Q\) None 201.4.a.a \(-4\) \(-3\) \(-19\) \(13\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}-3q^{3}+8q^{4}-19q^{5}+12q^{6}+\cdots\)
201.4.a.b 201.a 1.a $6$ $11.859$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 201.4.a.b \(-5\) \(18\) \(-12\) \(-62\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+3q^{3}+(2-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
201.4.a.c 201.a 1.a $7$ $11.859$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 201.4.a.c \(-1\) \(-21\) \(11\) \(-33\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-3q^{3}+(3+\beta _{1}+\beta _{2})q^{4}+\cdots\)
201.4.a.d 201.a 1.a $9$ $11.859$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 201.4.a.d \(3\) \(-27\) \(12\) \(8\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-3q^{3}+(5+\beta _{1}+\beta _{2})q^{4}+\cdots\)
201.4.a.e 201.a 1.a $11$ $11.859$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 201.4.a.e \(3\) \(33\) \(8\) \(78\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+3q^{3}+(6+\beta _{2})q^{4}+(1-\beta _{3}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(201))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(201)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(67))\)\(^{\oplus 2}\)