Properties

Label 2000.2.c.i.1249.7
Level $2000$
Weight $2$
Character 2000.1249
Analytic conductor $15.970$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2000,2,Mod(1249,2000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2000.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2000 = 2^{4} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2000.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-22,0,-10,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.9700804043\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.25728160000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{6} + 181x^{4} + 540x^{2} + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1000)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.7
Root \(2.65792i\) of defining polynomial
Character \(\chi\) \(=\) 2000.1249
Dual form 2000.2.c.i.1249.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.65792i q^{3} -4.68257i q^{7} -4.06454 q^{9} +0.0398855 q^{11} +1.02465i q^{13} +4.95852i q^{17} -8.21924 q^{19} +12.4459 q^{21} -4.15471i q^{23} -2.82945i q^{27} +0.878753 q^{29} -5.45690 q^{31} +0.106013i q^{33} -9.51202i q^{37} -2.72344 q^{39} -5.28378 q^{41} -8.95852i q^{43} -9.09017i q^{47} -14.9265 q^{49} -13.1794 q^{51} -1.18095i q^{53} -21.8461i q^{57} +9.34049 q^{59} +2.57815 q^{61} +19.0325i q^{63} +8.46015i q^{67} +11.0429 q^{69} -15.0383 q^{71} -3.58597i q^{73} -0.186767i q^{77} -10.2439 q^{79} -4.67315 q^{81} -9.65890i q^{83} +2.33565i q^{87} -0.759096 q^{89} +4.79800 q^{91} -14.5040i q^{93} -6.67217i q^{97} -0.162116 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 22 q^{9} - 10 q^{11} + 6 q^{21} - 20 q^{29} - 18 q^{31} + 42 q^{39} + 34 q^{41} - 34 q^{49} - 50 q^{51} + 36 q^{59} + 22 q^{61} + 16 q^{69} - 52 q^{71} - 16 q^{79} - 8 q^{81} - 10 q^{89} + 66 q^{91}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2000\mathbb{Z}\right)^\times\).

\(n\) \(501\) \(751\) \(1377\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.65792i 1.53455i 0.641318 + 0.767275i \(0.278388\pi\)
−0.641318 + 0.767275i \(0.721612\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.68257i − 1.76985i −0.465738 0.884923i \(-0.654211\pi\)
0.465738 0.884923i \(-0.345789\pi\)
\(8\) 0 0
\(9\) −4.06454 −1.35485
\(10\) 0 0
\(11\) 0.0398855 0.0120259 0.00601297 0.999982i \(-0.498086\pi\)
0.00601297 + 0.999982i \(0.498086\pi\)
\(12\) 0 0
\(13\) 1.02465i 0.284187i 0.989853 + 0.142093i \(0.0453834\pi\)
−0.989853 + 0.142093i \(0.954617\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.95852i 1.20262i 0.799016 + 0.601309i \(0.205354\pi\)
−0.799016 + 0.601309i \(0.794646\pi\)
\(18\) 0 0
\(19\) −8.21924 −1.88562 −0.942812 0.333326i \(-0.891829\pi\)
−0.942812 + 0.333326i \(0.891829\pi\)
\(20\) 0 0
\(21\) 12.4459 2.71592
\(22\) 0 0
\(23\) − 4.15471i − 0.866316i −0.901318 0.433158i \(-0.857399\pi\)
0.901318 0.433158i \(-0.142601\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 2.82945i − 0.544528i
\(28\) 0 0
\(29\) 0.878753 0.163180 0.0815901 0.996666i \(-0.474000\pi\)
0.0815901 + 0.996666i \(0.474000\pi\)
\(30\) 0 0
\(31\) −5.45690 −0.980088 −0.490044 0.871698i \(-0.663019\pi\)
−0.490044 + 0.871698i \(0.663019\pi\)
\(32\) 0 0
\(33\) 0.106013i 0.0184544i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 9.51202i − 1.56377i −0.623425 0.781883i \(-0.714259\pi\)
0.623425 0.781883i \(-0.285741\pi\)
\(38\) 0 0
\(39\) −2.72344 −0.436099
\(40\) 0 0
\(41\) −5.28378 −0.825188 −0.412594 0.910915i \(-0.635377\pi\)
−0.412594 + 0.910915i \(0.635377\pi\)
\(42\) 0 0
\(43\) − 8.95852i − 1.36616i −0.730343 0.683081i \(-0.760640\pi\)
0.730343 0.683081i \(-0.239360\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 9.09017i − 1.32594i −0.748647 0.662969i \(-0.769296\pi\)
0.748647 0.662969i \(-0.230704\pi\)
\(48\) 0 0
\(49\) −14.9265 −2.13235
\(50\) 0 0
\(51\) −13.1794 −1.84548
\(52\) 0 0
\(53\) − 1.18095i − 0.162216i −0.996705 0.0811078i \(-0.974154\pi\)
0.996705 0.0811078i \(-0.0258458\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 21.8461i − 2.89358i
\(58\) 0 0
\(59\) 9.34049 1.21603 0.608014 0.793926i \(-0.291966\pi\)
0.608014 + 0.793926i \(0.291966\pi\)
\(60\) 0 0
\(61\) 2.57815 0.330098 0.165049 0.986285i \(-0.447222\pi\)
0.165049 + 0.986285i \(0.447222\pi\)
\(62\) 0 0
\(63\) 19.0325i 2.39787i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.46015i 1.03357i 0.856115 + 0.516786i \(0.172872\pi\)
−0.856115 + 0.516786i \(0.827128\pi\)
\(68\) 0 0
\(69\) 11.0429 1.32941
\(70\) 0 0
\(71\) −15.0383 −1.78472 −0.892359 0.451327i \(-0.850951\pi\)
−0.892359 + 0.451327i \(0.850951\pi\)
\(72\) 0 0
\(73\) − 3.58597i − 0.419706i −0.977733 0.209853i \(-0.932701\pi\)
0.977733 0.209853i \(-0.0672986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 0.186767i − 0.0212840i
\(78\) 0 0
\(79\) −10.2439 −1.15253 −0.576264 0.817264i \(-0.695490\pi\)
−0.576264 + 0.817264i \(0.695490\pi\)
\(80\) 0 0
\(81\) −4.67315 −0.519239
\(82\) 0 0
\(83\) − 9.65890i − 1.06020i −0.847934 0.530101i \(-0.822154\pi\)
0.847934 0.530101i \(-0.177846\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.33565i 0.250408i
\(88\) 0 0
\(89\) −0.759096 −0.0804640 −0.0402320 0.999190i \(-0.512810\pi\)
−0.0402320 + 0.999190i \(0.512810\pi\)
\(90\) 0 0
\(91\) 4.79800 0.502967
\(92\) 0 0
\(93\) − 14.5040i − 1.50400i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 6.67217i − 0.677456i −0.940884 0.338728i \(-0.890003\pi\)
0.940884 0.338728i \(-0.109997\pi\)
\(98\) 0 0
\(99\) −0.162116 −0.0162933
\(100\) 0 0
\(101\) 11.5597 1.15024 0.575118 0.818070i \(-0.304956\pi\)
0.575118 + 0.818070i \(0.304956\pi\)
\(102\) 0 0
\(103\) 10.3829i 1.02306i 0.859265 + 0.511531i \(0.170922\pi\)
−0.859265 + 0.511531i \(0.829078\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 5.94329i − 0.574559i −0.957847 0.287280i \(-0.907249\pi\)
0.957847 0.287280i \(-0.0927509\pi\)
\(108\) 0 0
\(109\) 9.17936 0.879223 0.439611 0.898188i \(-0.355116\pi\)
0.439611 + 0.898188i \(0.355116\pi\)
\(110\) 0 0
\(111\) 25.2822 2.39968
\(112\) 0 0
\(113\) 14.9249i 1.40401i 0.712170 + 0.702007i \(0.247712\pi\)
−0.712170 + 0.702007i \(0.752288\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 4.16473i − 0.385029i
\(118\) 0 0
\(119\) 23.2186 2.12845
\(120\) 0 0
\(121\) −10.9984 −0.999855
\(122\) 0 0
\(123\) − 14.0439i − 1.26629i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 6.68416i − 0.593123i −0.955014 0.296562i \(-0.904160\pi\)
0.955014 0.296562i \(-0.0958400\pi\)
\(128\) 0 0
\(129\) 23.8110 2.09644
\(130\) 0 0
\(131\) −0.552515 −0.0482734 −0.0241367 0.999709i \(-0.507684\pi\)
−0.0241367 + 0.999709i \(0.507684\pi\)
\(132\) 0 0
\(133\) 38.4872i 3.33726i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 6.95168i − 0.593922i −0.954890 0.296961i \(-0.904027\pi\)
0.954890 0.296961i \(-0.0959732\pi\)
\(138\) 0 0
\(139\) 7.19300 0.610102 0.305051 0.952336i \(-0.401326\pi\)
0.305051 + 0.952336i \(0.401326\pi\)
\(140\) 0 0
\(141\) 24.1609 2.03472
\(142\) 0 0
\(143\) 0.0408687i 0.00341761i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 39.6733i − 3.27220i
\(148\) 0 0
\(149\) −9.22182 −0.755481 −0.377740 0.925912i \(-0.623299\pi\)
−0.377740 + 0.925912i \(0.623299\pi\)
\(150\) 0 0
\(151\) −3.09501 −0.251868 −0.125934 0.992039i \(-0.540193\pi\)
−0.125934 + 0.992039i \(0.540193\pi\)
\(152\) 0 0
\(153\) − 20.1541i − 1.62936i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.39463i 0.191112i 0.995424 + 0.0955560i \(0.0304629\pi\)
−0.995424 + 0.0955560i \(0.969537\pi\)
\(158\) 0 0
\(159\) 3.13886 0.248928
\(160\) 0 0
\(161\) −19.4547 −1.53325
\(162\) 0 0
\(163\) 6.59240i 0.516357i 0.966097 + 0.258178i \(0.0831222\pi\)
−0.966097 + 0.258178i \(0.916878\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 2.24548i − 0.173761i −0.996219 0.0868804i \(-0.972310\pi\)
0.996219 0.0868804i \(-0.0276898\pi\)
\(168\) 0 0
\(169\) 11.9501 0.919238
\(170\) 0 0
\(171\) 33.4074 2.55473
\(172\) 0 0
\(173\) − 10.0782i − 0.766230i −0.923701 0.383115i \(-0.874851\pi\)
0.923701 0.383115i \(-0.125149\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 24.8263i 1.86606i
\(178\) 0 0
\(179\) 11.0256 0.824095 0.412047 0.911162i \(-0.364814\pi\)
0.412047 + 0.911162i \(0.364814\pi\)
\(180\) 0 0
\(181\) −12.8950 −0.958476 −0.479238 0.877685i \(-0.659087\pi\)
−0.479238 + 0.877685i \(0.659087\pi\)
\(182\) 0 0
\(183\) 6.85251i 0.506552i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.197773i 0.0144626i
\(188\) 0 0
\(189\) −13.2491 −0.963731
\(190\) 0 0
\(191\) 16.6032 1.20136 0.600682 0.799488i \(-0.294896\pi\)
0.600682 + 0.799488i \(0.294896\pi\)
\(192\) 0 0
\(193\) 4.98477i 0.358811i 0.983775 + 0.179406i \(0.0574174\pi\)
−0.983775 + 0.179406i \(0.942583\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.95528i 0.566790i 0.959003 + 0.283395i \(0.0914608\pi\)
−0.959003 + 0.283395i \(0.908539\pi\)
\(198\) 0 0
\(199\) −4.26329 −0.302217 −0.151108 0.988517i \(-0.548284\pi\)
−0.151108 + 0.988517i \(0.548284\pi\)
\(200\) 0 0
\(201\) −22.4864 −1.58607
\(202\) 0 0
\(203\) − 4.11482i − 0.288804i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 16.8870i 1.17372i
\(208\) 0 0
\(209\) −0.327829 −0.0226764
\(210\) 0 0
\(211\) −20.6315 −1.42033 −0.710165 0.704035i \(-0.751380\pi\)
−0.710165 + 0.704035i \(0.751380\pi\)
\(212\) 0 0
\(213\) − 39.9706i − 2.73874i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 25.5523i 1.73460i
\(218\) 0 0
\(219\) 9.53123 0.644061
\(220\) 0 0
\(221\) −5.08075 −0.341769
\(222\) 0 0
\(223\) − 5.79482i − 0.388050i −0.980997 0.194025i \(-0.937846\pi\)
0.980997 0.194025i \(-0.0621542\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.95754i 0.660905i 0.943823 + 0.330453i \(0.107201\pi\)
−0.943823 + 0.330453i \(0.892799\pi\)
\(228\) 0 0
\(229\) 1.91142 0.126310 0.0631551 0.998004i \(-0.479884\pi\)
0.0631551 + 0.998004i \(0.479884\pi\)
\(230\) 0 0
\(231\) 0.496411 0.0326614
\(232\) 0 0
\(233\) − 2.74650i − 0.179929i −0.995945 0.0899646i \(-0.971325\pi\)
0.995945 0.0899646i \(-0.0286754\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 27.2274i − 1.76861i
\(238\) 0 0
\(239\) −16.8189 −1.08792 −0.543961 0.839111i \(-0.683076\pi\)
−0.543961 + 0.839111i \(0.683076\pi\)
\(240\) 0 0
\(241\) 1.69879 0.109429 0.0547143 0.998502i \(-0.482575\pi\)
0.0547143 + 0.998502i \(0.482575\pi\)
\(242\) 0 0
\(243\) − 20.9092i − 1.34133i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 8.42185i − 0.535870i
\(248\) 0 0
\(249\) 25.6726 1.62693
\(250\) 0 0
\(251\) 8.25270 0.520906 0.260453 0.965487i \(-0.416128\pi\)
0.260453 + 0.965487i \(0.416128\pi\)
\(252\) 0 0
\(253\) − 0.165713i − 0.0104183i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 24.6824i − 1.53964i −0.638258 0.769822i \(-0.720345\pi\)
0.638258 0.769822i \(-0.279655\pi\)
\(258\) 0 0
\(259\) −44.5407 −2.76762
\(260\) 0 0
\(261\) −3.57172 −0.221084
\(262\) 0 0
\(263\) 12.0759i 0.744633i 0.928106 + 0.372317i \(0.121436\pi\)
−0.928106 + 0.372317i \(0.878564\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 2.01762i − 0.123476i
\(268\) 0 0
\(269\) −17.3577 −1.05832 −0.529160 0.848522i \(-0.677493\pi\)
−0.529160 + 0.848522i \(0.677493\pi\)
\(270\) 0 0
\(271\) 7.40302 0.449701 0.224851 0.974393i \(-0.427811\pi\)
0.224851 + 0.974393i \(0.427811\pi\)
\(272\) 0 0
\(273\) 12.7527i 0.771828i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 18.3208i 1.10079i 0.834904 + 0.550395i \(0.185523\pi\)
−0.834904 + 0.550395i \(0.814477\pi\)
\(278\) 0 0
\(279\) 22.1798 1.32787
\(280\) 0 0
\(281\) −20.3539 −1.21421 −0.607105 0.794621i \(-0.707669\pi\)
−0.607105 + 0.794621i \(0.707669\pi\)
\(282\) 0 0
\(283\) 3.33149i 0.198036i 0.995086 + 0.0990182i \(0.0315702\pi\)
−0.995086 + 0.0990182i \(0.968430\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 24.7417i 1.46045i
\(288\) 0 0
\(289\) −7.58696 −0.446292
\(290\) 0 0
\(291\) 17.7341 1.03959
\(292\) 0 0
\(293\) 25.3525i 1.48111i 0.671995 + 0.740556i \(0.265438\pi\)
−0.671995 + 0.740556i \(0.734562\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 0.112854i − 0.00654846i
\(298\) 0 0
\(299\) 4.25712 0.246196
\(300\) 0 0
\(301\) −41.9489 −2.41790
\(302\) 0 0
\(303\) 30.7248i 1.76510i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 19.2611i 1.09929i 0.835399 + 0.549644i \(0.185237\pi\)
−0.835399 + 0.549644i \(0.814763\pi\)
\(308\) 0 0
\(309\) −27.5970 −1.56994
\(310\) 0 0
\(311\) −29.6626 −1.68201 −0.841005 0.541028i \(-0.818035\pi\)
−0.841005 + 0.541028i \(0.818035\pi\)
\(312\) 0 0
\(313\) 15.5759i 0.880405i 0.897899 + 0.440202i \(0.145093\pi\)
−0.897899 + 0.440202i \(0.854907\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 32.2994i − 1.81412i −0.421005 0.907058i \(-0.638323\pi\)
0.421005 0.907058i \(-0.361677\pi\)
\(318\) 0 0
\(319\) 0.0350495 0.00196240
\(320\) 0 0
\(321\) 15.7968 0.881690
\(322\) 0 0
\(323\) − 40.7553i − 2.26769i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 24.3980i 1.34921i
\(328\) 0 0
\(329\) −42.5654 −2.34670
\(330\) 0 0
\(331\) −20.3804 −1.12021 −0.560103 0.828423i \(-0.689239\pi\)
−0.560103 + 0.828423i \(0.689239\pi\)
\(332\) 0 0
\(333\) 38.6620i 2.11866i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 4.85795i − 0.264630i −0.991208 0.132315i \(-0.957759\pi\)
0.991208 0.132315i \(-0.0422410\pi\)
\(338\) 0 0
\(339\) −39.6691 −2.15453
\(340\) 0 0
\(341\) −0.217651 −0.0117865
\(342\) 0 0
\(343\) 37.1162i 2.00409i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 26.5630i 1.42598i 0.701177 + 0.712988i \(0.252658\pi\)
−0.701177 + 0.712988i \(0.747342\pi\)
\(348\) 0 0
\(349\) −4.01622 −0.214983 −0.107492 0.994206i \(-0.534282\pi\)
−0.107492 + 0.994206i \(0.534282\pi\)
\(350\) 0 0
\(351\) 2.89920 0.154748
\(352\) 0 0
\(353\) − 23.1038i − 1.22969i −0.788647 0.614846i \(-0.789218\pi\)
0.788647 0.614846i \(-0.210782\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 61.7133i 3.26621i
\(358\) 0 0
\(359\) 23.2611 1.22767 0.613837 0.789433i \(-0.289625\pi\)
0.613837 + 0.789433i \(0.289625\pi\)
\(360\) 0 0
\(361\) 48.5559 2.55558
\(362\) 0 0
\(363\) − 29.2329i − 1.53433i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0.305184i 0.0159305i 0.999968 + 0.00796523i \(0.00253544\pi\)
−0.999968 + 0.00796523i \(0.997465\pi\)
\(368\) 0 0
\(369\) 21.4761 1.11800
\(370\) 0 0
\(371\) −5.52987 −0.287097
\(372\) 0 0
\(373\) − 6.97859i − 0.361338i −0.983544 0.180669i \(-0.942174\pi\)
0.983544 0.180669i \(-0.0578263\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.900414i 0.0463737i
\(378\) 0 0
\(379\) 27.8509 1.43061 0.715303 0.698815i \(-0.246289\pi\)
0.715303 + 0.698815i \(0.246289\pi\)
\(380\) 0 0
\(381\) 17.7660 0.910178
\(382\) 0 0
\(383\) 7.54707i 0.385637i 0.981234 + 0.192819i \(0.0617629\pi\)
−0.981234 + 0.192819i \(0.938237\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 36.4122i 1.85094i
\(388\) 0 0
\(389\) −11.4831 −0.582218 −0.291109 0.956690i \(-0.594024\pi\)
−0.291109 + 0.956690i \(0.594024\pi\)
\(390\) 0 0
\(391\) 20.6012 1.04185
\(392\) 0 0
\(393\) − 1.46854i − 0.0740780i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.39077i 0.220367i 0.993911 + 0.110183i \(0.0351438\pi\)
−0.993911 + 0.110183i \(0.964856\pi\)
\(398\) 0 0
\(399\) −102.296 −5.12120
\(400\) 0 0
\(401\) −9.31883 −0.465360 −0.232680 0.972553i \(-0.574749\pi\)
−0.232680 + 0.972553i \(0.574749\pi\)
\(402\) 0 0
\(403\) − 5.59142i − 0.278528i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 0.379392i − 0.0188058i
\(408\) 0 0
\(409\) 22.7657 1.12569 0.562846 0.826562i \(-0.309706\pi\)
0.562846 + 0.826562i \(0.309706\pi\)
\(410\) 0 0
\(411\) 18.4770 0.911404
\(412\) 0 0
\(413\) − 43.7375i − 2.15218i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 19.1184i 0.936233i
\(418\) 0 0
\(419\) 18.1849 0.888391 0.444196 0.895930i \(-0.353489\pi\)
0.444196 + 0.895930i \(0.353489\pi\)
\(420\) 0 0
\(421\) −14.6177 −0.712424 −0.356212 0.934405i \(-0.615932\pi\)
−0.356212 + 0.934405i \(0.615932\pi\)
\(422\) 0 0
\(423\) 36.9473i 1.79644i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 12.0724i − 0.584222i
\(428\) 0 0
\(429\) −0.108626 −0.00524450
\(430\) 0 0
\(431\) −9.73641 −0.468986 −0.234493 0.972118i \(-0.575343\pi\)
−0.234493 + 0.972118i \(0.575343\pi\)
\(432\) 0 0
\(433\) − 20.1544i − 0.968558i −0.874914 0.484279i \(-0.839082\pi\)
0.874914 0.484279i \(-0.160918\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 34.1485i 1.63355i
\(438\) 0 0
\(439\) 8.93773 0.426574 0.213287 0.976990i \(-0.431583\pi\)
0.213287 + 0.976990i \(0.431583\pi\)
\(440\) 0 0
\(441\) 60.6691 2.88901
\(442\) 0 0
\(443\) 4.43390i 0.210661i 0.994437 + 0.105331i \(0.0335901\pi\)
−0.994437 + 0.105331i \(0.966410\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 24.5108i − 1.15932i
\(448\) 0 0
\(449\) −38.3645 −1.81053 −0.905267 0.424843i \(-0.860329\pi\)
−0.905267 + 0.424843i \(0.860329\pi\)
\(450\) 0 0
\(451\) −0.210746 −0.00992365
\(452\) 0 0
\(453\) − 8.22628i − 0.386504i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 31.8529i − 1.49002i −0.667055 0.745009i \(-0.732445\pi\)
0.667055 0.745009i \(-0.267555\pi\)
\(458\) 0 0
\(459\) 14.0299 0.654860
\(460\) 0 0
\(461\) 35.4680 1.65191 0.825954 0.563737i \(-0.190637\pi\)
0.825954 + 0.563737i \(0.190637\pi\)
\(462\) 0 0
\(463\) − 0.845101i − 0.0392752i −0.999807 0.0196376i \(-0.993749\pi\)
0.999807 0.0196376i \(-0.00625124\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 13.7848i − 0.637884i −0.947774 0.318942i \(-0.896672\pi\)
0.947774 0.318942i \(-0.103328\pi\)
\(468\) 0 0
\(469\) 39.6152 1.82926
\(470\) 0 0
\(471\) −6.36473 −0.293271
\(472\) 0 0
\(473\) − 0.357315i − 0.0164294i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.80000i 0.219777i
\(478\) 0 0
\(479\) 7.08075 0.323528 0.161764 0.986829i \(-0.448282\pi\)
0.161764 + 0.986829i \(0.448282\pi\)
\(480\) 0 0
\(481\) 9.74650 0.444402
\(482\) 0 0
\(483\) − 51.7090i − 2.35284i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 25.3059i − 1.14672i −0.819304 0.573359i \(-0.805640\pi\)
0.819304 0.573359i \(-0.194360\pi\)
\(488\) 0 0
\(489\) −17.5221 −0.792375
\(490\) 0 0
\(491\) −24.4890 −1.10517 −0.552587 0.833455i \(-0.686359\pi\)
−0.552587 + 0.833455i \(0.686359\pi\)
\(492\) 0 0
\(493\) 4.35732i 0.196244i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 70.4179i 3.15867i
\(498\) 0 0
\(499\) 3.14230 0.140669 0.0703344 0.997523i \(-0.477593\pi\)
0.0703344 + 0.997523i \(0.477593\pi\)
\(500\) 0 0
\(501\) 5.96831 0.266645
\(502\) 0 0
\(503\) − 20.7790i − 0.926489i −0.886231 0.463244i \(-0.846685\pi\)
0.886231 0.463244i \(-0.153315\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 31.7624i 1.41062i
\(508\) 0 0
\(509\) 27.9139 1.23726 0.618630 0.785682i \(-0.287688\pi\)
0.618630 + 0.785682i \(0.287688\pi\)
\(510\) 0 0
\(511\) −16.7916 −0.742815
\(512\) 0 0
\(513\) 23.2559i 1.02678i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 0.362566i − 0.0159456i
\(518\) 0 0
\(519\) 26.7870 1.17582
\(520\) 0 0
\(521\) 24.0675 1.05442 0.527209 0.849736i \(-0.323239\pi\)
0.527209 + 0.849736i \(0.323239\pi\)
\(522\) 0 0
\(523\) 40.1150i 1.75411i 0.480393 + 0.877053i \(0.340494\pi\)
−0.480393 + 0.877053i \(0.659506\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 27.0582i − 1.17867i
\(528\) 0 0
\(529\) 5.73842 0.249496
\(530\) 0 0
\(531\) −37.9648 −1.64753
\(532\) 0 0
\(533\) − 5.41403i − 0.234508i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 29.3052i 1.26461i
\(538\) 0 0
\(539\) −0.595350 −0.0256435
\(540\) 0 0
\(541\) −28.9359 −1.24405 −0.622027 0.782996i \(-0.713690\pi\)
−0.622027 + 0.782996i \(0.713690\pi\)
\(542\) 0 0
\(543\) − 34.2738i − 1.47083i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 25.9290i 1.10865i 0.832302 + 0.554323i \(0.187023\pi\)
−0.832302 + 0.554323i \(0.812977\pi\)
\(548\) 0 0
\(549\) −10.4790 −0.447232
\(550\) 0 0
\(551\) −7.22268 −0.307697
\(552\) 0 0
\(553\) 47.9677i 2.03980i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.7002i 0.580496i 0.956952 + 0.290248i \(0.0937377\pi\)
−0.956952 + 0.290248i \(0.906262\pi\)
\(558\) 0 0
\(559\) 9.17936 0.388245
\(560\) 0 0
\(561\) −0.525666 −0.0221936
\(562\) 0 0
\(563\) 24.8866i 1.04885i 0.851458 + 0.524423i \(0.175719\pi\)
−0.851458 + 0.524423i \(0.824281\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 21.8824i 0.918973i
\(568\) 0 0
\(569\) −28.2649 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(570\) 0 0
\(571\) 7.04643 0.294884 0.147442 0.989071i \(-0.452896\pi\)
0.147442 + 0.989071i \(0.452896\pi\)
\(572\) 0 0
\(573\) 44.1299i 1.84355i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 1.86295i − 0.0775556i −0.999248 0.0387778i \(-0.987654\pi\)
0.999248 0.0387778i \(-0.0123465\pi\)
\(578\) 0 0
\(579\) −13.2491 −0.550614
\(580\) 0 0
\(581\) −45.2285 −1.87639
\(582\) 0 0
\(583\) − 0.0471027i − 0.00195079i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 17.9871i − 0.742409i −0.928551 0.371204i \(-0.878945\pi\)
0.928551 0.371204i \(-0.121055\pi\)
\(588\) 0 0
\(589\) 44.8516 1.84808
\(590\) 0 0
\(591\) −21.1445 −0.869768
\(592\) 0 0
\(593\) − 29.1161i − 1.19565i −0.801625 0.597827i \(-0.796031\pi\)
0.801625 0.597827i \(-0.203969\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 11.3315i − 0.463767i
\(598\) 0 0
\(599\) 29.0913 1.18864 0.594318 0.804230i \(-0.297422\pi\)
0.594318 + 0.804230i \(0.297422\pi\)
\(600\) 0 0
\(601\) 32.3954 1.32144 0.660718 0.750634i \(-0.270252\pi\)
0.660718 + 0.750634i \(0.270252\pi\)
\(602\) 0 0
\(603\) − 34.3866i − 1.40033i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 19.0239i 0.772154i 0.922467 + 0.386077i \(0.126170\pi\)
−0.922467 + 0.386077i \(0.873830\pi\)
\(608\) 0 0
\(609\) 10.9369 0.443184
\(610\) 0 0
\(611\) 9.31425 0.376814
\(612\) 0 0
\(613\) − 2.03474i − 0.0821823i −0.999155 0.0410911i \(-0.986917\pi\)
0.999155 0.0410911i \(-0.0130834\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 9.73728i − 0.392008i −0.980603 0.196004i \(-0.937203\pi\)
0.980603 0.196004i \(-0.0627966\pi\)
\(618\) 0 0
\(619\) 31.1593 1.25240 0.626200 0.779662i \(-0.284609\pi\)
0.626200 + 0.779662i \(0.284609\pi\)
\(620\) 0 0
\(621\) −11.7555 −0.471734
\(622\) 0 0
\(623\) 3.55452i 0.142409i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 0.871343i − 0.0347981i
\(628\) 0 0
\(629\) 47.1656 1.88061
\(630\) 0 0
\(631\) −28.6829 −1.14185 −0.570925 0.821002i \(-0.693415\pi\)
−0.570925 + 0.821002i \(0.693415\pi\)
\(632\) 0 0
\(633\) − 54.8368i − 2.17957i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 15.2944i − 0.605987i
\(638\) 0 0
\(639\) 61.1237 2.41802
\(640\) 0 0
\(641\) 22.3152 0.881399 0.440699 0.897655i \(-0.354731\pi\)
0.440699 + 0.897655i \(0.354731\pi\)
\(642\) 0 0
\(643\) 36.8046i 1.45143i 0.687994 + 0.725716i \(0.258491\pi\)
−0.687994 + 0.725716i \(0.741509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 49.8385i 1.95935i 0.200584 + 0.979676i \(0.435716\pi\)
−0.200584 + 0.979676i \(0.564284\pi\)
\(648\) 0 0
\(649\) 0.372550 0.0146239
\(650\) 0 0
\(651\) −67.9160 −2.66184
\(652\) 0 0
\(653\) − 15.8293i − 0.619447i −0.950827 0.309723i \(-0.899764\pi\)
0.950827 0.309723i \(-0.100236\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 14.5753i 0.568637i
\(658\) 0 0
\(659\) −10.1311 −0.394651 −0.197325 0.980338i \(-0.563226\pi\)
−0.197325 + 0.980338i \(0.563226\pi\)
\(660\) 0 0
\(661\) −28.7912 −1.11985 −0.559924 0.828544i \(-0.689170\pi\)
−0.559924 + 0.828544i \(0.689170\pi\)
\(662\) 0 0
\(663\) − 13.5042i − 0.524461i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 3.65096i − 0.141366i
\(668\) 0 0
\(669\) 15.4022 0.595482
\(670\) 0 0
\(671\) 0.102831 0.00396974
\(672\) 0 0
\(673\) 20.6035i 0.794205i 0.917774 + 0.397103i \(0.129984\pi\)
−0.917774 + 0.397103i \(0.870016\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 29.5265i − 1.13479i −0.823444 0.567397i \(-0.807951\pi\)
0.823444 0.567397i \(-0.192049\pi\)
\(678\) 0 0
\(679\) −31.2429 −1.19899
\(680\) 0 0
\(681\) −26.4663 −1.01419
\(682\) 0 0
\(683\) − 3.62067i − 0.138541i −0.997598 0.0692706i \(-0.977933\pi\)
0.997598 0.0692706i \(-0.0220672\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5.08040i 0.193829i
\(688\) 0 0
\(689\) 1.21006 0.0460996
\(690\) 0 0
\(691\) −4.34306 −0.165218 −0.0826090 0.996582i \(-0.526325\pi\)
−0.0826090 + 0.996582i \(0.526325\pi\)
\(692\) 0 0
\(693\) 0.759120i 0.0288366i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 26.1997i − 0.992386i
\(698\) 0 0
\(699\) 7.29997 0.276110
\(700\) 0 0
\(701\) −15.6469 −0.590976 −0.295488 0.955346i \(-0.595482\pi\)
−0.295488 + 0.955346i \(0.595482\pi\)
\(702\) 0 0
\(703\) 78.1816i 2.94868i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 54.1293i − 2.03574i
\(708\) 0 0
\(709\) 10.6054 0.398296 0.199148 0.979969i \(-0.436183\pi\)
0.199148 + 0.979969i \(0.436183\pi\)
\(710\) 0 0
\(711\) 41.6367 1.56150
\(712\) 0 0
\(713\) 22.6718i 0.849066i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 44.7032i − 1.66947i
\(718\) 0 0
\(719\) −28.6068 −1.06685 −0.533427 0.845846i \(-0.679096\pi\)
−0.533427 + 0.845846i \(0.679096\pi\)
\(720\) 0 0
\(721\) 48.6189 1.81066
\(722\) 0 0
\(723\) 4.51524i 0.167924i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 0.410174i − 0.0152125i −0.999971 0.00760625i \(-0.997579\pi\)
0.999971 0.00760625i \(-0.00242117\pi\)
\(728\) 0 0
\(729\) 41.5556 1.53910
\(730\) 0 0
\(731\) 44.4211 1.64297
\(732\) 0 0
\(733\) − 7.18559i − 0.265406i −0.991156 0.132703i \(-0.957634\pi\)
0.991156 0.132703i \(-0.0423656\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.337437i 0.0124297i
\(738\) 0 0
\(739\) −45.5555 −1.67579 −0.837894 0.545834i \(-0.816213\pi\)
−0.837894 + 0.545834i \(0.816213\pi\)
\(740\) 0 0
\(741\) 22.3846 0.822319
\(742\) 0 0
\(743\) 11.8535i 0.434864i 0.976075 + 0.217432i \(0.0697680\pi\)
−0.976075 + 0.217432i \(0.930232\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 39.2590i 1.43641i
\(748\) 0 0
\(749\) −27.8299 −1.01688
\(750\) 0 0
\(751\) −0.674433 −0.0246104 −0.0123052 0.999924i \(-0.503917\pi\)
−0.0123052 + 0.999924i \(0.503917\pi\)
\(752\) 0 0
\(753\) 21.9350i 0.799356i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 3.41666i − 0.124181i −0.998071 0.0620904i \(-0.980223\pi\)
0.998071 0.0620904i \(-0.0197767\pi\)
\(758\) 0 0
\(759\) 0.440451 0.0159874
\(760\) 0 0
\(761\) −26.1930 −0.949496 −0.474748 0.880122i \(-0.657461\pi\)
−0.474748 + 0.880122i \(0.657461\pi\)
\(762\) 0 0
\(763\) − 42.9830i − 1.55609i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.57074i 0.345579i
\(768\) 0 0
\(769\) −15.1742 −0.547195 −0.273597 0.961844i \(-0.588214\pi\)
−0.273597 + 0.961844i \(0.588214\pi\)
\(770\) 0 0
\(771\) 65.6038 2.36266
\(772\) 0 0
\(773\) − 29.0032i − 1.04317i −0.853198 0.521587i \(-0.825340\pi\)
0.853198 0.521587i \(-0.174660\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 118.386i − 4.24706i
\(778\) 0 0
\(779\) 43.4287 1.55599
\(780\) 0 0
\(781\) −0.599810 −0.0214629
\(782\) 0 0
\(783\) − 2.48639i − 0.0888562i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 19.2660i 0.686758i 0.939197 + 0.343379i \(0.111571\pi\)
−0.939197 + 0.343379i \(0.888429\pi\)
\(788\) 0 0
\(789\) −32.0968 −1.14268
\(790\) 0 0
\(791\) 69.8868 2.48489
\(792\) 0 0
\(793\) 2.64170i 0.0938096i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.54279i 0.0546483i 0.999627 + 0.0273242i \(0.00869863\pi\)
−0.999627 + 0.0273242i \(0.991301\pi\)
\(798\) 0 0
\(799\) 45.0738 1.59460
\(800\) 0 0
\(801\) 3.08537 0.109016
\(802\) 0 0
\(803\) − 0.143028i − 0.00504736i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 46.1354i − 1.62404i
\(808\) 0 0
\(809\) −36.7800 −1.29312 −0.646558 0.762865i \(-0.723792\pi\)
−0.646558 + 0.762865i \(0.723792\pi\)
\(810\) 0 0
\(811\) 17.4212 0.611743 0.305871 0.952073i \(-0.401052\pi\)
0.305871 + 0.952073i \(0.401052\pi\)
\(812\) 0 0
\(813\) 19.6766i 0.690090i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 73.6323i 2.57607i
\(818\) 0 0
\(819\) −19.5016 −0.681442
\(820\) 0 0
\(821\) 18.6670 0.651484 0.325742 0.945459i \(-0.394386\pi\)
0.325742 + 0.945459i \(0.394386\pi\)
\(822\) 0 0
\(823\) 39.4544i 1.37530i 0.726044 + 0.687648i \(0.241357\pi\)
−0.726044 + 0.687648i \(0.758643\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 26.1204i − 0.908297i −0.890926 0.454148i \(-0.849944\pi\)
0.890926 0.454148i \(-0.150056\pi\)
\(828\) 0 0
\(829\) 9.81880 0.341021 0.170510 0.985356i \(-0.445458\pi\)
0.170510 + 0.985356i \(0.445458\pi\)
\(830\) 0 0
\(831\) −48.6952 −1.68922
\(832\) 0 0
\(833\) − 74.0132i − 2.56441i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 15.4400i 0.533686i
\(838\) 0 0
\(839\) 13.9336 0.481042 0.240521 0.970644i \(-0.422682\pi\)
0.240521 + 0.970644i \(0.422682\pi\)
\(840\) 0 0
\(841\) −28.2278 −0.973372
\(842\) 0 0
\(843\) − 54.0990i − 1.86327i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 51.5008i 1.76959i
\(848\) 0 0
\(849\) −8.85483 −0.303897
\(850\) 0 0
\(851\) −39.5197 −1.35472
\(852\) 0 0
\(853\) 18.1138i 0.620205i 0.950703 + 0.310102i \(0.100363\pi\)
−0.950703 + 0.310102i \(0.899637\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 9.72704i − 0.332269i −0.986103 0.166135i \(-0.946871\pi\)
0.986103 0.166135i \(-0.0531286\pi\)
\(858\) 0 0
\(859\) 16.7910 0.572902 0.286451 0.958095i \(-0.407524\pi\)
0.286451 + 0.958095i \(0.407524\pi\)
\(860\) 0 0
\(861\) −65.7613 −2.24114
\(862\) 0 0
\(863\) − 3.06190i − 0.104228i −0.998641 0.0521141i \(-0.983404\pi\)
0.998641 0.0521141i \(-0.0165960\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 20.1655i − 0.684857i
\(868\) 0 0
\(869\) −0.408583 −0.0138602
\(870\) 0 0
\(871\) −8.66869 −0.293727
\(872\) 0 0
\(873\) 27.1193i 0.917849i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 21.7836i 0.735580i 0.929909 + 0.367790i \(0.119886\pi\)
−0.929909 + 0.367790i \(0.880114\pi\)
\(878\) 0 0
\(879\) −67.3850 −2.27284
\(880\) 0 0
\(881\) 47.4065 1.59717 0.798583 0.601885i \(-0.205584\pi\)
0.798583 + 0.601885i \(0.205584\pi\)
\(882\) 0 0
\(883\) − 16.8303i − 0.566384i −0.959063 0.283192i \(-0.908607\pi\)
0.959063 0.283192i \(-0.0913934\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.25584i − 0.0421671i −0.999778 0.0210835i \(-0.993288\pi\)
0.999778 0.0210835i \(-0.00671160\pi\)
\(888\) 0 0
\(889\) −31.2991 −1.04974
\(890\) 0 0
\(891\) −0.186391 −0.00624434
\(892\) 0 0
\(893\) 74.7143i 2.50022i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 11.3151i 0.377800i
\(898\) 0 0
\(899\) −4.79527 −0.159931
\(900\) 0 0
\(901\) 5.85576 0.195084
\(902\) 0 0
\(903\) − 111.497i − 3.71038i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 28.0199i − 0.930385i −0.885210 0.465192i \(-0.845985\pi\)
0.885210 0.465192i \(-0.154015\pi\)
\(908\) 0 0
\(909\) −46.9849 −1.55839
\(910\) 0 0
\(911\) 20.7419 0.687210 0.343605 0.939114i \(-0.388352\pi\)
0.343605 + 0.939114i \(0.388352\pi\)
\(912\) 0 0
\(913\) − 0.385250i − 0.0127499i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.58719i 0.0854365i
\(918\) 0 0
\(919\) −0.224493 −0.00740534 −0.00370267 0.999993i \(-0.501179\pi\)
−0.00370267 + 0.999993i \(0.501179\pi\)
\(920\) 0 0
\(921\) −51.1944 −1.68691
\(922\) 0 0
\(923\) − 15.4090i − 0.507193i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 42.2019i − 1.38609i
\(928\) 0 0
\(929\) 33.2747 1.09171 0.545854 0.837880i \(-0.316205\pi\)
0.545854 + 0.837880i \(0.316205\pi\)
\(930\) 0 0
\(931\) 122.684 4.02081
\(932\) 0 0
\(933\) − 78.8407i − 2.58113i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 18.4776i − 0.603636i −0.953366 0.301818i \(-0.902406\pi\)
0.953366 0.301818i \(-0.0975935\pi\)
\(938\) 0 0
\(939\) −41.3996 −1.35103
\(940\) 0 0
\(941\) −13.3752 −0.436018 −0.218009 0.975947i \(-0.569956\pi\)
−0.218009 + 0.975947i \(0.569956\pi\)
\(942\) 0 0
\(943\) 21.9525i 0.714873i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 37.0656i − 1.20447i −0.798319 0.602235i \(-0.794277\pi\)
0.798319 0.602235i \(-0.205723\pi\)
\(948\) 0 0
\(949\) 3.67437 0.119275
\(950\) 0 0
\(951\) 85.8493 2.78385
\(952\) 0 0
\(953\) 27.8429i 0.901920i 0.892544 + 0.450960i \(0.148918\pi\)
−0.892544 + 0.450960i \(0.851082\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0.0931588i 0.00301140i
\(958\) 0 0
\(959\) −32.5517 −1.05115
\(960\) 0 0
\(961\) −1.22223 −0.0394268
\(962\) 0 0
\(963\) 24.1567i 0.778439i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 54.0629i − 1.73855i −0.494331 0.869274i \(-0.664587\pi\)
0.494331 0.869274i \(-0.335413\pi\)
\(968\) 0 0
\(969\) 108.324 3.47988
\(970\) 0 0
\(971\) −53.4131 −1.71411 −0.857054 0.515227i \(-0.827708\pi\)
−0.857054 + 0.515227i \(0.827708\pi\)
\(972\) 0 0
\(973\) − 33.6817i − 1.07979i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 40.7391i − 1.30336i −0.758494 0.651679i \(-0.774065\pi\)
0.758494 0.651679i \(-0.225935\pi\)
\(978\) 0 0
\(979\) −0.0302769 −0.000967655 0
\(980\) 0 0
\(981\) −37.3098 −1.19121
\(982\) 0 0
\(983\) 6.22306i 0.198485i 0.995063 + 0.0992423i \(0.0316419\pi\)
−0.995063 + 0.0992423i \(0.968358\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 113.135i − 3.60114i
\(988\) 0 0
\(989\) −37.2200 −1.18353
\(990\) 0 0
\(991\) 27.7894 0.882759 0.441379 0.897321i \(-0.354489\pi\)
0.441379 + 0.897321i \(0.354489\pi\)
\(992\) 0 0
\(993\) − 54.1694i − 1.71901i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 8.56549i − 0.271272i −0.990759 0.135636i \(-0.956692\pi\)
0.990759 0.135636i \(-0.0433077\pi\)
\(998\) 0 0
\(999\) −26.9138 −0.851515
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2000.2.c.i.1249.7 8
4.3 odd 2 1000.2.c.c.249.2 8
5.2 odd 4 2000.2.a.q.1.4 4
5.3 odd 4 2000.2.a.n.1.1 4
5.4 even 2 inner 2000.2.c.i.1249.2 8
20.3 even 4 1000.2.a.g.1.4 yes 4
20.7 even 4 1000.2.a.f.1.1 4
20.19 odd 2 1000.2.c.c.249.7 8
40.3 even 4 8000.2.a.bd.1.1 4
40.13 odd 4 8000.2.a.bo.1.4 4
40.27 even 4 8000.2.a.bn.1.4 4
40.37 odd 4 8000.2.a.be.1.1 4
60.23 odd 4 9000.2.a.bb.1.4 4
60.47 odd 4 9000.2.a.q.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.a.f.1.1 4 20.7 even 4
1000.2.a.g.1.4 yes 4 20.3 even 4
1000.2.c.c.249.2 8 4.3 odd 2
1000.2.c.c.249.7 8 20.19 odd 2
2000.2.a.n.1.1 4 5.3 odd 4
2000.2.a.q.1.4 4 5.2 odd 4
2000.2.c.i.1249.2 8 5.4 even 2 inner
2000.2.c.i.1249.7 8 1.1 even 1 trivial
8000.2.a.bd.1.1 4 40.3 even 4
8000.2.a.be.1.1 4 40.37 odd 4
8000.2.a.bn.1.4 4 40.27 even 4
8000.2.a.bo.1.4 4 40.13 odd 4
9000.2.a.q.1.1 4 60.47 odd 4
9000.2.a.bb.1.4 4 60.23 odd 4