| L(s)  = 1 | + 2.65i·3-s         − 4.68i·7-s     − 4.06·9-s     + 0.0398·11-s     + 1.02i·13-s         + 4.95i·17-s     − 8.21·19-s     + 12.4·21-s     − 4.15i·23-s         − 2.82i·27-s     + 0.878·29-s     − 5.45·31-s     + 0.106i·33-s         − 9.51i·37-s     − 2.72·39-s    + ⋯ | 
| L(s)  = 1 | + 1.53i·3-s         − 1.76i·7-s     − 1.35·9-s     + 0.0120·11-s     + 0.284i·13-s         + 1.20i·17-s     − 1.88·19-s     + 2.71·21-s     − 0.866i·23-s         − 0.544i·27-s     + 0.163·29-s     − 0.980·31-s     + 0.0184i·33-s         − 1.56i·37-s     − 0.436·39-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(0.5395187541\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.5395187541\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 5 | \( 1 \) | 
| good | 3 | \( 1 - 2.65iT - 3T^{2} \) | 
|  | 7 | \( 1 + 4.68iT - 7T^{2} \) | 
|  | 11 | \( 1 - 0.0398T + 11T^{2} \) | 
|  | 13 | \( 1 - 1.02iT - 13T^{2} \) | 
|  | 17 | \( 1 - 4.95iT - 17T^{2} \) | 
|  | 19 | \( 1 + 8.21T + 19T^{2} \) | 
|  | 23 | \( 1 + 4.15iT - 23T^{2} \) | 
|  | 29 | \( 1 - 0.878T + 29T^{2} \) | 
|  | 31 | \( 1 + 5.45T + 31T^{2} \) | 
|  | 37 | \( 1 + 9.51iT - 37T^{2} \) | 
|  | 41 | \( 1 + 5.28T + 41T^{2} \) | 
|  | 43 | \( 1 + 8.95iT - 43T^{2} \) | 
|  | 47 | \( 1 + 9.09iT - 47T^{2} \) | 
|  | 53 | \( 1 + 1.18iT - 53T^{2} \) | 
|  | 59 | \( 1 - 9.34T + 59T^{2} \) | 
|  | 61 | \( 1 - 2.57T + 61T^{2} \) | 
|  | 67 | \( 1 - 8.46iT - 67T^{2} \) | 
|  | 71 | \( 1 + 15.0T + 71T^{2} \) | 
|  | 73 | \( 1 + 3.58iT - 73T^{2} \) | 
|  | 79 | \( 1 + 10.2T + 79T^{2} \) | 
|  | 83 | \( 1 + 9.65iT - 83T^{2} \) | 
|  | 89 | \( 1 + 0.759T + 89T^{2} \) | 
|  | 97 | \( 1 + 6.67iT - 97T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.877255620057063873222457692905, −8.531698510063459603750308872767, −7.34496503780652203670032223887, −6.62599376956240903543061702762, −5.61752178230187627171678340419, −4.53475886152973860700572543162, −4.03321569657027079837788671128, −3.60065433022028093036097326736, −1.98739612165948599183617264771, −0.18292451501830026527207850286, 
1.49981313949231770174045027302, 2.37293861560177416385898975906, 3.04536739447055059082456632775, 4.71011740711591060636473436712, 5.63876483926603499098952249140, 6.25327251063519339630814793884, 6.92960458146285443147565291343, 7.85460087130612998046807783404, 8.466479056785043254385972407346, 9.075383425569638291669977599405
