Properties

Label 200.8.a.d
Level $200$
Weight $8$
Character orbit 200.a
Self dual yes
Analytic conductor $62.477$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,8,Mod(1,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-9,0,0,0,694] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4770050968\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 9 q^{3} + 694 q^{7} - 2106 q^{9} + 4901 q^{11} - 7228 q^{13} - 15925 q^{17} + 8749 q^{19} - 6246 q^{21} + 53554 q^{23} + 38637 q^{27} - 98752 q^{29} - 65030 q^{31} - 44109 q^{33} + 323958 q^{37} + 65052 q^{39}+ \cdots - 10321506 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −9.00000 0 0 0 694.000 0 −2106.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.8.a.d 1
4.b odd 2 1 400.8.a.k 1
5.b even 2 1 200.8.a.e yes 1
5.c odd 4 2 200.8.c.e 2
20.d odd 2 1 400.8.a.i 1
20.e even 4 2 400.8.c.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.8.a.d 1 1.a even 1 1 trivial
200.8.a.e yes 1 5.b even 2 1
200.8.c.e 2 5.c odd 4 2
400.8.a.i 1 20.d odd 2 1
400.8.a.k 1 4.b odd 2 1
400.8.c.k 2 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 9 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(200))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 694 \) Copy content Toggle raw display
$11$ \( T - 4901 \) Copy content Toggle raw display
$13$ \( T + 7228 \) Copy content Toggle raw display
$17$ \( T + 15925 \) Copy content Toggle raw display
$19$ \( T - 8749 \) Copy content Toggle raw display
$23$ \( T - 53554 \) Copy content Toggle raw display
$29$ \( T + 98752 \) Copy content Toggle raw display
$31$ \( T + 65030 \) Copy content Toggle raw display
$37$ \( T - 323958 \) Copy content Toggle raw display
$41$ \( T - 170277 \) Copy content Toggle raw display
$43$ \( T + 226228 \) Copy content Toggle raw display
$47$ \( T + 399932 \) Copy content Toggle raw display
$53$ \( T - 217218 \) Copy content Toggle raw display
$59$ \( T + 2733128 \) Copy content Toggle raw display
$61$ \( T + 1410230 \) Copy content Toggle raw display
$67$ \( T - 3163693 \) Copy content Toggle raw display
$71$ \( T + 3458532 \) Copy content Toggle raw display
$73$ \( T + 4113051 \) Copy content Toggle raw display
$79$ \( T + 34386 \) Copy content Toggle raw display
$83$ \( T + 1798039 \) Copy content Toggle raw display
$89$ \( T + 12630321 \) Copy content Toggle raw display
$97$ \( T - 7118942 \) Copy content Toggle raw display
show more
show less