L(s) = 1 | − 9·3-s + 694·7-s − 2.10e3·9-s + 4.90e3·11-s − 7.22e3·13-s − 1.59e4·17-s + 8.74e3·19-s − 6.24e3·21-s + 5.35e4·23-s + 3.86e4·27-s − 9.87e4·29-s − 6.50e4·31-s − 4.41e4·33-s + 3.23e5·37-s + 6.50e4·39-s + 1.70e5·41-s − 2.26e5·43-s − 3.99e5·47-s − 3.41e5·49-s + 1.43e5·51-s + 2.17e5·53-s − 7.87e4·57-s − 2.73e6·59-s − 1.41e6·61-s − 1.46e6·63-s + 3.16e6·67-s − 4.81e5·69-s + ⋯ |
L(s) = 1 | − 0.192·3-s + 0.764·7-s − 0.962·9-s + 1.11·11-s − 0.912·13-s − 0.786·17-s + 0.292·19-s − 0.147·21-s + 0.917·23-s + 0.377·27-s − 0.751·29-s − 0.392·31-s − 0.213·33-s + 1.05·37-s + 0.175·39-s + 0.385·41-s − 0.433·43-s − 0.561·47-s − 0.415·49-s + 0.151·51-s + 0.200·53-s − 0.0563·57-s − 1.73·59-s − 0.795·61-s − 0.736·63-s + 1.28·67-s − 0.176·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + p^{2} T + p^{7} T^{2} \) |
| 7 | \( 1 - 694 T + p^{7} T^{2} \) |
| 11 | \( 1 - 4901 T + p^{7} T^{2} \) |
| 13 | \( 1 + 556 p T + p^{7} T^{2} \) |
| 17 | \( 1 + 15925 T + p^{7} T^{2} \) |
| 19 | \( 1 - 8749 T + p^{7} T^{2} \) |
| 23 | \( 1 - 53554 T + p^{7} T^{2} \) |
| 29 | \( 1 + 98752 T + p^{7} T^{2} \) |
| 31 | \( 1 + 65030 T + p^{7} T^{2} \) |
| 37 | \( 1 - 323958 T + p^{7} T^{2} \) |
| 41 | \( 1 - 170277 T + p^{7} T^{2} \) |
| 43 | \( 1 + 226228 T + p^{7} T^{2} \) |
| 47 | \( 1 + 399932 T + p^{7} T^{2} \) |
| 53 | \( 1 - 217218 T + p^{7} T^{2} \) |
| 59 | \( 1 + 2733128 T + p^{7} T^{2} \) |
| 61 | \( 1 + 1410230 T + p^{7} T^{2} \) |
| 67 | \( 1 - 3163693 T + p^{7} T^{2} \) |
| 71 | \( 1 + 3458532 T + p^{7} T^{2} \) |
| 73 | \( 1 + 4113051 T + p^{7} T^{2} \) |
| 79 | \( 1 + 34386 T + p^{7} T^{2} \) |
| 83 | \( 1 + 1798039 T + p^{7} T^{2} \) |
| 89 | \( 1 + 12630321 T + p^{7} T^{2} \) |
| 97 | \( 1 - 7118942 T + p^{7} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02886036632341852423020171911, −9.548695573859506464021993077582, −8.771393224486880318635271112723, −7.63955997773705697164364021385, −6.53233158550274477692490351114, −5.35948662813641467102609253819, −4.33764546362677111941734400069, −2.84194612725015265633947906197, −1.48229554162316352350605724117, 0,
1.48229554162316352350605724117, 2.84194612725015265633947906197, 4.33764546362677111941734400069, 5.35948662813641467102609253819, 6.53233158550274477692490351114, 7.63955997773705697164364021385, 8.771393224486880318635271112723, 9.548695573859506464021993077582, 11.02886036632341852423020171911