Properties

Label 2-200-1.1-c7-0-25
Degree $2$
Conductor $200$
Sign $-1$
Analytic cond. $62.4770$
Root an. cond. $7.90423$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 694·7-s − 2.10e3·9-s + 4.90e3·11-s − 7.22e3·13-s − 1.59e4·17-s + 8.74e3·19-s − 6.24e3·21-s + 5.35e4·23-s + 3.86e4·27-s − 9.87e4·29-s − 6.50e4·31-s − 4.41e4·33-s + 3.23e5·37-s + 6.50e4·39-s + 1.70e5·41-s − 2.26e5·43-s − 3.99e5·47-s − 3.41e5·49-s + 1.43e5·51-s + 2.17e5·53-s − 7.87e4·57-s − 2.73e6·59-s − 1.41e6·61-s − 1.46e6·63-s + 3.16e6·67-s − 4.81e5·69-s + ⋯
L(s)  = 1  − 0.192·3-s + 0.764·7-s − 0.962·9-s + 1.11·11-s − 0.912·13-s − 0.786·17-s + 0.292·19-s − 0.147·21-s + 0.917·23-s + 0.377·27-s − 0.751·29-s − 0.392·31-s − 0.213·33-s + 1.05·37-s + 0.175·39-s + 0.385·41-s − 0.433·43-s − 0.561·47-s − 0.415·49-s + 0.151·51-s + 0.200·53-s − 0.0563·57-s − 1.73·59-s − 0.795·61-s − 0.736·63-s + 1.28·67-s − 0.176·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200\)    =    \(2^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(62.4770\)
Root analytic conductor: \(7.90423\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 200,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + p^{2} T + p^{7} T^{2} \)
7 \( 1 - 694 T + p^{7} T^{2} \)
11 \( 1 - 4901 T + p^{7} T^{2} \)
13 \( 1 + 556 p T + p^{7} T^{2} \)
17 \( 1 + 15925 T + p^{7} T^{2} \)
19 \( 1 - 8749 T + p^{7} T^{2} \)
23 \( 1 - 53554 T + p^{7} T^{2} \)
29 \( 1 + 98752 T + p^{7} T^{2} \)
31 \( 1 + 65030 T + p^{7} T^{2} \)
37 \( 1 - 323958 T + p^{7} T^{2} \)
41 \( 1 - 170277 T + p^{7} T^{2} \)
43 \( 1 + 226228 T + p^{7} T^{2} \)
47 \( 1 + 399932 T + p^{7} T^{2} \)
53 \( 1 - 217218 T + p^{7} T^{2} \)
59 \( 1 + 2733128 T + p^{7} T^{2} \)
61 \( 1 + 1410230 T + p^{7} T^{2} \)
67 \( 1 - 3163693 T + p^{7} T^{2} \)
71 \( 1 + 3458532 T + p^{7} T^{2} \)
73 \( 1 + 4113051 T + p^{7} T^{2} \)
79 \( 1 + 34386 T + p^{7} T^{2} \)
83 \( 1 + 1798039 T + p^{7} T^{2} \)
89 \( 1 + 12630321 T + p^{7} T^{2} \)
97 \( 1 - 7118942 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02886036632341852423020171911, −9.548695573859506464021993077582, −8.771393224486880318635271112723, −7.63955997773705697164364021385, −6.53233158550274477692490351114, −5.35948662813641467102609253819, −4.33764546362677111941734400069, −2.84194612725015265633947906197, −1.48229554162316352350605724117, 0, 1.48229554162316352350605724117, 2.84194612725015265633947906197, 4.33764546362677111941734400069, 5.35948662813641467102609253819, 6.53233158550274477692490351114, 7.63955997773705697164364021385, 8.771393224486880318635271112723, 9.548695573859506464021993077582, 11.02886036632341852423020171911

Graph of the $Z$-function along the critical line