Properties

Label 200.3.u.a.17.7
Level $200$
Weight $3$
Character 200.17
Analytic conductor $5.450$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,3,Mod(17,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.17"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 13])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 200.u (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.44960528721\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.7
Character \(\chi\) \(=\) 200.17
Dual form 200.3.u.a.153.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.706680 - 4.46180i) q^{3} +(-4.37575 - 2.41926i) q^{5} +(-0.0526437 - 0.0526437i) q^{7} +(-10.8488 - 3.52499i) q^{9} +(0.687682 + 2.11647i) q^{11} +(-6.99352 - 13.7256i) q^{13} +(-13.8865 + 17.8141i) q^{15} +(0.370977 + 2.34226i) q^{17} +(-13.0079 + 17.9039i) q^{19} +(-0.272088 + 0.197684i) q^{21} +(-5.97894 - 3.04642i) q^{23} +(13.2943 + 21.1722i) q^{25} +(-4.93664 + 9.68871i) q^{27} +(-27.6101 - 38.0021i) q^{29} +(3.69691 + 2.68596i) q^{31} +(9.92924 - 1.57264i) q^{33} +(0.102997 + 0.357714i) q^{35} +(59.9395 - 30.5407i) q^{37} +(-66.1829 + 21.5041i) q^{39} +(-0.779270 + 2.39835i) q^{41} +(46.3634 - 46.3634i) q^{43} +(38.9437 + 41.6705i) q^{45} +(-61.7008 - 9.77245i) q^{47} -48.9945i q^{49} +10.7129 q^{51} +(7.85019 - 49.5641i) q^{53} +(2.11117 - 10.9248i) q^{55} +(70.6911 + 70.6911i) q^{57} +(14.3158 + 4.65148i) q^{59} +(-19.4521 - 59.8674i) q^{61} +(0.385552 + 0.756689i) q^{63} +(-2.60384 + 76.9787i) q^{65} +(15.8246 + 99.9126i) q^{67} +(-17.8178 + 24.5240i) q^{69} +(81.7241 - 59.3761i) q^{71} +(91.3922 + 46.5667i) q^{73} +(103.861 - 44.3548i) q^{75} +(0.0752166 - 0.147621i) q^{77} +(74.6124 + 102.695i) q^{79} +(-43.3164 - 31.4712i) q^{81} +(63.0041 - 9.97887i) q^{83} +(4.04324 - 11.1466i) q^{85} +(-189.069 + 96.3357i) q^{87} +(-36.9068 + 11.9918i) q^{89} +(-0.354399 + 1.09073i) q^{91} +(14.5968 - 14.5968i) q^{93} +(100.234 - 46.8732i) q^{95} +(-138.512 - 21.9382i) q^{97} -25.3852i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 10 q^{5} - 4 q^{7} + 40 q^{9} - 16 q^{11} + 14 q^{13} - 10 q^{15} + 22 q^{17} + 50 q^{19} + 100 q^{21} - 48 q^{23} + 150 q^{25} - 210 q^{27} - 108 q^{31} - 140 q^{33} + 70 q^{35} + 236 q^{37} + 80 q^{39}+ \cdots + 386 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.706680 4.46180i 0.235560 1.48727i −0.532248 0.846588i \(-0.678653\pi\)
0.767808 0.640680i \(-0.221347\pi\)
\(4\) 0 0
\(5\) −4.37575 2.41926i −0.875150 0.483852i
\(6\) 0 0
\(7\) −0.0526437 0.0526437i −0.00752053 0.00752053i 0.703337 0.710857i \(-0.251693\pi\)
−0.710857 + 0.703337i \(0.751693\pi\)
\(8\) 0 0
\(9\) −10.8488 3.52499i −1.20542 0.391665i
\(10\) 0 0
\(11\) 0.687682 + 2.11647i 0.0625166 + 0.192406i 0.977437 0.211229i \(-0.0677465\pi\)
−0.914920 + 0.403635i \(0.867747\pi\)
\(12\) 0 0
\(13\) −6.99352 13.7256i −0.537963 1.05581i −0.986761 0.162179i \(-0.948148\pi\)
0.448798 0.893633i \(-0.351852\pi\)
\(14\) 0 0
\(15\) −13.8865 + 17.8141i −0.925769 + 1.18761i
\(16\) 0 0
\(17\) 0.370977 + 2.34226i 0.0218222 + 0.137780i 0.996194 0.0871635i \(-0.0277803\pi\)
−0.974372 + 0.224943i \(0.927780\pi\)
\(18\) 0 0
\(19\) −13.0079 + 17.9039i −0.684627 + 0.942309i −0.999978 0.00666661i \(-0.997878\pi\)
0.315350 + 0.948975i \(0.397878\pi\)
\(20\) 0 0
\(21\) −0.272088 + 0.197684i −0.0129566 + 0.00941350i
\(22\) 0 0
\(23\) −5.97894 3.04642i −0.259954 0.132453i 0.319157 0.947702i \(-0.396600\pi\)
−0.579111 + 0.815249i \(0.696600\pi\)
\(24\) 0 0
\(25\) 13.2943 + 21.1722i 0.531774 + 0.846887i
\(26\) 0 0
\(27\) −4.93664 + 9.68871i −0.182839 + 0.358841i
\(28\) 0 0
\(29\) −27.6101 38.0021i −0.952074 1.31042i −0.950600 0.310418i \(-0.899531\pi\)
−0.00147357 0.999999i \(-0.500469\pi\)
\(30\) 0 0
\(31\) 3.69691 + 2.68596i 0.119255 + 0.0866439i 0.645814 0.763495i \(-0.276518\pi\)
−0.526559 + 0.850139i \(0.676518\pi\)
\(32\) 0 0
\(33\) 9.92924 1.57264i 0.300886 0.0476557i
\(34\) 0 0
\(35\) 0.102997 + 0.357714i 0.00294276 + 0.0102204i
\(36\) 0 0
\(37\) 59.9395 30.5407i 1.61999 0.825424i 0.620846 0.783932i \(-0.286789\pi\)
0.999139 0.0414916i \(-0.0132110\pi\)
\(38\) 0 0
\(39\) −66.1829 + 21.5041i −1.69700 + 0.551388i
\(40\) 0 0
\(41\) −0.779270 + 2.39835i −0.0190066 + 0.0584963i −0.960110 0.279623i \(-0.909791\pi\)
0.941103 + 0.338119i \(0.109791\pi\)
\(42\) 0 0
\(43\) 46.3634 46.3634i 1.07822 1.07822i 0.0815493 0.996669i \(-0.474013\pi\)
0.996669 0.0815493i \(-0.0259868\pi\)
\(44\) 0 0
\(45\) 38.9437 + 41.6705i 0.865416 + 0.926012i
\(46\) 0 0
\(47\) −61.7008 9.77245i −1.31278 0.207925i −0.539500 0.841985i \(-0.681387\pi\)
−0.773283 + 0.634061i \(0.781387\pi\)
\(48\) 0 0
\(49\) 48.9945i 0.999887i
\(50\) 0 0
\(51\) 10.7129 0.210056
\(52\) 0 0
\(53\) 7.85019 49.5641i 0.148117 0.935172i −0.795937 0.605380i \(-0.793021\pi\)
0.944053 0.329792i \(-0.106979\pi\)
\(54\) 0 0
\(55\) 2.11117 10.9248i 0.0383849 0.198633i
\(56\) 0 0
\(57\) 70.6911 + 70.6911i 1.24019 + 1.24019i
\(58\) 0 0
\(59\) 14.3158 + 4.65148i 0.242641 + 0.0788387i 0.427813 0.903867i \(-0.359284\pi\)
−0.185172 + 0.982706i \(0.559284\pi\)
\(60\) 0 0
\(61\) −19.4521 59.8674i −0.318887 0.981433i −0.974125 0.226011i \(-0.927432\pi\)
0.655238 0.755423i \(-0.272568\pi\)
\(62\) 0 0
\(63\) 0.385552 + 0.756689i 0.00611988 + 0.0120109i
\(64\) 0 0
\(65\) −2.60384 + 76.9787i −0.0400591 + 1.18429i
\(66\) 0 0
\(67\) 15.8246 + 99.9126i 0.236188 + 1.49123i 0.765848 + 0.643022i \(0.222320\pi\)
−0.529660 + 0.848210i \(0.677680\pi\)
\(68\) 0 0
\(69\) −17.8178 + 24.5240i −0.258228 + 0.355421i
\(70\) 0 0
\(71\) 81.7241 59.3761i 1.15104 0.836283i 0.162425 0.986721i \(-0.448068\pi\)
0.988619 + 0.150438i \(0.0480685\pi\)
\(72\) 0 0
\(73\) 91.3922 + 46.5667i 1.25195 + 0.637899i 0.949051 0.315124i \(-0.102046\pi\)
0.302898 + 0.953023i \(0.402046\pi\)
\(74\) 0 0
\(75\) 103.861 44.3548i 1.38481 0.591397i
\(76\) 0 0
\(77\) 0.0752166 0.147621i 0.000976839 0.00191715i
\(78\) 0 0
\(79\) 74.6124 + 102.695i 0.944461 + 1.29994i 0.953944 + 0.299984i \(0.0969815\pi\)
−0.00948284 + 0.999955i \(0.503019\pi\)
\(80\) 0 0
\(81\) −43.3164 31.4712i −0.534770 0.388533i
\(82\) 0 0
\(83\) 63.0041 9.97887i 0.759085 0.120227i 0.235119 0.971967i \(-0.424452\pi\)
0.523966 + 0.851739i \(0.324452\pi\)
\(84\) 0 0
\(85\) 4.04324 11.1466i 0.0475675 0.131137i
\(86\) 0 0
\(87\) −189.069 + 96.3357i −2.17321 + 1.10731i
\(88\) 0 0
\(89\) −36.9068 + 11.9918i −0.414684 + 0.134739i −0.508926 0.860810i \(-0.669957\pi\)
0.0942421 + 0.995549i \(0.469957\pi\)
\(90\) 0 0
\(91\) −0.354399 + 1.09073i −0.00389450 + 0.0119860i
\(92\) 0 0
\(93\) 14.5968 14.5968i 0.156954 0.156954i
\(94\) 0 0
\(95\) 100.234 46.8732i 1.05509 0.493402i
\(96\) 0 0
\(97\) −138.512 21.9382i −1.42796 0.226167i −0.605889 0.795549i \(-0.707182\pi\)
−0.822073 + 0.569382i \(0.807182\pi\)
\(98\) 0 0
\(99\) 25.3852i 0.256416i
\(100\) 0 0
\(101\) −141.716 −1.40313 −0.701563 0.712608i \(-0.747514\pi\)
−0.701563 + 0.712608i \(0.747514\pi\)
\(102\) 0 0
\(103\) −18.0581 + 114.014i −0.175321 + 1.10693i 0.730388 + 0.683033i \(0.239339\pi\)
−0.905709 + 0.423900i \(0.860661\pi\)
\(104\) 0 0
\(105\) 1.66884 0.206761i 0.0158937 0.00196915i
\(106\) 0 0
\(107\) 9.07821 + 9.07821i 0.0848431 + 0.0848431i 0.748255 0.663412i \(-0.230892\pi\)
−0.663412 + 0.748255i \(0.730892\pi\)
\(108\) 0 0
\(109\) −10.6751 3.46855i −0.0979366 0.0318215i 0.259639 0.965706i \(-0.416396\pi\)
−0.357575 + 0.933884i \(0.616396\pi\)
\(110\) 0 0
\(111\) −93.9085 289.021i −0.846023 2.60379i
\(112\) 0 0
\(113\) −10.0041 19.6342i −0.0885322 0.173754i 0.842495 0.538704i \(-0.181086\pi\)
−0.931027 + 0.364950i \(0.881086\pi\)
\(114\) 0 0
\(115\) 18.7923 + 27.7950i 0.163411 + 0.241696i
\(116\) 0 0
\(117\) 27.4889 + 173.558i 0.234947 + 1.48340i
\(118\) 0 0
\(119\) 0.103776 0.142835i 0.000872063 0.00120029i
\(120\) 0 0
\(121\) 93.8845 68.2111i 0.775905 0.563728i
\(122\) 0 0
\(123\) 10.1503 + 5.17182i 0.0825224 + 0.0420473i
\(124\) 0 0
\(125\) −6.95165 124.807i −0.0556132 0.998452i
\(126\) 0 0
\(127\) 85.7277 168.250i 0.675021 1.32480i −0.258406 0.966036i \(-0.583197\pi\)
0.933427 0.358767i \(-0.116803\pi\)
\(128\) 0 0
\(129\) −174.100 239.629i −1.34962 1.85759i
\(130\) 0 0
\(131\) −108.739 79.0037i −0.830071 0.603082i 0.0895088 0.995986i \(-0.471470\pi\)
−0.919579 + 0.392905i \(0.871470\pi\)
\(132\) 0 0
\(133\) 1.62731 0.257741i 0.0122354 0.00193790i
\(134\) 0 0
\(135\) 45.0410 30.4523i 0.333637 0.225573i
\(136\) 0 0
\(137\) −67.2226 + 34.2516i −0.490676 + 0.250012i −0.681779 0.731558i \(-0.738794\pi\)
0.191103 + 0.981570i \(0.438794\pi\)
\(138\) 0 0
\(139\) 99.7167 32.3999i 0.717386 0.233093i 0.0724967 0.997369i \(-0.476903\pi\)
0.644890 + 0.764276i \(0.276903\pi\)
\(140\) 0 0
\(141\) −87.2055 + 268.391i −0.618479 + 1.90348i
\(142\) 0 0
\(143\) 24.2404 24.2404i 0.169513 0.169513i
\(144\) 0 0
\(145\) 28.8780 + 233.084i 0.199158 + 1.60747i
\(146\) 0 0
\(147\) −218.604 34.6234i −1.48710 0.235534i
\(148\) 0 0
\(149\) 179.838i 1.20697i 0.797374 + 0.603485i \(0.206222\pi\)
−0.797374 + 0.603485i \(0.793778\pi\)
\(150\) 0 0
\(151\) −196.687 −1.30256 −0.651282 0.758836i \(-0.725768\pi\)
−0.651282 + 0.758836i \(0.725768\pi\)
\(152\) 0 0
\(153\) 4.23178 26.7184i 0.0276587 0.174630i
\(154\) 0 0
\(155\) −9.67869 20.6969i −0.0624432 0.133528i
\(156\) 0 0
\(157\) 140.697 + 140.697i 0.896159 + 0.896159i 0.995094 0.0989345i \(-0.0315434\pi\)
−0.0989345 + 0.995094i \(0.531543\pi\)
\(158\) 0 0
\(159\) −215.598 70.0520i −1.35596 0.440579i
\(160\) 0 0
\(161\) 0.154379 + 0.475129i 0.000958874 + 0.00295111i
\(162\) 0 0
\(163\) 33.8077 + 66.3513i 0.207409 + 0.407063i 0.971153 0.238456i \(-0.0766411\pi\)
−0.763744 + 0.645519i \(0.776641\pi\)
\(164\) 0 0
\(165\) −47.2525 17.1400i −0.286379 0.103879i
\(166\) 0 0
\(167\) 5.49549 + 34.6972i 0.0329071 + 0.207768i 0.998664 0.0516830i \(-0.0164585\pi\)
−0.965756 + 0.259451i \(0.916459\pi\)
\(168\) 0 0
\(169\) −40.1458 + 55.2559i −0.237549 + 0.326958i
\(170\) 0 0
\(171\) 204.231 148.383i 1.19433 0.867735i
\(172\) 0 0
\(173\) 13.2636 + 6.75816i 0.0766684 + 0.0390645i 0.491904 0.870649i \(-0.336301\pi\)
−0.415236 + 0.909714i \(0.636301\pi\)
\(174\) 0 0
\(175\) 0.414718 1.81444i 0.00236982 0.0103682i
\(176\) 0 0
\(177\) 30.8707 60.5872i 0.174411 0.342300i
\(178\) 0 0
\(179\) 125.985 + 173.403i 0.703825 + 0.968733i 0.999908 + 0.0135702i \(0.00431965\pi\)
−0.296083 + 0.955162i \(0.595680\pi\)
\(180\) 0 0
\(181\) 95.9822 + 69.7351i 0.530288 + 0.385277i 0.820466 0.571696i \(-0.193714\pi\)
−0.290177 + 0.956973i \(0.593714\pi\)
\(182\) 0 0
\(183\) −280.863 + 44.4844i −1.53477 + 0.243084i
\(184\) 0 0
\(185\) −336.166 11.3710i −1.81711 0.0614647i
\(186\) 0 0
\(187\) −4.70220 + 2.39589i −0.0251455 + 0.0128123i
\(188\) 0 0
\(189\) 0.769932 0.250166i 0.00407372 0.00132363i
\(190\) 0 0
\(191\) −50.9394 + 156.775i −0.266699 + 0.820814i 0.724599 + 0.689171i \(0.242025\pi\)
−0.991297 + 0.131643i \(0.957975\pi\)
\(192\) 0 0
\(193\) 209.063 209.063i 1.08323 1.08323i 0.0870203 0.996207i \(-0.472265\pi\)
0.996207 0.0870203i \(-0.0277345\pi\)
\(194\) 0 0
\(195\) 341.624 + 66.0172i 1.75192 + 0.338550i
\(196\) 0 0
\(197\) −52.3675 8.29420i −0.265825 0.0421025i 0.0220991 0.999756i \(-0.492965\pi\)
−0.287924 + 0.957653i \(0.592965\pi\)
\(198\) 0 0
\(199\) 174.355i 0.876158i 0.898936 + 0.438079i \(0.144341\pi\)
−0.898936 + 0.438079i \(0.855659\pi\)
\(200\) 0 0
\(201\) 456.973 2.27350
\(202\) 0 0
\(203\) −0.547071 + 3.45407i −0.00269493 + 0.0170151i
\(204\) 0 0
\(205\) 9.21212 8.60930i 0.0449372 0.0419966i
\(206\) 0 0
\(207\) 54.1257 + 54.1257i 0.261477 + 0.261477i
\(208\) 0 0
\(209\) −46.8383 15.2187i −0.224107 0.0728167i
\(210\) 0 0
\(211\) 17.0119 + 52.3573i 0.0806251 + 0.248139i 0.983242 0.182307i \(-0.0583564\pi\)
−0.902617 + 0.430446i \(0.858356\pi\)
\(212\) 0 0
\(213\) −207.172 406.597i −0.972636 1.90891i
\(214\) 0 0
\(215\) −315.040 + 90.7093i −1.46530 + 0.421904i
\(216\) 0 0
\(217\) −0.0532200 0.336018i −0.000245253 0.00154847i
\(218\) 0 0
\(219\) 272.356 374.866i 1.24364 1.71172i
\(220\) 0 0
\(221\) 29.5544 21.4725i 0.133730 0.0971606i
\(222\) 0 0
\(223\) 135.136 + 68.8553i 0.605991 + 0.308768i 0.729930 0.683522i \(-0.239553\pi\)
−0.123939 + 0.992290i \(0.539553\pi\)
\(224\) 0 0
\(225\) −69.5960 276.555i −0.309315 1.22913i
\(226\) 0 0
\(227\) 195.862 384.400i 0.862826 1.69339i 0.153926 0.988082i \(-0.450808\pi\)
0.708900 0.705309i \(-0.249192\pi\)
\(228\) 0 0
\(229\) 0.300534 + 0.413649i 0.00131237 + 0.00180633i 0.809673 0.586882i \(-0.199645\pi\)
−0.808360 + 0.588688i \(0.799645\pi\)
\(230\) 0 0
\(231\) −0.605501 0.439922i −0.00262122 0.00190443i
\(232\) 0 0
\(233\) 225.714 35.7496i 0.968729 0.153432i 0.348033 0.937482i \(-0.386850\pi\)
0.620697 + 0.784051i \(0.286850\pi\)
\(234\) 0 0
\(235\) 246.345 + 192.032i 1.04828 + 0.817159i
\(236\) 0 0
\(237\) 510.933 260.333i 2.15584 1.09845i
\(238\) 0 0
\(239\) −57.7501 + 18.7641i −0.241632 + 0.0785111i −0.427330 0.904096i \(-0.640546\pi\)
0.185697 + 0.982607i \(0.440546\pi\)
\(240\) 0 0
\(241\) −73.7937 + 227.114i −0.306198 + 0.942381i 0.673029 + 0.739616i \(0.264993\pi\)
−0.979227 + 0.202765i \(0.935007\pi\)
\(242\) 0 0
\(243\) −240.230 + 240.230i −0.988601 + 0.988601i
\(244\) 0 0
\(245\) −118.530 + 214.387i −0.483798 + 0.875051i
\(246\) 0 0
\(247\) 336.712 + 53.3299i 1.36320 + 0.215910i
\(248\) 0 0
\(249\) 288.164i 1.15728i
\(250\) 0 0
\(251\) 207.257 0.825727 0.412864 0.910793i \(-0.364529\pi\)
0.412864 + 0.910793i \(0.364529\pi\)
\(252\) 0 0
\(253\) 2.33605 14.7492i 0.00923339 0.0582973i
\(254\) 0 0
\(255\) −46.8768 25.9172i −0.183831 0.101636i
\(256\) 0 0
\(257\) −172.275 172.275i −0.670332 0.670332i 0.287461 0.957792i \(-0.407189\pi\)
−0.957792 + 0.287461i \(0.907189\pi\)
\(258\) 0 0
\(259\) −4.76321 1.54766i −0.0183908 0.00597552i
\(260\) 0 0
\(261\) 165.580 + 509.602i 0.634406 + 1.95250i
\(262\) 0 0
\(263\) −43.8680 86.0959i −0.166799 0.327361i 0.792444 0.609945i \(-0.208808\pi\)
−0.959243 + 0.282584i \(0.908808\pi\)
\(264\) 0 0
\(265\) −154.259 + 197.888i −0.582110 + 0.746749i
\(266\) 0 0
\(267\) 27.4235 + 173.145i 0.102710 + 0.648485i
\(268\) 0 0
\(269\) −253.452 + 348.846i −0.942200 + 1.29683i 0.0127068 + 0.999919i \(0.495955\pi\)
−0.954906 + 0.296907i \(0.904045\pi\)
\(270\) 0 0
\(271\) 25.0842 18.2248i 0.0925618 0.0672501i −0.540542 0.841317i \(-0.681781\pi\)
0.633104 + 0.774067i \(0.281781\pi\)
\(272\) 0 0
\(273\) 4.61617 + 2.35206i 0.0169090 + 0.00861559i
\(274\) 0 0
\(275\) −35.6679 + 42.6968i −0.129702 + 0.155261i
\(276\) 0 0
\(277\) 63.5139 124.653i 0.229292 0.450011i −0.747482 0.664282i \(-0.768737\pi\)
0.976774 + 0.214271i \(0.0687375\pi\)
\(278\) 0 0
\(279\) −30.6390 42.1710i −0.109817 0.151151i
\(280\) 0 0
\(281\) −30.4919 22.1536i −0.108512 0.0788386i 0.532206 0.846615i \(-0.321363\pi\)
−0.640718 + 0.767776i \(0.721363\pi\)
\(282\) 0 0
\(283\) −420.731 + 66.6373i −1.48668 + 0.235467i −0.846349 0.532630i \(-0.821204\pi\)
−0.640334 + 0.768097i \(0.721204\pi\)
\(284\) 0 0
\(285\) −138.306 480.347i −0.485285 1.68543i
\(286\) 0 0
\(287\) 0.167281 0.0852341i 0.000582862 0.000296983i
\(288\) 0 0
\(289\) 269.507 87.5681i 0.932549 0.303004i
\(290\) 0 0
\(291\) −195.768 + 602.512i −0.672742 + 2.07049i
\(292\) 0 0
\(293\) 240.569 240.569i 0.821054 0.821054i −0.165205 0.986259i \(-0.552829\pi\)
0.986259 + 0.165205i \(0.0528286\pi\)
\(294\) 0 0
\(295\) −51.3891 54.9874i −0.174200 0.186398i
\(296\) 0 0
\(297\) −23.9007 3.78550i −0.0804737 0.0127458i
\(298\) 0 0
\(299\) 103.370i 0.345718i
\(300\) 0 0
\(301\) −4.88148 −0.0162175
\(302\) 0 0
\(303\) −100.148 + 632.308i −0.330520 + 2.08682i
\(304\) 0 0
\(305\) −59.7175 + 309.024i −0.195795 + 1.01320i
\(306\) 0 0
\(307\) −206.372 206.372i −0.672222 0.672222i 0.286006 0.958228i \(-0.407672\pi\)
−0.958228 + 0.286006i \(0.907672\pi\)
\(308\) 0 0
\(309\) 495.947 + 161.143i 1.60501 + 0.521499i
\(310\) 0 0
\(311\) −55.1913 169.861i −0.177464 0.546178i 0.822273 0.569093i \(-0.192705\pi\)
−0.999737 + 0.0229146i \(0.992705\pi\)
\(312\) 0 0
\(313\) 167.138 + 328.027i 0.533987 + 1.04801i 0.987627 + 0.156824i \(0.0501255\pi\)
−0.453639 + 0.891185i \(0.649875\pi\)
\(314\) 0 0
\(315\) 0.143550 4.24383i 0.000455713 0.0134725i
\(316\) 0 0
\(317\) −29.4856 186.165i −0.0930145 0.587270i −0.989538 0.144274i \(-0.953915\pi\)
0.896523 0.442997i \(-0.146085\pi\)
\(318\) 0 0
\(319\) 61.4432 84.5694i 0.192612 0.265108i
\(320\) 0 0
\(321\) 46.9206 34.0898i 0.146170 0.106199i
\(322\) 0 0
\(323\) −46.7611 23.8260i −0.144771 0.0737647i
\(324\) 0 0
\(325\) 197.625 330.540i 0.608078 1.01705i
\(326\) 0 0
\(327\) −23.0199 + 45.1790i −0.0703971 + 0.138162i
\(328\) 0 0
\(329\) 2.73370 + 3.76262i 0.00830912 + 0.0114365i
\(330\) 0 0
\(331\) −302.888 220.061i −0.915069 0.664836i 0.0272230 0.999629i \(-0.491334\pi\)
−0.942292 + 0.334793i \(0.891334\pi\)
\(332\) 0 0
\(333\) −757.927 + 120.044i −2.27606 + 0.360492i
\(334\) 0 0
\(335\) 172.470 475.476i 0.514837 1.41933i
\(336\) 0 0
\(337\) 170.539 86.8941i 0.506051 0.257846i −0.182275 0.983248i \(-0.558346\pi\)
0.688326 + 0.725402i \(0.258346\pi\)
\(338\) 0 0
\(339\) −94.6738 + 30.7614i −0.279274 + 0.0907416i
\(340\) 0 0
\(341\) −3.14245 + 9.67148i −0.00921541 + 0.0283621i
\(342\) 0 0
\(343\) −5.15879 + 5.15879i −0.0150402 + 0.0150402i
\(344\) 0 0
\(345\) 137.296 64.2052i 0.397960 0.186102i
\(346\) 0 0
\(347\) −405.251 64.1855i −1.16787 0.184973i −0.457769 0.889071i \(-0.651351\pi\)
−0.710102 + 0.704098i \(0.751351\pi\)
\(348\) 0 0
\(349\) 391.257i 1.12108i −0.828127 0.560541i \(-0.810593\pi\)
0.828127 0.560541i \(-0.189407\pi\)
\(350\) 0 0
\(351\) 167.507 0.477229
\(352\) 0 0
\(353\) −51.9440 + 327.962i −0.147150 + 0.929070i 0.798053 + 0.602587i \(0.205863\pi\)
−0.945203 + 0.326483i \(0.894137\pi\)
\(354\) 0 0
\(355\) −501.251 + 62.1025i −1.41197 + 0.174937i
\(356\) 0 0
\(357\) −0.563965 0.563965i −0.00157973 0.00157973i
\(358\) 0 0
\(359\) 529.753 + 172.127i 1.47563 + 0.479463i 0.932806 0.360380i \(-0.117353\pi\)
0.542829 + 0.839843i \(0.317353\pi\)
\(360\) 0 0
\(361\) −39.7873 122.453i −0.110214 0.339204i
\(362\) 0 0
\(363\) −237.998 467.098i −0.655643 1.28677i
\(364\) 0 0
\(365\) −287.252 424.866i −0.786993 1.16402i
\(366\) 0 0
\(367\) −97.4605 615.342i −0.265560 1.67668i −0.655001 0.755628i \(-0.727332\pi\)
0.389441 0.921052i \(-0.372668\pi\)
\(368\) 0 0
\(369\) 16.9083 23.2723i 0.0458219 0.0630685i
\(370\) 0 0
\(371\) −3.02250 + 2.19598i −0.00814690 + 0.00591907i
\(372\) 0 0
\(373\) −16.7670 8.54321i −0.0449518 0.0229041i 0.431370 0.902175i \(-0.358030\pi\)
−0.476322 + 0.879271i \(0.658030\pi\)
\(374\) 0 0
\(375\) −561.775 57.1814i −1.49807 0.152484i
\(376\) 0 0
\(377\) −328.508 + 644.733i −0.871373 + 1.71017i
\(378\) 0 0
\(379\) 372.648 + 512.906i 0.983241 + 1.35331i 0.935065 + 0.354476i \(0.115341\pi\)
0.0481753 + 0.998839i \(0.484659\pi\)
\(380\) 0 0
\(381\) −690.117 501.399i −1.81133 1.31601i
\(382\) 0 0
\(383\) 237.795 37.6630i 0.620874 0.0983367i 0.161930 0.986802i \(-0.448228\pi\)
0.458943 + 0.888465i \(0.348228\pi\)
\(384\) 0 0
\(385\) −0.686262 + 0.463983i −0.00178250 + 0.00120515i
\(386\) 0 0
\(387\) −666.418 + 339.557i −1.72201 + 0.877408i
\(388\) 0 0
\(389\) 307.741 99.9913i 0.791109 0.257047i 0.114533 0.993419i \(-0.463463\pi\)
0.676576 + 0.736373i \(0.263463\pi\)
\(390\) 0 0
\(391\) 4.91746 15.1344i 0.0125766 0.0387069i
\(392\) 0 0
\(393\) −429.343 + 429.343i −1.09248 + 1.09248i
\(394\) 0 0
\(395\) −78.0386 629.875i −0.197566 1.59462i
\(396\) 0 0
\(397\) 53.6156 + 8.49188i 0.135052 + 0.0213901i 0.223594 0.974682i \(-0.428221\pi\)
−0.0885425 + 0.996072i \(0.528221\pi\)
\(398\) 0 0
\(399\) 7.44288i 0.0186538i
\(400\) 0 0
\(401\) 511.874 1.27649 0.638247 0.769832i \(-0.279660\pi\)
0.638247 + 0.769832i \(0.279660\pi\)
\(402\) 0 0
\(403\) 11.0119 69.5264i 0.0273248 0.172522i
\(404\) 0 0
\(405\) 113.404 + 242.504i 0.280011 + 0.598774i
\(406\) 0 0
\(407\) 105.858 + 105.858i 0.260093 + 0.260093i
\(408\) 0 0
\(409\) 121.365 + 39.4338i 0.296735 + 0.0964152i 0.453601 0.891205i \(-0.350139\pi\)
−0.156866 + 0.987620i \(0.550139\pi\)
\(410\) 0 0
\(411\) 105.319 + 324.139i 0.256251 + 0.788660i
\(412\) 0 0
\(413\) −0.508765 0.998507i −0.00123188 0.00241769i
\(414\) 0 0
\(415\) −299.831 108.758i −0.722485 0.262068i
\(416\) 0 0
\(417\) −74.0943 467.813i −0.177684 1.12185i
\(418\) 0 0
\(419\) 136.283 187.577i 0.325258 0.447679i −0.614806 0.788679i \(-0.710766\pi\)
0.940063 + 0.341000i \(0.110766\pi\)
\(420\) 0 0
\(421\) −295.953 + 215.023i −0.702977 + 0.510742i −0.880900 0.473302i \(-0.843062\pi\)
0.177924 + 0.984044i \(0.443062\pi\)
\(422\) 0 0
\(423\) 634.932 + 323.514i 1.50102 + 0.764809i
\(424\) 0 0
\(425\) −44.6588 + 38.9932i −0.105080 + 0.0917486i
\(426\) 0 0
\(427\) −2.12761 + 4.17567i −0.00498270 + 0.00977909i
\(428\) 0 0
\(429\) −91.0257 125.286i −0.212181 0.292042i
\(430\) 0 0
\(431\) 165.792 + 120.455i 0.384668 + 0.279478i 0.763267 0.646083i \(-0.223594\pi\)
−0.378599 + 0.925561i \(0.623594\pi\)
\(432\) 0 0
\(433\) −354.920 + 56.2139i −0.819677 + 0.129824i −0.552170 0.833732i \(-0.686200\pi\)
−0.267507 + 0.963556i \(0.586200\pi\)
\(434\) 0 0
\(435\) 1060.38 + 35.8679i 2.43766 + 0.0824550i
\(436\) 0 0
\(437\) 132.316 67.4186i 0.302784 0.154276i
\(438\) 0 0
\(439\) −338.042 + 109.837i −0.770028 + 0.250197i −0.667577 0.744541i \(-0.732668\pi\)
−0.102451 + 0.994738i \(0.532668\pi\)
\(440\) 0 0
\(441\) −172.705 + 531.531i −0.391621 + 1.20529i
\(442\) 0 0
\(443\) 375.972 375.972i 0.848696 0.848696i −0.141274 0.989970i \(-0.545120\pi\)
0.989970 + 0.141274i \(0.0451199\pi\)
\(444\) 0 0
\(445\) 190.506 + 36.8144i 0.428104 + 0.0827290i
\(446\) 0 0
\(447\) 802.404 + 127.088i 1.79509 + 0.284314i
\(448\) 0 0
\(449\) 197.943i 0.440853i 0.975404 + 0.220426i \(0.0707449\pi\)
−0.975404 + 0.220426i \(0.929255\pi\)
\(450\) 0 0
\(451\) −5.61192 −0.0124433
\(452\) 0 0
\(453\) −138.995 + 877.580i −0.306832 + 1.93726i
\(454\) 0 0
\(455\) 4.18952 3.91537i 0.00920773 0.00860520i
\(456\) 0 0
\(457\) −56.7642 56.7642i −0.124210 0.124210i 0.642269 0.766479i \(-0.277993\pi\)
−0.766479 + 0.642269i \(0.777993\pi\)
\(458\) 0 0
\(459\) −24.5248 7.96861i −0.0534310 0.0173608i
\(460\) 0 0
\(461\) 18.9770 + 58.4051i 0.0411648 + 0.126692i 0.969527 0.244985i \(-0.0787829\pi\)
−0.928362 + 0.371677i \(0.878783\pi\)
\(462\) 0 0
\(463\) 108.886 + 213.700i 0.235174 + 0.461555i 0.978188 0.207721i \(-0.0666046\pi\)
−0.743014 + 0.669276i \(0.766605\pi\)
\(464\) 0 0
\(465\) −99.1852 + 28.5584i −0.213301 + 0.0614158i
\(466\) 0 0
\(467\) −30.4472 192.236i −0.0651974 0.411640i −0.998604 0.0528199i \(-0.983179\pi\)
0.933407 0.358820i \(-0.116821\pi\)
\(468\) 0 0
\(469\) 4.42670 6.09283i 0.00943859 0.0129911i
\(470\) 0 0
\(471\) 727.191 528.335i 1.54393 1.12173i
\(472\) 0 0
\(473\) 130.010 + 66.2434i 0.274863 + 0.140049i
\(474\) 0 0
\(475\) −551.995 37.3858i −1.16210 0.0787069i
\(476\) 0 0
\(477\) −259.878 + 510.039i −0.544818 + 1.06926i
\(478\) 0 0
\(479\) 224.113 + 308.465i 0.467876 + 0.643977i 0.976119 0.217237i \(-0.0697046\pi\)
−0.508242 + 0.861214i \(0.669705\pi\)
\(480\) 0 0
\(481\) −838.375 609.115i −1.74298 1.26635i
\(482\) 0 0
\(483\) 2.22903 0.353043i 0.00461496 0.000730938i
\(484\) 0 0
\(485\) 553.021 + 431.094i 1.14025 + 0.888853i
\(486\) 0 0
\(487\) 95.6879 48.7554i 0.196484 0.100114i −0.352980 0.935631i \(-0.614832\pi\)
0.549465 + 0.835517i \(0.314832\pi\)
\(488\) 0 0
\(489\) 319.938 103.954i 0.654270 0.212585i
\(490\) 0 0
\(491\) −187.535 + 577.172i −0.381944 + 1.17550i 0.556728 + 0.830695i \(0.312056\pi\)
−0.938673 + 0.344809i \(0.887944\pi\)
\(492\) 0 0
\(493\) 78.7680 78.7680i 0.159773 0.159773i
\(494\) 0 0
\(495\) −61.4135 + 111.079i −0.124068 + 0.224403i
\(496\) 0 0
\(497\) −7.42803 1.17649i −0.0149457 0.00236717i
\(498\) 0 0
\(499\) 497.932i 0.997860i −0.866642 0.498930i \(-0.833726\pi\)
0.866642 0.498930i \(-0.166274\pi\)
\(500\) 0 0
\(501\) 158.696 0.316758
\(502\) 0 0
\(503\) 63.6808 402.065i 0.126602 0.799334i −0.839912 0.542722i \(-0.817394\pi\)
0.966515 0.256612i \(-0.0826062\pi\)
\(504\) 0 0
\(505\) 620.112 + 342.847i 1.22794 + 0.678906i
\(506\) 0 0
\(507\) 218.171 + 218.171i 0.430318 + 0.430318i
\(508\) 0 0
\(509\) −91.1612 29.6201i −0.179099 0.0581927i 0.218095 0.975928i \(-0.430016\pi\)
−0.397193 + 0.917735i \(0.630016\pi\)
\(510\) 0 0
\(511\) −2.35978 7.26266i −0.00461797 0.0142126i
\(512\) 0 0
\(513\) −109.250 214.415i −0.212963 0.417963i
\(514\) 0 0
\(515\) 354.847 455.210i 0.689024 0.883902i
\(516\) 0 0
\(517\) −21.7475 137.308i −0.0420648 0.265587i
\(518\) 0 0
\(519\) 39.5267 54.4039i 0.0761594 0.104824i
\(520\) 0 0
\(521\) 17.2061 12.5009i 0.0330250 0.0239941i −0.571150 0.820846i \(-0.693503\pi\)
0.604175 + 0.796851i \(0.293503\pi\)
\(522\) 0 0
\(523\) −212.904 108.480i −0.407082 0.207418i 0.238445 0.971156i \(-0.423362\pi\)
−0.645527 + 0.763737i \(0.723362\pi\)
\(524\) 0 0
\(525\) −7.80262 3.13262i −0.0148621 0.00596690i
\(526\) 0 0
\(527\) −4.91975 + 9.65555i −0.00933538 + 0.0183217i
\(528\) 0 0
\(529\) −284.471 391.541i −0.537753 0.740153i
\(530\) 0 0
\(531\) −138.913 100.926i −0.261606 0.190068i
\(532\) 0 0
\(533\) 38.3685 6.07697i 0.0719859 0.0114014i
\(534\) 0 0
\(535\) −17.7614 61.6865i −0.0331989 0.115302i
\(536\) 0 0
\(537\) 862.722 439.579i 1.60656 0.818582i
\(538\) 0 0
\(539\) 103.695 33.6926i 0.192384 0.0625095i
\(540\) 0 0
\(541\) 247.358 761.290i 0.457224 1.40719i −0.411280 0.911509i \(-0.634918\pi\)
0.868504 0.495682i \(-0.165082\pi\)
\(542\) 0 0
\(543\) 378.973 378.973i 0.697925 0.697925i
\(544\) 0 0
\(545\) 38.3202 + 41.0033i 0.0703123 + 0.0752355i
\(546\) 0 0
\(547\) 521.386 + 82.5795i 0.953174 + 0.150968i 0.613605 0.789613i \(-0.289719\pi\)
0.339569 + 0.940581i \(0.389719\pi\)
\(548\) 0 0
\(549\) 718.058i 1.30794i
\(550\) 0 0
\(551\) 1039.53 1.88663
\(552\) 0 0
\(553\) 1.47838 9.33413i 0.00267338 0.0168791i
\(554\) 0 0
\(555\) −288.297 + 1491.87i −0.519454 + 2.68806i
\(556\) 0 0
\(557\) −545.295 545.295i −0.978985 0.978985i 0.0207984 0.999784i \(-0.493379\pi\)
−0.999784 + 0.0207984i \(0.993379\pi\)
\(558\) 0 0
\(559\) −960.607 312.120i −1.71844 0.558354i
\(560\) 0 0
\(561\) 7.36705 + 22.6734i 0.0131320 + 0.0404161i
\(562\) 0 0
\(563\) −363.431 713.274i −0.645526 1.26692i −0.949360 0.314192i \(-0.898267\pi\)
0.303833 0.952725i \(-0.401733\pi\)
\(564\) 0 0
\(565\) −3.72476 + 110.117i −0.00659250 + 0.194897i
\(566\) 0 0
\(567\) 0.623574 + 3.93709i 0.00109978 + 0.00694372i
\(568\) 0 0
\(569\) −447.082 + 615.356i −0.785733 + 1.08147i 0.208893 + 0.977938i \(0.433014\pi\)
−0.994626 + 0.103530i \(0.966986\pi\)
\(570\) 0 0
\(571\) −281.200 + 204.304i −0.492469 + 0.357800i −0.806133 0.591734i \(-0.798443\pi\)
0.313664 + 0.949534i \(0.398443\pi\)
\(572\) 0 0
\(573\) 663.503 + 338.072i 1.15795 + 0.590003i
\(574\) 0 0
\(575\) −14.9867 167.087i −0.0260638 0.290587i
\(576\) 0 0
\(577\) −176.411 + 346.227i −0.305739 + 0.600047i −0.991844 0.127456i \(-0.959319\pi\)
0.686105 + 0.727502i \(0.259319\pi\)
\(578\) 0 0
\(579\) −785.057 1080.54i −1.35588 1.86621i
\(580\) 0 0
\(581\) −3.84209 2.79144i −0.00661289 0.00480455i
\(582\) 0 0
\(583\) 110.299 17.4697i 0.189193 0.0299652i
\(584\) 0 0
\(585\) 299.598 825.948i 0.512133 1.41188i
\(586\) 0 0
\(587\) −806.067 + 410.711i −1.37320 + 0.699679i −0.975942 0.218030i \(-0.930037\pi\)
−0.397255 + 0.917708i \(0.630037\pi\)
\(588\) 0 0
\(589\) −96.1782 + 31.2502i −0.163291 + 0.0530563i
\(590\) 0 0
\(591\) −74.0142 + 227.792i −0.125236 + 0.385435i
\(592\) 0 0
\(593\) 512.766 512.766i 0.864699 0.864699i −0.127181 0.991880i \(-0.540593\pi\)
0.991880 + 0.127181i \(0.0405928\pi\)
\(594\) 0 0
\(595\) −0.799650 + 0.373949i −0.00134395 + 0.000628485i
\(596\) 0 0
\(597\) 777.940 + 123.214i 1.30308 + 0.206388i
\(598\) 0 0
\(599\) 597.049i 0.996742i 0.866964 + 0.498371i \(0.166068\pi\)
−0.866964 + 0.498371i \(0.833932\pi\)
\(600\) 0 0
\(601\) 808.063 1.34453 0.672266 0.740310i \(-0.265321\pi\)
0.672266 + 0.740310i \(0.265321\pi\)
\(602\) 0 0
\(603\) 180.513 1139.71i 0.299358 1.89007i
\(604\) 0 0
\(605\) −575.836 + 71.3433i −0.951794 + 0.117923i
\(606\) 0 0
\(607\) 154.240 + 154.240i 0.254102 + 0.254102i 0.822650 0.568548i \(-0.192495\pi\)
−0.568548 + 0.822650i \(0.692495\pi\)
\(608\) 0 0
\(609\) 15.0248 + 4.88185i 0.0246712 + 0.00801617i
\(610\) 0 0
\(611\) 297.374 + 915.222i 0.486700 + 1.49791i
\(612\) 0 0
\(613\) −153.517 301.295i −0.250436 0.491509i 0.731227 0.682135i \(-0.238948\pi\)
−0.981663 + 0.190626i \(0.938948\pi\)
\(614\) 0 0
\(615\) −31.9030 47.1867i −0.0518748 0.0767263i
\(616\) 0 0
\(617\) 93.4789 + 590.203i 0.151506 + 0.956568i 0.939913 + 0.341415i \(0.110906\pi\)
−0.788407 + 0.615154i \(0.789094\pi\)
\(618\) 0 0
\(619\) −55.1535 + 75.9123i −0.0891009 + 0.122637i −0.851240 0.524776i \(-0.824149\pi\)
0.762139 + 0.647413i \(0.224149\pi\)
\(620\) 0 0
\(621\) 59.0318 42.8891i 0.0950593 0.0690646i
\(622\) 0 0
\(623\) 2.57420 + 1.31162i 0.00413195 + 0.00210533i
\(624\) 0 0
\(625\) −271.521 + 562.940i −0.434434 + 0.900704i
\(626\) 0 0
\(627\) −101.002 + 198.229i −0.161089 + 0.316154i
\(628\) 0 0
\(629\) 93.7704 + 129.064i 0.149078 + 0.205189i
\(630\) 0 0
\(631\) −592.798 430.693i −0.939458 0.682556i 0.00883183 0.999961i \(-0.497189\pi\)
−0.948290 + 0.317405i \(0.897189\pi\)
\(632\) 0 0
\(633\) 245.630 38.9039i 0.388041 0.0614596i
\(634\) 0 0
\(635\) −782.164 + 528.822i −1.23175 + 0.832791i
\(636\) 0 0
\(637\) −672.476 + 342.644i −1.05569 + 0.537902i
\(638\) 0 0
\(639\) −1095.91 + 356.082i −1.71504 + 0.557249i
\(640\) 0 0
\(641\) 96.4586 296.869i 0.150481 0.463134i −0.847194 0.531284i \(-0.821710\pi\)
0.997675 + 0.0681501i \(0.0217097\pi\)
\(642\) 0 0
\(643\) 409.912 409.912i 0.637500 0.637500i −0.312438 0.949938i \(-0.601146\pi\)
0.949938 + 0.312438i \(0.101146\pi\)
\(644\) 0 0
\(645\) 182.095 + 1469.75i 0.282318 + 2.27868i
\(646\) 0 0
\(647\) 1249.34 + 197.876i 1.93098 + 0.305837i 0.998469 0.0553121i \(-0.0176154\pi\)
0.932508 + 0.361149i \(0.117615\pi\)
\(648\) 0 0
\(649\) 33.4977i 0.0516143i
\(650\) 0 0
\(651\) −1.53685 −0.00236076
\(652\) 0 0
\(653\) 1.48768 9.39285i 0.00227822 0.0143841i −0.986523 0.163622i \(-0.947682\pi\)
0.988801 + 0.149238i \(0.0476821\pi\)
\(654\) 0 0
\(655\) 284.685 + 608.769i 0.434633 + 0.929418i
\(656\) 0 0
\(657\) −827.349 827.349i −1.25928 1.25928i
\(658\) 0 0
\(659\) −824.113 267.770i −1.25055 0.406328i −0.392432 0.919781i \(-0.628366\pi\)
−0.858118 + 0.513453i \(0.828366\pi\)
\(660\) 0 0
\(661\) 108.522 + 333.995i 0.164178 + 0.505288i 0.998975 0.0452705i \(-0.0144150\pi\)
−0.834797 + 0.550558i \(0.814415\pi\)
\(662\) 0 0
\(663\) −74.9206 147.040i −0.113002 0.221780i
\(664\) 0 0
\(665\) −7.74424 2.80908i −0.0116455 0.00422418i
\(666\) 0 0
\(667\) 49.3090 + 311.325i 0.0739265 + 0.466754i
\(668\) 0 0
\(669\) 402.717 554.292i 0.601968 0.828538i
\(670\) 0 0
\(671\) 113.331 82.3395i 0.168898 0.122712i
\(672\) 0 0
\(673\) −1130.82 576.182i −1.68027 0.856140i −0.991341 0.131310i \(-0.958082\pi\)
−0.688928 0.724830i \(-0.741918\pi\)
\(674\) 0 0
\(675\) −270.760 + 24.2855i −0.401126 + 0.0359786i
\(676\) 0 0
\(677\) −498.902 + 979.151i −0.736931 + 1.44631i 0.152054 + 0.988372i \(0.451411\pi\)
−0.888985 + 0.457936i \(0.848589\pi\)
\(678\) 0 0
\(679\) 6.13689 + 8.44670i 0.00903813 + 0.0124399i
\(680\) 0 0
\(681\) −1576.71 1145.54i −2.31528 1.68215i
\(682\) 0 0
\(683\) −430.626 + 68.2045i −0.630493 + 0.0998602i −0.463499 0.886098i \(-0.653406\pi\)
−0.166994 + 0.985958i \(0.553406\pi\)
\(684\) 0 0
\(685\) 377.013 + 12.7526i 0.550384 + 0.0186170i
\(686\) 0 0
\(687\) 2.05800 1.04861i 0.00299564 0.00152635i
\(688\) 0 0
\(689\) −735.195 + 238.879i −1.06705 + 0.346705i
\(690\) 0 0
\(691\) −192.465 + 592.345i −0.278531 + 0.857229i 0.709733 + 0.704471i \(0.248816\pi\)
−0.988264 + 0.152758i \(0.951184\pi\)
\(692\) 0 0
\(693\) −1.33637 + 1.33637i −0.00192839 + 0.00192839i
\(694\) 0 0
\(695\) −514.719 99.4670i −0.740603 0.143118i
\(696\) 0 0
\(697\) −5.90664 0.935520i −0.00847438 0.00134221i
\(698\) 0 0
\(699\) 1032.35i 1.47690i
\(700\) 0 0
\(701\) 302.170 0.431055 0.215528 0.976498i \(-0.430853\pi\)
0.215528 + 0.976498i \(0.430853\pi\)
\(702\) 0 0
\(703\) −232.891 + 1470.42i −0.331282 + 2.09163i
\(704\) 0 0
\(705\) 1030.90 963.439i 1.46227 1.36658i
\(706\) 0 0
\(707\) 7.46043 + 7.46043i 0.0105522 + 0.0105522i
\(708\) 0 0
\(709\) −1123.00 364.885i −1.58392 0.514647i −0.620857 0.783923i \(-0.713215\pi\)
−0.963063 + 0.269277i \(0.913215\pi\)
\(710\) 0 0
\(711\) −447.456 1377.13i −0.629333 1.93689i
\(712\) 0 0
\(713\) −13.9210 27.3216i −0.0195246 0.0383192i
\(714\) 0 0
\(715\) −164.714 + 47.4260i −0.230369 + 0.0663300i
\(716\) 0 0
\(717\) 42.9111 + 270.930i 0.0598481 + 0.377866i
\(718\) 0 0
\(719\) −514.227 + 707.773i −0.715198 + 0.984385i 0.284472 + 0.958684i \(0.408182\pi\)
−0.999670 + 0.0257010i \(0.991818\pi\)
\(720\) 0 0
\(721\) 6.95276 5.05148i 0.00964322 0.00700621i
\(722\) 0 0
\(723\) 961.189 + 489.750i 1.32945 + 0.677386i
\(724\) 0 0
\(725\) 437.528 1089.78i 0.603487 1.50314i
\(726\) 0 0
\(727\) 194.758 382.234i 0.267893 0.525769i −0.717396 0.696665i \(-0.754666\pi\)
0.985289 + 0.170896i \(0.0546663\pi\)
\(728\) 0 0
\(729\) 618.853 + 851.778i 0.848907 + 1.16842i
\(730\) 0 0
\(731\) 125.795 + 91.3953i 0.172086 + 0.125028i
\(732\) 0 0
\(733\) 188.540 29.8618i 0.257217 0.0407392i −0.0264940 0.999649i \(-0.508434\pi\)
0.283711 + 0.958910i \(0.408434\pi\)
\(734\) 0 0
\(735\) 872.792 + 680.363i 1.18747 + 0.925664i
\(736\) 0 0
\(737\) −200.580 + 102.200i −0.272157 + 0.138671i
\(738\) 0 0
\(739\) 642.483 208.755i 0.869395 0.282484i 0.159848 0.987142i \(-0.448900\pi\)
0.709547 + 0.704658i \(0.248900\pi\)
\(740\) 0 0
\(741\) 475.895 1464.65i 0.642233 1.97659i
\(742\) 0 0
\(743\) 365.561 365.561i 0.492006 0.492006i −0.416932 0.908938i \(-0.636895\pi\)
0.908938 + 0.416932i \(0.136895\pi\)
\(744\) 0 0
\(745\) 435.076 786.928i 0.583995 1.05628i
\(746\) 0 0
\(747\) −718.694 113.830i −0.962107 0.152383i
\(748\) 0 0
\(749\) 0.955821i 0.00127613i
\(750\) 0 0
\(751\) −1191.63 −1.58673 −0.793363 0.608749i \(-0.791672\pi\)
−0.793363 + 0.608749i \(0.791672\pi\)
\(752\) 0 0
\(753\) 146.465 924.742i 0.194508 1.22808i
\(754\) 0 0
\(755\) 860.653 + 475.838i 1.13994 + 0.630249i
\(756\) 0 0
\(757\) −932.823 932.823i −1.23226 1.23226i −0.963093 0.269170i \(-0.913251\pi\)
−0.269170 0.963093i \(-0.586749\pi\)
\(758\) 0 0
\(759\) −64.1573 20.8460i −0.0845287 0.0274651i
\(760\) 0 0
\(761\) −94.1031 289.620i −0.123657 0.380578i 0.869997 0.493057i \(-0.164121\pi\)
−0.993654 + 0.112480i \(0.964121\pi\)
\(762\) 0 0
\(763\) 0.379379 + 0.744573i 0.000497220 + 0.000975850i
\(764\) 0 0
\(765\) −83.1560 + 106.675i −0.108701 + 0.139445i
\(766\) 0 0
\(767\) −36.2736 229.022i −0.0472928 0.298595i
\(768\) 0 0
\(769\) 547.076 752.985i 0.711412 0.979175i −0.288353 0.957524i \(-0.593108\pi\)
0.999766 0.0216508i \(-0.00689220\pi\)
\(770\) 0 0
\(771\) −890.402 + 646.915i −1.15487 + 0.839060i
\(772\) 0 0
\(773\) 1314.34 + 669.690i 1.70031 + 0.866352i 0.986045 + 0.166480i \(0.0532400\pi\)
0.714267 + 0.699873i \(0.246760\pi\)
\(774\) 0 0
\(775\) −7.71966 + 113.980i −0.00996085 + 0.147070i
\(776\) 0 0
\(777\) −10.2714 + 20.1588i −0.0132193 + 0.0259444i
\(778\) 0 0
\(779\) −32.8030 45.1494i −0.0421091 0.0579582i
\(780\) 0 0
\(781\) 181.868 + 132.135i 0.232865 + 0.169187i
\(782\) 0 0
\(783\) 504.493 79.9038i 0.644307 0.102048i
\(784\) 0 0
\(785\) −275.272 956.038i −0.350665 1.21788i
\(786\) 0 0
\(787\) 497.627 253.554i 0.632309 0.322178i −0.108295 0.994119i \(-0.534539\pi\)
0.740604 + 0.671941i \(0.234539\pi\)
\(788\) 0 0
\(789\) −415.144 + 134.888i −0.526164 + 0.170961i
\(790\) 0 0
\(791\) −0.506963 + 1.56027i −0.000640914 + 0.00197253i
\(792\) 0 0
\(793\) −685.675 + 685.675i −0.864659 + 0.864659i
\(794\) 0 0
\(795\) 773.928 + 828.118i 0.973494 + 1.04166i
\(796\) 0 0
\(797\) −1409.78 223.288i −1.76886 0.280160i −0.814795 0.579750i \(-0.803150\pi\)
−0.954068 + 0.299589i \(0.903150\pi\)
\(798\) 0 0
\(799\) 148.145i 0.185413i
\(800\) 0 0
\(801\) 442.666 0.552641
\(802\) 0 0
\(803\) −35.7081 + 225.452i −0.0444683 + 0.280762i
\(804\) 0 0
\(805\) 0.473939 2.45253i 0.000588744 0.00304662i
\(806\) 0 0
\(807\) 1377.37 + 1377.37i 1.70678 + 1.70678i
\(808\) 0 0
\(809\) 867.364 + 281.824i 1.07214 + 0.348361i 0.791322 0.611399i \(-0.209393\pi\)
0.280821 + 0.959760i \(0.409393\pi\)
\(810\) 0 0
\(811\) −263.642 811.406i −0.325082 1.00050i −0.971403 0.237435i \(-0.923693\pi\)
0.646321 0.763066i \(-0.276307\pi\)
\(812\) 0 0
\(813\) −63.5888 124.800i −0.0782150 0.153506i
\(814\) 0 0
\(815\) 12.5873 372.126i 0.0154446 0.456597i
\(816\) 0 0
\(817\) 226.993 + 1433.18i 0.277837 + 1.75419i
\(818\) 0 0
\(819\) 7.68961 10.5838i 0.00938902 0.0129229i
\(820\) 0 0
\(821\) 868.835 631.245i 1.05826 0.768874i 0.0844975 0.996424i \(-0.473071\pi\)
0.973766 + 0.227550i \(0.0730715\pi\)
\(822\) 0 0
\(823\) −749.888 382.087i −0.911164 0.464261i −0.0654248 0.997858i \(-0.520840\pi\)
−0.845739 + 0.533596i \(0.820840\pi\)
\(824\) 0 0
\(825\) 165.299 + 189.316i 0.200362 + 0.229474i
\(826\) 0 0
\(827\) −597.962 + 1173.57i −0.723049 + 1.41906i 0.177416 + 0.984136i \(0.443226\pi\)
−0.900465 + 0.434928i \(0.856774\pi\)
\(828\) 0 0
\(829\) −80.9286 111.389i −0.0976219 0.134365i 0.757412 0.652938i \(-0.226464\pi\)
−0.855034 + 0.518573i \(0.826464\pi\)
\(830\) 0 0
\(831\) −511.294 371.477i −0.615275 0.447024i
\(832\) 0 0
\(833\) 114.758 18.1758i 0.137764 0.0218197i
\(834\) 0 0
\(835\) 59.8947 165.121i 0.0717302 0.197750i
\(836\) 0 0
\(837\) −44.2738 + 22.5586i −0.0528958 + 0.0269518i
\(838\) 0 0
\(839\) 1054.29 342.560i 1.25661 0.408296i 0.396322 0.918112i \(-0.370287\pi\)
0.860283 + 0.509816i \(0.170287\pi\)
\(840\) 0 0
\(841\) −421.956 + 1298.65i −0.501731 + 1.54417i
\(842\) 0 0
\(843\) −120.393 + 120.393i −0.142815 + 0.142815i
\(844\) 0 0
\(845\) 309.346 144.663i 0.366090 0.171199i
\(846\) 0 0
\(847\) −8.53331 1.35154i −0.0100747 0.00159568i
\(848\) 0 0
\(849\) 1924.31i 2.26656i
\(850\) 0 0
\(851\) −451.415 −0.530452
\(852\) 0 0
\(853\) −103.591 + 654.045i −0.121443 + 0.766759i 0.849525 + 0.527548i \(0.176889\pi\)
−0.970968 + 0.239210i \(0.923111\pi\)
\(854\) 0 0
\(855\) −1252.64 + 155.196i −1.46508 + 0.181516i
\(856\) 0 0
\(857\) 187.455 + 187.455i 0.218734 + 0.218734i 0.807965 0.589231i \(-0.200569\pi\)
−0.589231 + 0.807965i \(0.700569\pi\)
\(858\) 0 0
\(859\) 784.404 + 254.868i 0.913160 + 0.296704i 0.727658 0.685940i \(-0.240609\pi\)
0.185502 + 0.982644i \(0.440609\pi\)
\(860\) 0 0
\(861\) −0.262084 0.806610i −0.000304394 0.000936830i
\(862\) 0 0
\(863\) 660.998 + 1297.28i 0.765930 + 1.50322i 0.861477 + 0.507797i \(0.169540\pi\)
−0.0955465 + 0.995425i \(0.530460\pi\)
\(864\) 0 0
\(865\) −41.6885 61.6602i −0.0481948 0.0712835i
\(866\) 0 0
\(867\) −200.256 1264.37i −0.230976 1.45833i
\(868\) 0 0
\(869\) −166.042 + 228.537i −0.191072 + 0.262988i
\(870\) 0 0
\(871\) 1260.69 915.942i 1.44740 1.05160i
\(872\) 0 0
\(873\) 1425.36 + 726.257i 1.63271 + 0.831910i
\(874\) 0 0
\(875\) −6.20432 + 6.93624i −0.00709065 + 0.00792713i
\(876\) 0 0
\(877\) −328.289 + 644.303i −0.374332 + 0.734667i −0.998929 0.0462800i \(-0.985263\pi\)
0.624597 + 0.780947i \(0.285263\pi\)
\(878\) 0 0
\(879\) −903.366 1243.38i −1.02772 1.41454i
\(880\) 0 0
\(881\) 470.154 + 341.587i 0.533659 + 0.387726i 0.821725 0.569885i \(-0.193012\pi\)
−0.288065 + 0.957611i \(0.593012\pi\)
\(882\) 0 0
\(883\) −90.9085 + 14.3985i −0.102954 + 0.0163063i −0.207699 0.978193i \(-0.566597\pi\)
0.104745 + 0.994499i \(0.466597\pi\)
\(884\) 0 0
\(885\) −281.659 + 190.430i −0.318258 + 0.215175i
\(886\) 0 0
\(887\) −647.447 + 329.891i −0.729929 + 0.371917i −0.779122 0.626872i \(-0.784335\pi\)
0.0491934 + 0.998789i \(0.484335\pi\)
\(888\) 0 0
\(889\) −13.3703 + 4.34428i −0.0150397 + 0.00488671i
\(890\) 0 0
\(891\) 36.8199 113.320i 0.0413242 0.127183i
\(892\) 0 0
\(893\) 977.564 977.564i 1.09470 1.09470i
\(894\) 0 0
\(895\) −131.770 1063.56i −0.147229 1.18833i
\(896\) 0 0
\(897\) 461.215 + 73.0492i 0.514175 + 0.0814373i
\(898\) 0 0
\(899\) 214.650i 0.238765i
\(900\) 0 0
\(901\) 119.004 0.132080
\(902\) 0 0
\(903\) −3.44965 + 21.7802i −0.00382021 + 0.0241198i
\(904\) 0 0
\(905\) −251.286 537.349i −0.277664 0.593756i
\(906\) 0 0
\(907\) 1038.51 + 1038.51i 1.14500 + 1.14500i 0.987523 + 0.157473i \(0.0503347\pi\)
0.157473 + 0.987523i \(0.449665\pi\)
\(908\) 0 0
\(909\) 1537.44 + 499.546i 1.69136 + 0.549556i
\(910\) 0 0
\(911\) 225.644 + 694.462i 0.247689 + 0.762307i 0.995183 + 0.0980385i \(0.0312568\pi\)
−0.747494 + 0.664268i \(0.768743\pi\)
\(912\) 0 0
\(913\) 64.4468 + 126.484i 0.0705879 + 0.138537i
\(914\) 0 0
\(915\) 1336.61 + 484.829i 1.46077 + 0.529868i
\(916\) 0 0
\(917\) 1.56539 + 9.88348i 0.00170708 + 0.0107781i
\(918\) 0 0
\(919\) −205.383 + 282.686i −0.223486 + 0.307602i −0.906006 0.423265i \(-0.860884\pi\)
0.682520 + 0.730867i \(0.260884\pi\)
\(920\) 0 0
\(921\) −1066.63 + 774.953i −1.15812 + 0.841426i
\(922\) 0 0
\(923\) −1386.51 706.461i −1.50218 0.765397i
\(924\) 0 0
\(925\) 1443.47 + 863.030i 1.56051 + 0.933005i
\(926\) 0 0
\(927\) 597.806 1173.26i 0.644883 1.26565i
\(928\) 0 0
\(929\) 940.726 + 1294.80i 1.01262 + 1.39375i 0.917250 + 0.398313i \(0.130404\pi\)
0.0953723 + 0.995442i \(0.469596\pi\)
\(930\) 0 0
\(931\) 877.190 + 637.316i 0.942202 + 0.684550i
\(932\) 0 0
\(933\) −796.891 + 126.215i −0.854117 + 0.135279i
\(934\) 0 0
\(935\) 26.3719 + 0.892044i 0.0282053 + 0.000954057i
\(936\) 0 0
\(937\) −225.510 + 114.903i −0.240673 + 0.122629i −0.570167 0.821529i \(-0.693122\pi\)
0.329495 + 0.944157i \(0.393122\pi\)
\(938\) 0 0
\(939\) 1581.71 513.927i 1.68446 0.547313i
\(940\) 0 0
\(941\) 425.229 1308.72i 0.451891 1.39078i −0.422856 0.906197i \(-0.638972\pi\)
0.874747 0.484580i \(-0.161028\pi\)
\(942\) 0 0
\(943\) 11.9656 11.9656i 0.0126889 0.0126889i
\(944\) 0 0
\(945\) −3.97425 0.768004i −0.00420555 0.000812703i
\(946\) 0 0
\(947\) −1665.28 263.755i −1.75848 0.278516i −0.807975 0.589217i \(-0.799436\pi\)
−0.950508 + 0.310701i \(0.899436\pi\)
\(948\) 0 0
\(949\) 1580.07i 1.66499i
\(950\) 0 0
\(951\) −851.468 −0.895339
\(952\) 0 0
\(953\) 102.884 649.585i 0.107958 0.681621i −0.873047 0.487637i \(-0.837859\pi\)
0.981005 0.193984i \(-0.0621410\pi\)
\(954\) 0 0
\(955\) 602.179 562.774i 0.630554 0.589292i
\(956\) 0 0
\(957\) −333.911 333.911i −0.348915 0.348915i
\(958\) 0 0
\(959\) 5.34198 + 1.73571i 0.00557036 + 0.00180992i
\(960\) 0 0
\(961\) −290.513 894.106i −0.302302 0.930391i
\(962\) 0 0
\(963\) −66.4871 130.488i −0.0690416 0.135502i
\(964\) 0 0
\(965\) −1420.58 + 409.028i −1.47211 + 0.423864i
\(966\) 0 0
\(967\) −42.0019 265.190i −0.0434353 0.274240i 0.956406 0.292039i \(-0.0943338\pi\)
−0.999842 + 0.0177999i \(0.994334\pi\)
\(968\) 0 0
\(969\) −139.352 + 191.802i −0.143810 + 0.197938i
\(970\) 0 0
\(971\) 974.410 707.950i 1.00351 0.729094i 0.0406734 0.999172i \(-0.487050\pi\)
0.962838 + 0.270079i \(0.0870497\pi\)
\(972\) 0 0
\(973\) −6.95511 3.54380i −0.00714810 0.00364214i
\(974\) 0 0
\(975\) −1335.15 1115.35i −1.36938 1.14395i
\(976\) 0 0
\(977\) 706.688 1386.95i 0.723324 1.41960i −0.176923 0.984225i \(-0.556614\pi\)
0.900247 0.435379i \(-0.143386\pi\)
\(978\) 0 0
\(979\) −50.7604 69.8657i −0.0518492 0.0713643i
\(980\) 0 0
\(981\) 103.585 + 75.2592i 0.105592 + 0.0767168i
\(982\) 0 0
\(983\) 683.311 108.226i 0.695128 0.110097i 0.201135 0.979563i \(-0.435537\pi\)
0.493993 + 0.869466i \(0.335537\pi\)
\(984\) 0 0
\(985\) 209.081 + 162.984i 0.212265 + 0.165466i
\(986\) 0 0
\(987\) 18.7199 9.53827i 0.0189665 0.00966390i
\(988\) 0 0
\(989\) −418.447 + 135.962i −0.423101 + 0.137474i
\(990\) 0 0
\(991\) −231.005 + 710.961i −0.233103 + 0.717418i 0.764264 + 0.644903i \(0.223102\pi\)
−0.997367 + 0.0725146i \(0.976898\pi\)
\(992\) 0 0
\(993\) −1195.91 + 1195.91i −1.20434 + 1.20434i
\(994\) 0 0
\(995\) 421.812 762.935i 0.423931 0.766769i
\(996\) 0 0
\(997\) −131.033 20.7536i −0.131427 0.0208160i 0.0903743 0.995908i \(-0.471194\pi\)
−0.221801 + 0.975092i \(0.571194\pi\)
\(998\) 0 0
\(999\) 731.504i 0.732237i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.3.u.a.17.7 56
4.3 odd 2 400.3.bg.e.17.1 56
25.3 odd 20 inner 200.3.u.a.153.7 yes 56
100.3 even 20 400.3.bg.e.353.1 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.3.u.a.17.7 56 1.1 even 1 trivial
200.3.u.a.153.7 yes 56 25.3 odd 20 inner
400.3.bg.e.17.1 56 4.3 odd 2
400.3.bg.e.353.1 56 100.3 even 20