gp: [N,k,chi] = [200,3,Mod(17,200)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("200.17");
S:= CuspForms(chi, 3);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(200, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([0, 0, 13]))
N = Newforms(chi, 3, names="a")
Newform invariants
sage: traces = [56]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{56} - 20 T_{3}^{54} + 70 T_{3}^{53} - 315 T_{3}^{52} - 1348 T_{3}^{51} + 5230 T_{3}^{50} + \cdots + 35\!\cdots\!00 \)
T3^56 - 20*T3^54 + 70*T3^53 - 315*T3^52 - 1348*T3^51 + 5230*T3^50 + 8310*T3^49 + 507720*T3^48 + 984800*T3^47 - 6549998*T3^46 - 39054720*T3^45 - 330049520*T3^44 - 567663960*T3^43 + 6731894540*T3^42 + 19969550520*T3^41 + 139591321830*T3^40 - 126964962620*T3^39 - 2076362341440*T3^38 - 6402059779710*T3^37 - 11015170832019*T3^36 + 39571878899420*T3^35 + 421223536583040*T3^34 + 533517772108200*T3^33 + 1616554797226825*T3^32 - 7624725137212960*T3^31 - 51627343237594990*T3^30 - 74521878805946240*T3^29 - 299874155244012880*T3^28 + 788652278326631180*T3^27 + 5175811969486389518*T3^26 + 12623640884784563440*T3^25 + 46608499066168494285*T3^24 + 22842426273653061870*T3^23 - 120924143069780485040*T3^22 - 382370785599797918804*T3^21 - 1297732656326216215575*T3^20 - 938218529419000575350*T3^19 + 3647948752324563525040*T3^18 + 3223459889994205109600*T3^17 + 9304615201524128045281*T3^16 + 13981239410493931872580*T3^15 - 22718322428808328468760*T3^14 - 10265320727172507147840*T3^13 - 17429045408585076466265*T3^12 + 82451837662392046596000*T3^11 + 308984539872781492034850*T3^10 + 374684208718050976339300*T3^9 + 1116256092048690166718025*T3^8 + 1117394703201225545748250*T3^7 + 1265439557216603652461250*T3^6 + 995726927895718785995000*T3^5 + 630003014516806621105000*T3^4 + 272392185558699185775000*T3^3 + 64864556474275656500000*T3^2 + 7475981091604418500000*T3 + 350080209495330250000
acting on \(S_{3}^{\mathrm{new}}(200, [\chi])\).