Properties

Label 200.3.e.b
Level $200$
Weight $3$
Character orbit 200.e
Analytic conductor $5.450$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,3,Mod(99,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 200.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.44960528721\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_1 q^{2} + (\beta_{2} + \beta_1) q^{3} - 4 q^{4} + ( - 2 \beta_{3} - 2) q^{6} - 8 \beta_1 q^{8} + ( - 2 \beta_{3} - 16) q^{9} + (3 \beta_{3} - 7) q^{11} + ( - 4 \beta_{2} - 4 \beta_1) q^{12}+ \cdots + ( - 34 \beta_{3} - 32) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 8 q^{6} - 64 q^{9} - 28 q^{11} + 64 q^{16} - 68 q^{19} + 32 q^{24} - 8 q^{34} + 256 q^{36} + 92 q^{41} + 112 q^{44} - 196 q^{49} - 580 q^{51} + 440 q^{54} + 328 q^{59} - 256 q^{64} - 520 q^{66}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{3} + 6\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{3} + 6\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{3} + 3\beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.22474 1.22474i
−1.22474 + 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
2.00000i 5.89898i −4.00000 0 −11.7980 0 8.00000i −25.7980 0
99.2 2.00000i 3.89898i −4.00000 0 7.79796 0 8.00000i −6.20204 0
99.3 2.00000i 3.89898i −4.00000 0 7.79796 0 8.00000i −6.20204 0
99.4 2.00000i 5.89898i −4.00000 0 −11.7980 0 8.00000i −25.7980 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
5.b even 2 1 inner
40.e odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.3.e.b 4
4.b odd 2 1 800.3.e.b 4
5.b even 2 1 inner 200.3.e.b 4
5.c odd 4 1 200.3.g.b 2
5.c odd 4 1 200.3.g.d yes 2
8.b even 2 1 800.3.e.b 4
8.d odd 2 1 CM 200.3.e.b 4
20.d odd 2 1 800.3.e.b 4
20.e even 4 1 800.3.g.b 2
20.e even 4 1 800.3.g.d 2
40.e odd 2 1 inner 200.3.e.b 4
40.f even 2 1 800.3.e.b 4
40.i odd 4 1 800.3.g.b 2
40.i odd 4 1 800.3.g.d 2
40.k even 4 1 200.3.g.b 2
40.k even 4 1 200.3.g.d yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.3.e.b 4 1.a even 1 1 trivial
200.3.e.b 4 5.b even 2 1 inner
200.3.e.b 4 8.d odd 2 1 CM
200.3.e.b 4 40.e odd 2 1 inner
200.3.g.b 2 5.c odd 4 1
200.3.g.b 2 40.k even 4 1
200.3.g.d yes 2 5.c odd 4 1
200.3.g.d yes 2 40.k even 4 1
800.3.e.b 4 4.b odd 2 1
800.3.e.b 4 8.b even 2 1
800.3.e.b 4 20.d odd 2 1
800.3.e.b 4 40.f even 2 1
800.3.g.b 2 20.e even 4 1
800.3.g.b 2 40.i odd 4 1
800.3.g.d 2 20.e even 4 1
800.3.g.d 2 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 50T_{3}^{2} + 529 \) acting on \(S_{3}^{\mathrm{new}}(200, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 50T^{2} + 529 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 14 T - 167)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 1730 T^{2} + 744769 \) Copy content Toggle raw display
$19$ \( (T^{2} + 34 T + 73)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 46 T - 2927)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 196)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T - 82)^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 23090 T^{2} + 92602129 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 11810 T^{2} + 17447329 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 16370 T^{2} + 18464209 \) Copy content Toggle raw display
$89$ \( (T^{2} - 146 T - 2447)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 8836)^{2} \) Copy content Toggle raw display
show more
show less