Defining parameters
| Level: | \( N \) | \(=\) | \( 200 = 2^{3} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 200.e (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(90\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(200, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 66 | 38 | 28 |
| Cusp forms | 54 | 34 | 20 |
| Eisenstein series | 12 | 4 | 8 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(200, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 200.3.e.a | $2$ | $5.450$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-2}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta q^{2}-\beta q^{3}-4 q^{4}+4 q^{6}-4\beta q^{8}+\cdots\) |
| 200.3.e.b | $4$ | $5.450$ | \(\Q(i, \sqrt{6})\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{3}-4q^{4}+(-2+\cdots)q^{6}+\cdots\) |
| 200.3.e.c | $12$ | $5.450$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(1+\beta _{6}+\beta _{9})q^{4}+\cdots\) |
| 200.3.e.d | $16$ | $5.450$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{2}+\beta _{2}q^{3}+(1+\beta _{11})q^{4}+(-2+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(200, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(200, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)