Properties

Label 200.3.e
Level $200$
Weight $3$
Character orbit 200.e
Rep. character $\chi_{200}(99,\cdot)$
Character field $\Q$
Dimension $34$
Newform subspaces $4$
Sturm bound $90$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 200.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(90\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(200, [\chi])\).

Total New Old
Modular forms 66 38 28
Cusp forms 54 34 20
Eisenstein series 12 4 8

Trace form

\( 34 q + 6 q^{4} - 22 q^{6} - 86 q^{9} - 4 q^{11} + 32 q^{14} + 34 q^{16} - 60 q^{19} - 102 q^{24} + 48 q^{26} - 202 q^{34} - 88 q^{36} - 44 q^{41} + 330 q^{44} + 88 q^{46} + 158 q^{49} - 232 q^{51} + 578 q^{54}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
200.3.e.a 200.e 40.e $2$ $5.450$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-2}) \) 8.3.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{2}-\beta q^{3}-4 q^{4}+4 q^{6}-4\beta q^{8}+\cdots\)
200.3.e.b 200.e 40.e $4$ $5.450$ \(\Q(i, \sqrt{6})\) \(\Q(\sqrt{-2}) \) 200.3.g.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{3}-4q^{4}+(-2+\cdots)q^{6}+\cdots\)
200.3.e.c 200.e 40.e $12$ $5.450$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 200.3.g.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(1+\beta _{6}+\beta _{9})q^{4}+\cdots\)
200.3.e.d 200.e 40.e $16$ $5.450$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 40.3.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}+\beta _{2}q^{3}+(1+\beta _{11})q^{4}+(-2+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(200, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(200, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)