Properties

Label 200.2.m.a.41.1
Level $200$
Weight $2$
Character 200.41
Analytic conductor $1.597$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,2,Mod(41,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.m (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 41.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 200.41
Dual form 200.2.m.a.161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.690983 + 2.12663i) q^{3} +(-1.80902 + 1.31433i) q^{5} +0.381966 q^{7} +(-1.61803 + 1.17557i) q^{9} +(2.61803 + 1.90211i) q^{11} +(-4.54508 + 3.30220i) q^{13} +(-4.04508 - 2.93893i) q^{15} +(0.236068 - 0.726543i) q^{17} +(1.66312 - 5.11855i) q^{19} +(0.263932 + 0.812299i) q^{21} +(2.80902 + 2.04087i) q^{23} +(1.54508 - 4.75528i) q^{25} +(1.80902 + 1.31433i) q^{27} +(2.04508 + 6.29412i) q^{29} +(2.69098 - 8.28199i) q^{31} +(-2.23607 + 6.88191i) q^{33} +(-0.690983 + 0.502029i) q^{35} +(3.04508 - 2.21238i) q^{37} +(-10.1631 - 7.38394i) q^{39} +(6.23607 - 4.53077i) q^{41} +6.61803 q^{43} +(1.38197 - 4.25325i) q^{45} +(2.11803 + 6.51864i) q^{47} -6.85410 q^{49} +1.70820 q^{51} +(-3.07295 - 9.45756i) q^{53} -7.23607 q^{55} +12.0344 q^{57} +(-3.73607 + 2.71441i) q^{59} +(-7.42705 - 5.39607i) q^{61} +(-0.618034 + 0.449028i) q^{63} +(3.88197 - 11.9475i) q^{65} +(0.0901699 - 0.277515i) q^{67} +(-2.39919 + 7.38394i) q^{69} +(-1.97214 - 6.06961i) q^{71} +(-8.89919 - 6.46564i) q^{73} +11.1803 q^{75} +(1.00000 + 0.726543i) q^{77} +(3.19098 + 9.82084i) q^{79} +(-3.39919 + 10.4616i) q^{81} +(-4.16312 + 12.8128i) q^{83} +(0.527864 + 1.62460i) q^{85} +(-11.9721 + 8.69827i) q^{87} +(-3.23607 - 2.35114i) q^{89} +(-1.73607 + 1.26133i) q^{91} +19.4721 q^{93} +(3.71885 + 11.4454i) q^{95} +(5.64590 + 17.3763i) q^{97} -6.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{3} - 5 q^{5} + 6 q^{7} - 2 q^{9} + 6 q^{11} - 7 q^{13} - 5 q^{15} - 8 q^{17} - 9 q^{19} + 10 q^{21} + 9 q^{23} - 5 q^{25} + 5 q^{27} - 3 q^{29} + 13 q^{31} - 5 q^{35} + q^{37} - 25 q^{39} + 16 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.690983 + 2.12663i 0.398939 + 1.22781i 0.925851 + 0.377889i \(0.123350\pi\)
−0.526912 + 0.849920i \(0.676650\pi\)
\(4\) 0 0
\(5\) −1.80902 + 1.31433i −0.809017 + 0.587785i
\(6\) 0 0
\(7\) 0.381966 0.144370 0.0721848 0.997391i \(-0.477003\pi\)
0.0721848 + 0.997391i \(0.477003\pi\)
\(8\) 0 0
\(9\) −1.61803 + 1.17557i −0.539345 + 0.391857i
\(10\) 0 0
\(11\) 2.61803 + 1.90211i 0.789367 + 0.573509i 0.907776 0.419456i \(-0.137779\pi\)
−0.118409 + 0.992965i \(0.537779\pi\)
\(12\) 0 0
\(13\) −4.54508 + 3.30220i −1.26058 + 0.915865i −0.998786 0.0492590i \(-0.984314\pi\)
−0.261794 + 0.965124i \(0.584314\pi\)
\(14\) 0 0
\(15\) −4.04508 2.93893i −1.04444 0.758827i
\(16\) 0 0
\(17\) 0.236068 0.726543i 0.0572549 0.176212i −0.918339 0.395794i \(-0.870469\pi\)
0.975594 + 0.219582i \(0.0704693\pi\)
\(18\) 0 0
\(19\) 1.66312 5.11855i 0.381546 1.17428i −0.557410 0.830238i \(-0.688205\pi\)
0.938955 0.344039i \(-0.111795\pi\)
\(20\) 0 0
\(21\) 0.263932 + 0.812299i 0.0575947 + 0.177258i
\(22\) 0 0
\(23\) 2.80902 + 2.04087i 0.585721 + 0.425551i 0.840782 0.541374i \(-0.182096\pi\)
−0.255061 + 0.966925i \(0.582096\pi\)
\(24\) 0 0
\(25\) 1.54508 4.75528i 0.309017 0.951057i
\(26\) 0 0
\(27\) 1.80902 + 1.31433i 0.348145 + 0.252942i
\(28\) 0 0
\(29\) 2.04508 + 6.29412i 0.379763 + 1.16879i 0.940209 + 0.340599i \(0.110630\pi\)
−0.560446 + 0.828191i \(0.689370\pi\)
\(30\) 0 0
\(31\) 2.69098 8.28199i 0.483315 1.48749i −0.351092 0.936341i \(-0.614190\pi\)
0.834407 0.551149i \(-0.185810\pi\)
\(32\) 0 0
\(33\) −2.23607 + 6.88191i −0.389249 + 1.19799i
\(34\) 0 0
\(35\) −0.690983 + 0.502029i −0.116797 + 0.0848583i
\(36\) 0 0
\(37\) 3.04508 2.21238i 0.500609 0.363714i −0.308641 0.951179i \(-0.599874\pi\)
0.809250 + 0.587465i \(0.199874\pi\)
\(38\) 0 0
\(39\) −10.1631 7.38394i −1.62740 1.18238i
\(40\) 0 0
\(41\) 6.23607 4.53077i 0.973910 0.707587i 0.0175708 0.999846i \(-0.494407\pi\)
0.956339 + 0.292258i \(0.0944067\pi\)
\(42\) 0 0
\(43\) 6.61803 1.00924 0.504620 0.863341i \(-0.331632\pi\)
0.504620 + 0.863341i \(0.331632\pi\)
\(44\) 0 0
\(45\) 1.38197 4.25325i 0.206011 0.634038i
\(46\) 0 0
\(47\) 2.11803 + 6.51864i 0.308947 + 0.950841i 0.978175 + 0.207784i \(0.0666250\pi\)
−0.669228 + 0.743057i \(0.733375\pi\)
\(48\) 0 0
\(49\) −6.85410 −0.979157
\(50\) 0 0
\(51\) 1.70820 0.239196
\(52\) 0 0
\(53\) −3.07295 9.45756i −0.422102 1.29910i −0.905742 0.423829i \(-0.860686\pi\)
0.483640 0.875267i \(-0.339314\pi\)
\(54\) 0 0
\(55\) −7.23607 −0.975711
\(56\) 0 0
\(57\) 12.0344 1.59400
\(58\) 0 0
\(59\) −3.73607 + 2.71441i −0.486395 + 0.353386i −0.803796 0.594905i \(-0.797190\pi\)
0.317401 + 0.948291i \(0.397190\pi\)
\(60\) 0 0
\(61\) −7.42705 5.39607i −0.950936 0.690896i 9.17309e−5 1.00000i \(-0.499971\pi\)
−0.951028 + 0.309104i \(0.899971\pi\)
\(62\) 0 0
\(63\) −0.618034 + 0.449028i −0.0778650 + 0.0565722i
\(64\) 0 0
\(65\) 3.88197 11.9475i 0.481499 1.48190i
\(66\) 0 0
\(67\) 0.0901699 0.277515i 0.0110160 0.0339038i −0.945397 0.325920i \(-0.894326\pi\)
0.956413 + 0.292016i \(0.0943261\pi\)
\(68\) 0 0
\(69\) −2.39919 + 7.38394i −0.288828 + 0.888922i
\(70\) 0 0
\(71\) −1.97214 6.06961i −0.234049 0.720330i −0.997246 0.0741639i \(-0.976371\pi\)
0.763197 0.646166i \(-0.223629\pi\)
\(72\) 0 0
\(73\) −8.89919 6.46564i −1.04157 0.756746i −0.0709795 0.997478i \(-0.522612\pi\)
−0.970592 + 0.240732i \(0.922612\pi\)
\(74\) 0 0
\(75\) 11.1803 1.29099
\(76\) 0 0
\(77\) 1.00000 + 0.726543i 0.113961 + 0.0827972i
\(78\) 0 0
\(79\) 3.19098 + 9.82084i 0.359014 + 1.10493i 0.953646 + 0.300932i \(0.0972978\pi\)
−0.594632 + 0.803998i \(0.702702\pi\)
\(80\) 0 0
\(81\) −3.39919 + 10.4616i −0.377687 + 1.16240i
\(82\) 0 0
\(83\) −4.16312 + 12.8128i −0.456962 + 1.40638i 0.411855 + 0.911249i \(0.364881\pi\)
−0.868817 + 0.495134i \(0.835119\pi\)
\(84\) 0 0
\(85\) 0.527864 + 1.62460i 0.0572549 + 0.176212i
\(86\) 0 0
\(87\) −11.9721 + 8.69827i −1.28355 + 0.932552i
\(88\) 0 0
\(89\) −3.23607 2.35114i −0.343023 0.249220i 0.402913 0.915238i \(-0.367998\pi\)
−0.745936 + 0.666018i \(0.767998\pi\)
\(90\) 0 0
\(91\) −1.73607 + 1.26133i −0.181989 + 0.132223i
\(92\) 0 0
\(93\) 19.4721 2.01917
\(94\) 0 0
\(95\) 3.71885 + 11.4454i 0.381546 + 1.17428i
\(96\) 0 0
\(97\) 5.64590 + 17.3763i 0.573254 + 1.76429i 0.642049 + 0.766664i \(0.278085\pi\)
−0.0687946 + 0.997631i \(0.521915\pi\)
\(98\) 0 0
\(99\) −6.47214 −0.650474
\(100\) 0 0
\(101\) −0.0557281 −0.00554515 −0.00277258 0.999996i \(-0.500883\pi\)
−0.00277258 + 0.999996i \(0.500883\pi\)
\(102\) 0 0
\(103\) −3.04508 9.37181i −0.300041 0.923432i −0.981481 0.191558i \(-0.938646\pi\)
0.681440 0.731874i \(-0.261354\pi\)
\(104\) 0 0
\(105\) −1.54508 1.12257i −0.150785 0.109552i
\(106\) 0 0
\(107\) 3.29180 0.318230 0.159115 0.987260i \(-0.449136\pi\)
0.159115 + 0.987260i \(0.449136\pi\)
\(108\) 0 0
\(109\) 12.0902 8.78402i 1.15803 0.841357i 0.168501 0.985702i \(-0.446107\pi\)
0.989527 + 0.144345i \(0.0461074\pi\)
\(110\) 0 0
\(111\) 6.80902 + 4.94704i 0.646283 + 0.469552i
\(112\) 0 0
\(113\) −7.73607 + 5.62058i −0.727748 + 0.528740i −0.888850 0.458198i \(-0.848495\pi\)
0.161102 + 0.986938i \(0.448495\pi\)
\(114\) 0 0
\(115\) −7.76393 −0.723990
\(116\) 0 0
\(117\) 3.47214 10.6861i 0.320999 0.987934i
\(118\) 0 0
\(119\) 0.0901699 0.277515i 0.00826587 0.0254397i
\(120\) 0 0
\(121\) −0.163119 0.502029i −0.0148290 0.0456390i
\(122\) 0 0
\(123\) 13.9443 + 10.1311i 1.25731 + 0.913491i
\(124\) 0 0
\(125\) 3.45492 + 10.6331i 0.309017 + 0.951057i
\(126\) 0 0
\(127\) −13.3262 9.68208i −1.18251 0.859146i −0.190060 0.981773i \(-0.560868\pi\)
−0.992453 + 0.122627i \(0.960868\pi\)
\(128\) 0 0
\(129\) 4.57295 + 14.0741i 0.402626 + 1.23915i
\(130\) 0 0
\(131\) 3.11803 9.59632i 0.272424 0.838435i −0.717466 0.696594i \(-0.754698\pi\)
0.989890 0.141841i \(-0.0453020\pi\)
\(132\) 0 0
\(133\) 0.635255 1.95511i 0.0550836 0.169530i
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) −4.04508 + 2.93893i −0.345595 + 0.251089i −0.747019 0.664803i \(-0.768515\pi\)
0.401424 + 0.915892i \(0.368515\pi\)
\(138\) 0 0
\(139\) −11.5172 8.36775i −0.976878 0.709743i −0.0198692 0.999803i \(-0.506325\pi\)
−0.957009 + 0.290059i \(0.906325\pi\)
\(140\) 0 0
\(141\) −12.3992 + 9.00854i −1.04420 + 0.758656i
\(142\) 0 0
\(143\) −18.1803 −1.52032
\(144\) 0 0
\(145\) −11.9721 8.69827i −0.994232 0.722352i
\(146\) 0 0
\(147\) −4.73607 14.5761i −0.390624 1.20222i
\(148\) 0 0
\(149\) 8.41641 0.689499 0.344749 0.938695i \(-0.387964\pi\)
0.344749 + 0.938695i \(0.387964\pi\)
\(150\) 0 0
\(151\) 2.61803 0.213053 0.106526 0.994310i \(-0.466027\pi\)
0.106526 + 0.994310i \(0.466027\pi\)
\(152\) 0 0
\(153\) 0.472136 + 1.45309i 0.0381699 + 0.117475i
\(154\) 0 0
\(155\) 6.01722 + 18.5191i 0.483315 + 1.48749i
\(156\) 0 0
\(157\) −0.236068 −0.0188403 −0.00942014 0.999956i \(-0.502999\pi\)
−0.00942014 + 0.999956i \(0.502999\pi\)
\(158\) 0 0
\(159\) 17.9894 13.0700i 1.42665 1.03652i
\(160\) 0 0
\(161\) 1.07295 + 0.779543i 0.0845602 + 0.0614366i
\(162\) 0 0
\(163\) 5.80902 4.22050i 0.454997 0.330575i −0.336568 0.941659i \(-0.609266\pi\)
0.791566 + 0.611084i \(0.209266\pi\)
\(164\) 0 0
\(165\) −5.00000 15.3884i −0.389249 1.19799i
\(166\) 0 0
\(167\) 3.10081 9.54332i 0.239948 0.738484i −0.756478 0.654019i \(-0.773082\pi\)
0.996426 0.0844656i \(-0.0269183\pi\)
\(168\) 0 0
\(169\) 5.73607 17.6538i 0.441236 1.35798i
\(170\) 0 0
\(171\) 3.32624 + 10.2371i 0.254364 + 0.782851i
\(172\) 0 0
\(173\) −12.5172 9.09429i −0.951667 0.691426i −0.000466206 1.00000i \(-0.500148\pi\)
−0.951200 + 0.308574i \(0.900148\pi\)
\(174\) 0 0
\(175\) 0.590170 1.81636i 0.0446127 0.137304i
\(176\) 0 0
\(177\) −8.35410 6.06961i −0.627933 0.456220i
\(178\) 0 0
\(179\) 5.16312 + 15.8904i 0.385910 + 1.18771i 0.935818 + 0.352483i \(0.114663\pi\)
−0.549909 + 0.835225i \(0.685337\pi\)
\(180\) 0 0
\(181\) −6.70820 + 20.6457i −0.498617 + 1.53458i 0.312626 + 0.949876i \(0.398791\pi\)
−0.811243 + 0.584709i \(0.801209\pi\)
\(182\) 0 0
\(183\) 6.34346 19.5232i 0.468922 1.44319i
\(184\) 0 0
\(185\) −2.60081 + 8.00448i −0.191216 + 0.588501i
\(186\) 0 0
\(187\) 2.00000 1.45309i 0.146254 0.106260i
\(188\) 0 0
\(189\) 0.690983 + 0.502029i 0.0502616 + 0.0365172i
\(190\) 0 0
\(191\) 11.0902 8.05748i 0.802457 0.583019i −0.109177 0.994022i \(-0.534822\pi\)
0.911634 + 0.411004i \(0.134822\pi\)
\(192\) 0 0
\(193\) 5.70820 0.410886 0.205443 0.978669i \(-0.434137\pi\)
0.205443 + 0.978669i \(0.434137\pi\)
\(194\) 0 0
\(195\) 28.0902 2.01158
\(196\) 0 0
\(197\) −5.94427 18.2946i −0.423512 1.30344i −0.904412 0.426660i \(-0.859690\pi\)
0.480900 0.876775i \(-0.340310\pi\)
\(198\) 0 0
\(199\) 11.6180 0.823581 0.411790 0.911279i \(-0.364904\pi\)
0.411790 + 0.911279i \(0.364904\pi\)
\(200\) 0 0
\(201\) 0.652476 0.0460221
\(202\) 0 0
\(203\) 0.781153 + 2.40414i 0.0548262 + 0.168738i
\(204\) 0 0
\(205\) −5.32624 + 16.3925i −0.372001 + 1.14490i
\(206\) 0 0
\(207\) −6.94427 −0.482660
\(208\) 0 0
\(209\) 14.0902 10.2371i 0.974637 0.708116i
\(210\) 0 0
\(211\) −1.66312 1.20833i −0.114494 0.0831846i 0.529065 0.848581i \(-0.322543\pi\)
−0.643559 + 0.765397i \(0.722543\pi\)
\(212\) 0 0
\(213\) 11.5451 8.38800i 0.791056 0.574736i
\(214\) 0 0
\(215\) −11.9721 + 8.69827i −0.816493 + 0.593217i
\(216\) 0 0
\(217\) 1.02786 3.16344i 0.0697760 0.214748i
\(218\) 0 0
\(219\) 7.60081 23.3929i 0.513615 1.58075i
\(220\) 0 0
\(221\) 1.32624 + 4.08174i 0.0892124 + 0.274568i
\(222\) 0 0
\(223\) 6.23607 + 4.53077i 0.417598 + 0.303403i 0.776671 0.629907i \(-0.216907\pi\)
−0.359073 + 0.933310i \(0.616907\pi\)
\(224\) 0 0
\(225\) 3.09017 + 9.51057i 0.206011 + 0.634038i
\(226\) 0 0
\(227\) −19.0902 13.8698i −1.26706 0.920572i −0.267978 0.963425i \(-0.586355\pi\)
−0.999081 + 0.0428528i \(0.986355\pi\)
\(228\) 0 0
\(229\) −0.673762 2.07363i −0.0445235 0.137029i 0.926324 0.376729i \(-0.122951\pi\)
−0.970847 + 0.239700i \(0.922951\pi\)
\(230\) 0 0
\(231\) −0.854102 + 2.62866i −0.0561958 + 0.172953i
\(232\) 0 0
\(233\) 1.85410 5.70634i 0.121466 0.373835i −0.871774 0.489907i \(-0.837031\pi\)
0.993241 + 0.116073i \(0.0370306\pi\)
\(234\) 0 0
\(235\) −12.3992 9.00854i −0.808834 0.587652i
\(236\) 0 0
\(237\) −18.6803 + 13.5721i −1.21342 + 0.881600i
\(238\) 0 0
\(239\) 14.3713 + 10.4414i 0.929604 + 0.675397i 0.945896 0.324471i \(-0.105186\pi\)
−0.0162921 + 0.999867i \(0.505186\pi\)
\(240\) 0 0
\(241\) −2.04508 + 1.48584i −0.131736 + 0.0957114i −0.651702 0.758475i \(-0.725945\pi\)
0.519966 + 0.854187i \(0.325945\pi\)
\(242\) 0 0
\(243\) −17.8885 −1.14755
\(244\) 0 0
\(245\) 12.3992 9.00854i 0.792155 0.575534i
\(246\) 0 0
\(247\) 9.34346 + 28.7562i 0.594510 + 1.82971i
\(248\) 0 0
\(249\) −30.1246 −1.90907
\(250\) 0 0
\(251\) −25.9443 −1.63759 −0.818794 0.574087i \(-0.805357\pi\)
−0.818794 + 0.574087i \(0.805357\pi\)
\(252\) 0 0
\(253\) 3.47214 + 10.6861i 0.218291 + 0.671832i
\(254\) 0 0
\(255\) −3.09017 + 2.24514i −0.193514 + 0.140596i
\(256\) 0 0
\(257\) −1.38197 −0.0862047 −0.0431023 0.999071i \(-0.513724\pi\)
−0.0431023 + 0.999071i \(0.513724\pi\)
\(258\) 0 0
\(259\) 1.16312 0.845055i 0.0722727 0.0525092i
\(260\) 0 0
\(261\) −10.7082 7.77997i −0.662821 0.481568i
\(262\) 0 0
\(263\) 5.78115 4.20025i 0.356481 0.258999i −0.395102 0.918637i \(-0.629291\pi\)
0.751583 + 0.659639i \(0.229291\pi\)
\(264\) 0 0
\(265\) 17.9894 + 13.0700i 1.10508 + 0.802886i
\(266\) 0 0
\(267\) 2.76393 8.50651i 0.169150 0.520590i
\(268\) 0 0
\(269\) −8.56231 + 26.3521i −0.522053 + 1.60671i 0.248018 + 0.968755i \(0.420221\pi\)
−0.770071 + 0.637958i \(0.779779\pi\)
\(270\) 0 0
\(271\) −1.52786 4.70228i −0.0928111 0.285643i 0.893866 0.448334i \(-0.147983\pi\)
−0.986677 + 0.162691i \(0.947983\pi\)
\(272\) 0 0
\(273\) −3.88197 2.82041i −0.234947 0.170699i
\(274\) 0 0
\(275\) 13.0902 9.51057i 0.789367 0.573509i
\(276\) 0 0
\(277\) 0.954915 + 0.693786i 0.0573753 + 0.0416856i 0.616103 0.787665i \(-0.288710\pi\)
−0.558728 + 0.829351i \(0.688710\pi\)
\(278\) 0 0
\(279\) 5.38197 + 16.5640i 0.322210 + 0.991660i
\(280\) 0 0
\(281\) 4.89919 15.0781i 0.292261 0.899487i −0.691867 0.722025i \(-0.743211\pi\)
0.984128 0.177462i \(-0.0567886\pi\)
\(282\) 0 0
\(283\) 8.11803 24.9847i 0.482567 1.48519i −0.352907 0.935658i \(-0.614807\pi\)
0.835474 0.549530i \(-0.185193\pi\)
\(284\) 0 0
\(285\) −21.7705 + 15.8172i −1.28957 + 0.936930i
\(286\) 0 0
\(287\) 2.38197 1.73060i 0.140603 0.102154i
\(288\) 0 0
\(289\) 13.2812 + 9.64932i 0.781244 + 0.567607i
\(290\) 0 0
\(291\) −33.0517 + 24.0134i −1.93752 + 1.40769i
\(292\) 0 0
\(293\) −8.47214 −0.494947 −0.247474 0.968895i \(-0.579600\pi\)
−0.247474 + 0.968895i \(0.579600\pi\)
\(294\) 0 0
\(295\) 3.19098 9.82084i 0.185786 0.571791i
\(296\) 0 0
\(297\) 2.23607 + 6.88191i 0.129750 + 0.399329i
\(298\) 0 0
\(299\) −19.5066 −1.12809
\(300\) 0 0
\(301\) 2.52786 0.145704
\(302\) 0 0
\(303\) −0.0385072 0.118513i −0.00221218 0.00680839i
\(304\) 0 0
\(305\) 20.5279 1.17542
\(306\) 0 0
\(307\) 15.2361 0.869568 0.434784 0.900535i \(-0.356825\pi\)
0.434784 + 0.900535i \(0.356825\pi\)
\(308\) 0 0
\(309\) 17.8262 12.9515i 1.01410 0.736786i
\(310\) 0 0
\(311\) 13.0172 + 9.45756i 0.738139 + 0.536289i 0.892128 0.451783i \(-0.149212\pi\)
−0.153989 + 0.988073i \(0.549212\pi\)
\(312\) 0 0
\(313\) 6.23607 4.53077i 0.352483 0.256094i −0.397427 0.917634i \(-0.630097\pi\)
0.749910 + 0.661540i \(0.230097\pi\)
\(314\) 0 0
\(315\) 0.527864 1.62460i 0.0297418 0.0915358i
\(316\) 0 0
\(317\) −3.01722 + 9.28605i −0.169464 + 0.521557i −0.999337 0.0363950i \(-0.988413\pi\)
0.829873 + 0.557952i \(0.188413\pi\)
\(318\) 0 0
\(319\) −6.61803 + 20.3682i −0.370539 + 1.14040i
\(320\) 0 0
\(321\) 2.27458 + 7.00042i 0.126954 + 0.390725i
\(322\) 0 0
\(323\) −3.32624 2.41665i −0.185077 0.134466i
\(324\) 0 0
\(325\) 8.68034 + 26.7153i 0.481499 + 1.48190i
\(326\) 0 0
\(327\) 27.0344 + 19.6417i 1.49501 + 1.08619i
\(328\) 0 0
\(329\) 0.809017 + 2.48990i 0.0446026 + 0.137273i
\(330\) 0 0
\(331\) −8.05573 + 24.7930i −0.442783 + 1.36275i 0.442114 + 0.896959i \(0.354229\pi\)
−0.884897 + 0.465787i \(0.845771\pi\)
\(332\) 0 0
\(333\) −2.32624 + 7.15942i −0.127477 + 0.392334i
\(334\) 0 0
\(335\) 0.201626 + 0.620541i 0.0110160 + 0.0339038i
\(336\) 0 0
\(337\) −1.69098 + 1.22857i −0.0921137 + 0.0669245i −0.632889 0.774243i \(-0.718131\pi\)
0.540775 + 0.841167i \(0.318131\pi\)
\(338\) 0 0
\(339\) −17.2984 12.5680i −0.939519 0.682600i
\(340\) 0 0
\(341\) 22.7984 16.5640i 1.23460 0.896990i
\(342\) 0 0
\(343\) −5.29180 −0.285730
\(344\) 0 0
\(345\) −5.36475 16.5110i −0.288828 0.888922i
\(346\) 0 0
\(347\) 0.0450850 + 0.138757i 0.00242029 + 0.00744888i 0.952259 0.305290i \(-0.0987535\pi\)
−0.949839 + 0.312739i \(0.898753\pi\)
\(348\) 0 0
\(349\) −15.1246 −0.809602 −0.404801 0.914405i \(-0.632659\pi\)
−0.404801 + 0.914405i \(0.632659\pi\)
\(350\) 0 0
\(351\) −12.5623 −0.670526
\(352\) 0 0
\(353\) −2.91641 8.97578i −0.155225 0.477733i 0.842959 0.537978i \(-0.180812\pi\)
−0.998184 + 0.0602454i \(0.980812\pi\)
\(354\) 0 0
\(355\) 11.5451 + 8.38800i 0.612749 + 0.445189i
\(356\) 0 0
\(357\) 0.652476 0.0345327
\(358\) 0 0
\(359\) 6.69098 4.86128i 0.353137 0.256569i −0.397047 0.917798i \(-0.629965\pi\)
0.750184 + 0.661229i \(0.229965\pi\)
\(360\) 0 0
\(361\) −8.06231 5.85761i −0.424332 0.308295i
\(362\) 0 0
\(363\) 0.954915 0.693786i 0.0501200 0.0364143i
\(364\) 0 0
\(365\) 24.5967 1.28745
\(366\) 0 0
\(367\) −4.40983 + 13.5721i −0.230191 + 0.708456i 0.767532 + 0.641011i \(0.221485\pi\)
−0.997723 + 0.0674449i \(0.978515\pi\)
\(368\) 0 0
\(369\) −4.76393 + 14.6619i −0.248000 + 0.763267i
\(370\) 0 0
\(371\) −1.17376 3.61247i −0.0609387 0.187550i
\(372\) 0 0
\(373\) −3.97214 2.88593i −0.205669 0.149428i 0.480183 0.877168i \(-0.340570\pi\)
−0.685852 + 0.727741i \(0.740570\pi\)
\(374\) 0 0
\(375\) −20.2254 + 14.6946i −1.04444 + 0.758827i
\(376\) 0 0
\(377\) −30.0795 21.8541i −1.54917 1.12554i
\(378\) 0 0
\(379\) −1.54508 4.75528i −0.0793657 0.244262i 0.903499 0.428590i \(-0.140989\pi\)
−0.982865 + 0.184327i \(0.940989\pi\)
\(380\) 0 0
\(381\) 11.3820 35.0301i 0.583116 1.79465i
\(382\) 0 0
\(383\) 5.63525 17.3435i 0.287948 0.886213i −0.697551 0.716535i \(-0.745727\pi\)
0.985500 0.169678i \(-0.0542729\pi\)
\(384\) 0 0
\(385\) −2.76393 −0.140863
\(386\) 0 0
\(387\) −10.7082 + 7.77997i −0.544329 + 0.395478i
\(388\) 0 0
\(389\) −11.6631 8.47375i −0.591344 0.429636i 0.251452 0.967870i \(-0.419092\pi\)
−0.842796 + 0.538233i \(0.819092\pi\)
\(390\) 0 0
\(391\) 2.14590 1.55909i 0.108523 0.0788464i
\(392\) 0 0
\(393\) 22.5623 1.13812
\(394\) 0 0
\(395\) −18.6803 13.5721i −0.939910 0.682885i
\(396\) 0 0
\(397\) 2.75329 + 8.47375i 0.138184 + 0.425285i 0.996072 0.0885513i \(-0.0282237\pi\)
−0.857888 + 0.513837i \(0.828224\pi\)
\(398\) 0 0
\(399\) 4.59675 0.230125
\(400\) 0 0
\(401\) 12.5967 0.629052 0.314526 0.949249i \(-0.398155\pi\)
0.314526 + 0.949249i \(0.398155\pi\)
\(402\) 0 0
\(403\) 15.1180 + 46.5285i 0.753083 + 2.31775i
\(404\) 0 0
\(405\) −7.60081 23.3929i −0.377687 1.16240i
\(406\) 0 0
\(407\) 12.1803 0.603757
\(408\) 0 0
\(409\) 23.8435 17.3233i 1.17898 0.856581i 0.186927 0.982374i \(-0.440147\pi\)
0.992057 + 0.125792i \(0.0401473\pi\)
\(410\) 0 0
\(411\) −9.04508 6.57164i −0.446161 0.324155i
\(412\) 0 0
\(413\) −1.42705 + 1.03681i −0.0702206 + 0.0510182i
\(414\) 0 0
\(415\) −9.30902 28.6502i −0.456962 1.40638i
\(416\) 0 0
\(417\) 9.83688 30.2748i 0.481714 1.48256i
\(418\) 0 0
\(419\) −4.36475 + 13.4333i −0.213232 + 0.656260i 0.786043 + 0.618172i \(0.212127\pi\)
−0.999274 + 0.0380876i \(0.987873\pi\)
\(420\) 0 0
\(421\) −4.00000 12.3107i −0.194948 0.599988i −0.999977 0.00675318i \(-0.997850\pi\)
0.805029 0.593235i \(-0.202150\pi\)
\(422\) 0 0
\(423\) −11.0902 8.05748i −0.539223 0.391768i
\(424\) 0 0
\(425\) −3.09017 2.24514i −0.149895 0.108905i
\(426\) 0 0
\(427\) −2.83688 2.06111i −0.137286 0.0997443i
\(428\) 0 0
\(429\) −12.5623 38.6628i −0.606514 1.86666i
\(430\) 0 0
\(431\) 5.16312 15.8904i 0.248699 0.765416i −0.746307 0.665601i \(-0.768175\pi\)
0.995006 0.0998144i \(-0.0318249\pi\)
\(432\) 0 0
\(433\) −9.66312 + 29.7400i −0.464380 + 1.42921i 0.395381 + 0.918517i \(0.370613\pi\)
−0.859761 + 0.510697i \(0.829387\pi\)
\(434\) 0 0
\(435\) 10.2254 31.4706i 0.490272 1.50890i
\(436\) 0 0
\(437\) 15.1180 10.9839i 0.723194 0.525431i
\(438\) 0 0
\(439\) 6.30902 + 4.58377i 0.301113 + 0.218771i 0.728074 0.685499i \(-0.240416\pi\)
−0.426961 + 0.904270i \(0.640416\pi\)
\(440\) 0 0
\(441\) 11.0902 8.05748i 0.528103 0.383690i
\(442\) 0 0
\(443\) −39.6525 −1.88395 −0.941973 0.335689i \(-0.891031\pi\)
−0.941973 + 0.335689i \(0.891031\pi\)
\(444\) 0 0
\(445\) 8.94427 0.423999
\(446\) 0 0
\(447\) 5.81559 + 17.8986i 0.275068 + 0.846573i
\(448\) 0 0
\(449\) −35.0902 −1.65601 −0.828004 0.560723i \(-0.810523\pi\)
−0.828004 + 0.560723i \(0.810523\pi\)
\(450\) 0 0
\(451\) 24.9443 1.17458
\(452\) 0 0
\(453\) 1.80902 + 5.56758i 0.0849950 + 0.261588i
\(454\) 0 0
\(455\) 1.48278 4.56352i 0.0695138 0.213941i
\(456\) 0 0
\(457\) 4.47214 0.209198 0.104599 0.994514i \(-0.466644\pi\)
0.104599 + 0.994514i \(0.466644\pi\)
\(458\) 0 0
\(459\) 1.38197 1.00406i 0.0645046 0.0468654i
\(460\) 0 0
\(461\) 28.0795 + 20.4010i 1.30779 + 0.950168i 0.999999 0.00128485i \(-0.000408982\pi\)
0.307795 + 0.951453i \(0.400409\pi\)
\(462\) 0 0
\(463\) −1.57295 + 1.14281i −0.0731011 + 0.0531111i −0.623736 0.781635i \(-0.714386\pi\)
0.550634 + 0.834746i \(0.314386\pi\)
\(464\) 0 0
\(465\) −35.2254 + 25.5928i −1.63354 + 1.18684i
\(466\) 0 0
\(467\) 8.11803 24.9847i 0.375658 1.15616i −0.567376 0.823459i \(-0.692041\pi\)
0.943034 0.332697i \(-0.107959\pi\)
\(468\) 0 0
\(469\) 0.0344419 0.106001i 0.00159038 0.00489468i
\(470\) 0 0
\(471\) −0.163119 0.502029i −0.00751612 0.0231323i
\(472\) 0 0
\(473\) 17.3262 + 12.5882i 0.796661 + 0.578808i
\(474\) 0 0
\(475\) −21.7705 15.8172i −0.998899 0.725743i
\(476\) 0 0
\(477\) 16.0902 + 11.6902i 0.736718 + 0.535257i
\(478\) 0 0
\(479\) 7.60739 + 23.4131i 0.347591 + 1.06977i 0.960182 + 0.279374i \(0.0901270\pi\)
−0.612592 + 0.790400i \(0.709873\pi\)
\(480\) 0 0
\(481\) −6.53444 + 20.1109i −0.297945 + 0.916980i
\(482\) 0 0
\(483\) −0.916408 + 2.82041i −0.0416980 + 0.128333i
\(484\) 0 0
\(485\) −33.0517 24.0134i −1.50080 1.09039i
\(486\) 0 0
\(487\) 10.7533 7.81272i 0.487278 0.354028i −0.316859 0.948473i \(-0.602628\pi\)
0.804137 + 0.594445i \(0.202628\pi\)
\(488\) 0 0
\(489\) 12.9894 + 9.43732i 0.587399 + 0.426770i
\(490\) 0 0
\(491\) −6.66312 + 4.84104i −0.300702 + 0.218473i −0.727897 0.685687i \(-0.759502\pi\)
0.427194 + 0.904160i \(0.359502\pi\)
\(492\) 0 0
\(493\) 5.05573 0.227699
\(494\) 0 0
\(495\) 11.7082 8.50651i 0.526245 0.382339i
\(496\) 0 0
\(497\) −0.753289 2.31838i −0.0337896 0.103994i
\(498\) 0 0
\(499\) 9.43769 0.422489 0.211245 0.977433i \(-0.432248\pi\)
0.211245 + 0.977433i \(0.432248\pi\)
\(500\) 0 0
\(501\) 22.4377 1.00244
\(502\) 0 0
\(503\) 6.14590 + 18.9151i 0.274032 + 0.843384i 0.989474 + 0.144712i \(0.0462254\pi\)
−0.715442 + 0.698672i \(0.753775\pi\)
\(504\) 0 0
\(505\) 0.100813 0.0732450i 0.00448612 0.00325936i
\(506\) 0 0
\(507\) 41.5066 1.84337
\(508\) 0 0
\(509\) −16.1074 + 11.7027i −0.713948 + 0.518713i −0.884445 0.466645i \(-0.845463\pi\)
0.170497 + 0.985358i \(0.445463\pi\)
\(510\) 0 0
\(511\) −3.39919 2.46965i −0.150371 0.109251i
\(512\) 0 0
\(513\) 9.73607 7.07367i 0.429858 0.312310i
\(514\) 0 0
\(515\) 17.8262 + 12.9515i 0.785518 + 0.570712i
\(516\) 0 0
\(517\) −6.85410 + 21.0948i −0.301443 + 0.927746i
\(518\) 0 0
\(519\) 10.6910 32.9035i 0.469282 1.44430i
\(520\) 0 0
\(521\) −5.69098 17.5150i −0.249326 0.767348i −0.994895 0.100919i \(-0.967822\pi\)
0.745568 0.666429i \(-0.232178\pi\)
\(522\) 0 0
\(523\) 16.6803 + 12.1190i 0.729380 + 0.529926i 0.889367 0.457193i \(-0.151145\pi\)
−0.159987 + 0.987119i \(0.551145\pi\)
\(524\) 0 0
\(525\) 4.27051 0.186380
\(526\) 0 0
\(527\) −5.38197 3.91023i −0.234442 0.170332i
\(528\) 0 0
\(529\) −3.38197 10.4086i −0.147042 0.452549i
\(530\) 0 0
\(531\) 2.85410 8.78402i 0.123857 0.381194i
\(532\) 0 0
\(533\) −13.3820 + 41.1855i −0.579637 + 1.78394i
\(534\) 0 0
\(535\) −5.95492 + 4.32650i −0.257453 + 0.187051i
\(536\) 0 0
\(537\) −30.2254 + 21.9601i −1.30432 + 0.947646i
\(538\) 0 0
\(539\) −17.9443 13.0373i −0.772915 0.561555i
\(540\) 0 0
\(541\) 18.3262 13.3148i 0.787907 0.572448i −0.119435 0.992842i \(-0.538108\pi\)
0.907341 + 0.420394i \(0.138108\pi\)
\(542\) 0 0
\(543\) −48.5410 −2.08309
\(544\) 0 0
\(545\) −10.3262 + 31.7809i −0.442327 + 1.36134i
\(546\) 0 0
\(547\) −10.9271 33.6300i −0.467207 1.43792i −0.856186 0.516668i \(-0.827172\pi\)
0.388979 0.921247i \(-0.372828\pi\)
\(548\) 0 0
\(549\) 18.3607 0.783615
\(550\) 0 0
\(551\) 35.6180 1.51738
\(552\) 0 0
\(553\) 1.21885 + 3.75123i 0.0518306 + 0.159518i
\(554\) 0 0
\(555\) −18.8197 −0.798850
\(556\) 0 0
\(557\) −30.1803 −1.27878 −0.639391 0.768882i \(-0.720813\pi\)
−0.639391 + 0.768882i \(0.720813\pi\)
\(558\) 0 0
\(559\) −30.0795 + 21.8541i −1.27223 + 0.924328i
\(560\) 0 0
\(561\) 4.47214 + 3.24920i 0.188814 + 0.137181i
\(562\) 0 0
\(563\) −25.1074 + 18.2416i −1.05815 + 0.768791i −0.973745 0.227640i \(-0.926899\pi\)
−0.0844051 + 0.996432i \(0.526899\pi\)
\(564\) 0 0
\(565\) 6.60739 20.3355i 0.277975 0.855519i
\(566\) 0 0
\(567\) −1.29837 + 3.99598i −0.0545266 + 0.167816i
\(568\) 0 0
\(569\) 2.63525 8.11048i 0.110476 0.340009i −0.880501 0.474044i \(-0.842794\pi\)
0.990977 + 0.134035i \(0.0427936\pi\)
\(570\) 0 0
\(571\) 9.36475 + 28.8217i 0.391902 + 1.20615i 0.931348 + 0.364131i \(0.118634\pi\)
−0.539445 + 0.842021i \(0.681366\pi\)
\(572\) 0 0
\(573\) 24.7984 + 18.0171i 1.03597 + 0.752674i
\(574\) 0 0
\(575\) 14.0451 10.2044i 0.585721 0.425551i
\(576\) 0 0
\(577\) 16.0902 + 11.6902i 0.669843 + 0.486669i 0.869972 0.493100i \(-0.164136\pi\)
−0.200130 + 0.979769i \(0.564136\pi\)
\(578\) 0 0
\(579\) 3.94427 + 12.1392i 0.163918 + 0.504489i
\(580\) 0 0
\(581\) −1.59017 + 4.89404i −0.0659714 + 0.203039i
\(582\) 0 0
\(583\) 9.94427 30.6053i 0.411850 1.26754i
\(584\) 0 0
\(585\) 7.76393 + 23.8949i 0.320999 + 0.987934i
\(586\) 0 0
\(587\) 18.2254 13.2415i 0.752244 0.546537i −0.144278 0.989537i \(-0.546086\pi\)
0.896522 + 0.443000i \(0.146086\pi\)
\(588\) 0 0
\(589\) −37.9164 27.5479i −1.56232 1.13509i
\(590\) 0 0
\(591\) 34.7984 25.2825i 1.43141 1.03998i
\(592\) 0 0
\(593\) −0.562306 −0.0230911 −0.0115456 0.999933i \(-0.503675\pi\)
−0.0115456 + 0.999933i \(0.503675\pi\)
\(594\) 0 0
\(595\) 0.201626 + 0.620541i 0.00826587 + 0.0254397i
\(596\) 0 0
\(597\) 8.02786 + 24.7072i 0.328559 + 1.01120i
\(598\) 0 0
\(599\) 7.18034 0.293381 0.146690 0.989182i \(-0.453138\pi\)
0.146690 + 0.989182i \(0.453138\pi\)
\(600\) 0 0
\(601\) −42.5623 −1.73615 −0.868076 0.496431i \(-0.834644\pi\)
−0.868076 + 0.496431i \(0.834644\pi\)
\(602\) 0 0
\(603\) 0.180340 + 0.555029i 0.00734401 + 0.0226025i
\(604\) 0 0
\(605\) 0.954915 + 0.693786i 0.0388228 + 0.0282064i
\(606\) 0 0
\(607\) −32.2705 −1.30982 −0.654910 0.755707i \(-0.727293\pi\)
−0.654910 + 0.755707i \(0.727293\pi\)
\(608\) 0 0
\(609\) −4.57295 + 3.32244i −0.185305 + 0.134632i
\(610\) 0 0
\(611\) −31.1525 22.6336i −1.26029 0.915657i
\(612\) 0 0
\(613\) −15.3992 + 11.1882i −0.621967 + 0.451886i −0.853608 0.520916i \(-0.825591\pi\)
0.231641 + 0.972801i \(0.425591\pi\)
\(614\) 0 0
\(615\) −38.5410 −1.55412
\(616\) 0 0
\(617\) −5.74671 + 17.6866i −0.231354 + 0.712034i 0.766230 + 0.642566i \(0.222130\pi\)
−0.997584 + 0.0694680i \(0.977870\pi\)
\(618\) 0 0
\(619\) −8.43363 + 25.9560i −0.338976 + 1.04326i 0.625754 + 0.780020i \(0.284791\pi\)
−0.964730 + 0.263241i \(0.915209\pi\)
\(620\) 0 0
\(621\) 2.39919 + 7.38394i 0.0962761 + 0.296307i
\(622\) 0 0
\(623\) −1.23607 0.898056i −0.0495220 0.0359799i
\(624\) 0 0
\(625\) −20.2254 14.6946i −0.809017 0.587785i
\(626\) 0 0
\(627\) 31.5066 + 22.8909i 1.25825 + 0.914173i
\(628\) 0 0
\(629\) −0.888544 2.73466i −0.0354286 0.109038i
\(630\) 0 0
\(631\) −14.1631 + 43.5896i −0.563825 + 1.73527i 0.107593 + 0.994195i \(0.465686\pi\)
−0.671417 + 0.741079i \(0.734314\pi\)
\(632\) 0 0
\(633\) 1.42047 4.37177i 0.0564587 0.173762i
\(634\) 0 0
\(635\) 36.8328 1.46167
\(636\) 0 0
\(637\) 31.1525 22.6336i 1.23431 0.896776i
\(638\) 0 0
\(639\) 10.3262 + 7.50245i 0.408500 + 0.296792i
\(640\) 0 0
\(641\) −31.1074 + 22.6008i −1.22867 + 0.892680i −0.996790 0.0800652i \(-0.974487\pi\)
−0.231878 + 0.972745i \(0.574487\pi\)
\(642\) 0 0
\(643\) 36.9443 1.45694 0.728470 0.685078i \(-0.240232\pi\)
0.728470 + 0.685078i \(0.240232\pi\)
\(644\) 0 0
\(645\) −26.7705 19.4499i −1.05409 0.765840i
\(646\) 0 0
\(647\) 2.67376 + 8.22899i 0.105116 + 0.323515i 0.989758 0.142757i \(-0.0455968\pi\)
−0.884641 + 0.466272i \(0.845597\pi\)
\(648\) 0 0
\(649\) −14.9443 −0.586614
\(650\) 0 0
\(651\) 7.43769 0.291506
\(652\) 0 0
\(653\) −2.31966 7.13918i −0.0907753 0.279378i 0.895354 0.445354i \(-0.146922\pi\)
−0.986130 + 0.165977i \(0.946922\pi\)
\(654\) 0 0
\(655\) 6.97214 + 21.4580i 0.272424 + 0.838435i
\(656\) 0 0
\(657\) 22.0000 0.858302
\(658\) 0 0
\(659\) −29.0344 + 21.0948i −1.13102 + 0.821735i −0.985843 0.167670i \(-0.946376\pi\)
−0.145178 + 0.989406i \(0.546376\pi\)
\(660\) 0 0
\(661\) 11.6803 + 8.48626i 0.454313 + 0.330077i 0.791296 0.611433i \(-0.209407\pi\)
−0.336984 + 0.941511i \(0.609407\pi\)
\(662\) 0 0
\(663\) −7.76393 + 5.64083i −0.301526 + 0.219072i
\(664\) 0 0
\(665\) 1.42047 + 4.37177i 0.0550836 + 0.169530i
\(666\) 0 0
\(667\) −7.10081 + 21.8541i −0.274945 + 0.846192i
\(668\) 0 0
\(669\) −5.32624 + 16.3925i −0.205924 + 0.633770i
\(670\) 0 0
\(671\) −9.18034 28.2542i −0.354403 1.09074i
\(672\) 0 0
\(673\) −5.76393 4.18774i −0.222183 0.161426i 0.471126 0.882066i \(-0.343848\pi\)
−0.693309 + 0.720641i \(0.743848\pi\)
\(674\) 0 0
\(675\) 9.04508 6.57164i 0.348145 0.252942i
\(676\) 0 0
\(677\) 0.927051 + 0.673542i 0.0356295 + 0.0258863i 0.605457 0.795878i \(-0.292990\pi\)
−0.569828 + 0.821764i \(0.692990\pi\)
\(678\) 0 0
\(679\) 2.15654 + 6.63715i 0.0827605 + 0.254710i
\(680\) 0 0
\(681\) 16.3050 50.1815i 0.624807 1.92296i
\(682\) 0 0
\(683\) −2.25329 + 6.93491i −0.0862197 + 0.265357i −0.984866 0.173317i \(-0.944552\pi\)
0.898646 + 0.438674i \(0.144552\pi\)
\(684\) 0 0
\(685\) 3.45492 10.6331i 0.132006 0.406271i
\(686\) 0 0
\(687\) 3.94427 2.86568i 0.150483 0.109333i
\(688\) 0 0
\(689\) 45.1976 + 32.8380i 1.72189 + 1.25103i
\(690\) 0 0
\(691\) 32.4787 23.5972i 1.23555 0.897679i 0.238255 0.971203i \(-0.423425\pi\)
0.997293 + 0.0735241i \(0.0234246\pi\)
\(692\) 0 0
\(693\) −2.47214 −0.0939087
\(694\) 0 0
\(695\) 31.8328 1.20749
\(696\) 0 0
\(697\) −1.81966 5.60034i −0.0689245 0.212128i
\(698\) 0 0
\(699\) 13.4164 0.507455
\(700\) 0 0
\(701\) −20.1803 −0.762201 −0.381100 0.924534i \(-0.624455\pi\)
−0.381100 + 0.924534i \(0.624455\pi\)
\(702\) 0 0
\(703\) −6.25987 19.2659i −0.236095 0.726627i
\(704\) 0 0
\(705\) 10.5902 32.5932i 0.398849 1.22753i
\(706\) 0 0
\(707\) −0.0212862 −0.000800551
\(708\) 0 0
\(709\) −10.1910 + 7.40418i −0.382730 + 0.278070i −0.762470 0.647023i \(-0.776014\pi\)
0.379740 + 0.925093i \(0.376014\pi\)
\(710\) 0 0
\(711\) −16.7082 12.1392i −0.626607 0.455256i
\(712\) 0 0
\(713\) 24.4615 17.7723i 0.916090 0.665578i
\(714\) 0 0
\(715\) 32.8885 23.8949i 1.22996 0.893620i
\(716\) 0 0
\(717\) −12.2746 + 37.7773i −0.458402 + 1.41082i
\(718\) 0 0
\(719\) 7.51064 23.1154i 0.280100 0.862058i −0.707725 0.706488i \(-0.750278\pi\)
0.987825 0.155570i \(-0.0497215\pi\)
\(720\) 0 0
\(721\) −1.16312 3.57971i −0.0433168 0.133315i
\(722\) 0 0
\(723\) −4.57295 3.32244i −0.170070 0.123563i
\(724\) 0 0
\(725\) 33.0902 1.22894
\(726\) 0 0
\(727\) 3.50000 + 2.54290i 0.129808 + 0.0943109i 0.650795 0.759254i \(-0.274436\pi\)
−0.520987 + 0.853565i \(0.674436\pi\)
\(728\) 0 0
\(729\) −2.16312 6.65740i −0.0801155 0.246570i
\(730\) 0 0
\(731\) 1.56231 4.80828i 0.0577840 0.177841i
\(732\) 0 0
\(733\) 1.28115 3.94298i 0.0473205 0.145637i −0.924604 0.380929i \(-0.875604\pi\)
0.971925 + 0.235291i \(0.0756044\pi\)
\(734\) 0 0
\(735\) 27.7254 + 20.1437i 1.02267 + 0.743012i
\(736\) 0 0
\(737\) 0.763932 0.555029i 0.0281398 0.0204448i
\(738\) 0 0
\(739\) 3.50000 + 2.54290i 0.128750 + 0.0935420i 0.650296 0.759681i \(-0.274645\pi\)
−0.521547 + 0.853223i \(0.674645\pi\)
\(740\) 0 0
\(741\) −54.6976 + 39.7401i −2.00937 + 1.45989i
\(742\) 0 0
\(743\) 34.2492 1.25648 0.628241 0.778019i \(-0.283775\pi\)
0.628241 + 0.778019i \(0.283775\pi\)
\(744\) 0 0
\(745\) −15.2254 + 11.0619i −0.557816 + 0.405277i
\(746\) 0 0
\(747\) −8.32624 25.6255i −0.304641 0.937589i
\(748\) 0 0
\(749\) 1.25735 0.0459427
\(750\) 0 0
\(751\) −36.2361 −1.32227 −0.661136 0.750266i \(-0.729926\pi\)
−0.661136 + 0.750266i \(0.729926\pi\)
\(752\) 0 0
\(753\) −17.9271 55.1738i −0.653298 2.01064i
\(754\) 0 0
\(755\) −4.73607 + 3.44095i −0.172363 + 0.125229i
\(756\) 0 0
\(757\) 15.0000 0.545184 0.272592 0.962130i \(-0.412119\pi\)
0.272592 + 0.962130i \(0.412119\pi\)
\(758\) 0 0
\(759\) −20.3262 + 14.7679i −0.737796 + 0.536040i
\(760\) 0 0
\(761\) 25.7705 + 18.7234i 0.934180 + 0.678722i 0.947013 0.321196i \(-0.104085\pi\)
−0.0128325 + 0.999918i \(0.504085\pi\)
\(762\) 0 0
\(763\) 4.61803 3.35520i 0.167184 0.121466i
\(764\) 0 0
\(765\) −2.76393 2.00811i −0.0999302 0.0726035i
\(766\) 0 0
\(767\) 8.01722 24.6745i 0.289485 0.890943i
\(768\) 0 0
\(769\) 14.9787 46.0997i 0.540146 1.66240i −0.192113 0.981373i \(-0.561534\pi\)
0.732259 0.681026i \(-0.238466\pi\)
\(770\) 0 0
\(771\) −0.954915 2.93893i −0.0343904 0.105843i
\(772\) 0 0
\(773\) −34.2426 24.8787i −1.23162 0.894826i −0.234612 0.972089i \(-0.575382\pi\)
−0.997011 + 0.0772632i \(0.975382\pi\)
\(774\) 0 0
\(775\) −35.2254 25.5928i −1.26533 0.919319i
\(776\) 0 0
\(777\) 2.60081 + 1.88960i 0.0933036 + 0.0677891i
\(778\) 0 0
\(779\) −12.8197 39.4549i −0.459312 1.41362i
\(780\) 0 0
\(781\) 6.38197 19.6417i 0.228365 0.702834i
\(782\) 0 0
\(783\) −4.57295 + 14.0741i −0.163424 + 0.502967i
\(784\) 0 0
\(785\) 0.427051 0.310271i 0.0152421 0.0110740i
\(786\) 0 0
\(787\) −35.3607 + 25.6910i −1.26047 + 0.915787i −0.998781 0.0493650i \(-0.984280\pi\)
−0.261691 + 0.965152i \(0.584280\pi\)
\(788\) 0 0
\(789\) 12.9271 + 9.39205i 0.460215 + 0.334366i
\(790\) 0 0
\(791\) −2.95492 + 2.14687i −0.105065 + 0.0763340i
\(792\) 0 0
\(793\) 51.5755 1.83150
\(794\) 0 0
\(795\) −15.3647 + 47.2878i −0.544931 + 1.67713i
\(796\) 0 0
\(797\) −5.78115 17.7926i −0.204779 0.630245i −0.999722 0.0235613i \(-0.992500\pi\)
0.794943 0.606684i \(-0.207500\pi\)
\(798\) 0 0
\(799\) 5.23607 0.185239
\(800\) 0 0
\(801\) 8.00000 0.282666
\(802\) 0 0
\(803\) −11.0000 33.8545i −0.388182 1.19470i
\(804\) 0 0
\(805\) −2.96556 −0.104522
\(806\) 0 0
\(807\) −61.9574 −2.18100
\(808\) 0 0
\(809\) −25.7254 + 18.6906i −0.904458 + 0.657127i −0.939607 0.342255i \(-0.888809\pi\)
0.0351493 + 0.999382i \(0.488809\pi\)
\(810\) 0 0
\(811\) 0.517221 + 0.375783i 0.0181621 + 0.0131955i 0.596829 0.802368i \(-0.296427\pi\)
−0.578667 + 0.815564i \(0.696427\pi\)
\(812\) 0 0
\(813\) 8.94427 6.49839i 0.313689 0.227909i
\(814\) 0 0
\(815\) −4.96149 + 15.2699i −0.173794 + 0.534881i
\(816\) 0 0
\(817\) 11.0066 33.8748i 0.385071 1.18513i
\(818\) 0 0
\(819\) 1.32624 4.08174i 0.0463425 0.142628i
\(820\) 0 0
\(821\) −2.20820 6.79615i −0.0770668 0.237187i 0.905100 0.425199i \(-0.139796\pi\)
−0.982167 + 0.188011i \(0.939796\pi\)
\(822\) 0 0
\(823\) −28.7984 20.9232i −1.00385 0.729338i −0.0409383 0.999162i \(-0.513035\pi\)
−0.962910 + 0.269823i \(0.913035\pi\)
\(824\) 0 0
\(825\) 29.2705 + 21.2663i 1.01907 + 0.740396i
\(826\) 0 0
\(827\) −21.1525 15.3682i −0.735544 0.534404i 0.155769 0.987794i \(-0.450215\pi\)
−0.891312 + 0.453390i \(0.850215\pi\)
\(828\) 0 0
\(829\) −7.59017 23.3601i −0.263617 0.811331i −0.992009 0.126170i \(-0.959732\pi\)
0.728391 0.685162i \(-0.240268\pi\)
\(830\) 0 0
\(831\) −0.815595 + 2.51014i −0.0282927 + 0.0870759i
\(832\) 0 0
\(833\) −1.61803 + 4.97980i −0.0560616 + 0.172540i
\(834\) 0 0
\(835\) 6.93363 + 21.3395i 0.239948 + 0.738484i
\(836\) 0 0
\(837\) 15.7533 11.4454i 0.544513 0.395612i
\(838\) 0 0
\(839\) −11.9721 8.69827i −0.413324 0.300297i 0.361622 0.932325i \(-0.382223\pi\)
−0.774946 + 0.632027i \(0.782223\pi\)
\(840\) 0 0
\(841\) −11.9721 + 8.69827i −0.412832 + 0.299940i
\(842\) 0 0
\(843\) 35.4508 1.22099
\(844\) 0 0
\(845\) 12.8262 + 39.4751i 0.441236 + 1.35798i
\(846\) 0 0
\(847\) −0.0623059 0.191758i −0.00214086 0.00658888i
\(848\) 0 0
\(849\) 58.7426 2.01604
\(850\) 0 0
\(851\) 13.0689 0.447996
\(852\) 0 0
\(853\) −6.61803 20.3682i −0.226597 0.697394i −0.998126 0.0611995i \(-0.980507\pi\)
0.771528 0.636195i \(-0.219493\pi\)
\(854\) 0 0
\(855\) −19.4721 14.1473i −0.665933 0.483829i
\(856\) 0 0
\(857\) −9.85410 −0.336610 −0.168305 0.985735i \(-0.553829\pi\)
−0.168305 + 0.985735i \(0.553829\pi\)
\(858\) 0 0
\(859\) 15.0451 10.9309i 0.513332 0.372957i −0.300754 0.953702i \(-0.597238\pi\)
0.814086 + 0.580744i \(0.197238\pi\)
\(860\) 0 0
\(861\) 5.32624 + 3.86974i 0.181518 + 0.131880i
\(862\) 0 0
\(863\) −19.8262 + 14.4046i −0.674893 + 0.490338i −0.871660 0.490112i \(-0.836956\pi\)
0.196767 + 0.980450i \(0.436956\pi\)
\(864\) 0 0
\(865\) 34.5967 1.17632
\(866\) 0 0
\(867\) −11.3435 + 34.9116i −0.385244 + 1.18566i
\(868\) 0 0
\(869\) −10.3262 + 31.7809i −0.350294 + 1.07809i
\(870\) 0 0
\(871\) 0.506578 + 1.55909i 0.0171647 + 0.0528276i
\(872\) 0 0
\(873\) −29.5623 21.4783i −1.00053 0.726929i
\(874\) 0 0
\(875\) 1.31966 + 4.06150i 0.0446127 + 0.137304i
\(876\) 0 0
\(877\) −2.70820 1.96763i −0.0914495 0.0664420i 0.541121 0.840945i \(-0.318000\pi\)
−0.632570 + 0.774503i \(0.718000\pi\)
\(878\) 0 0
\(879\) −5.85410 18.0171i −0.197454 0.607701i
\(880\) 0 0
\(881\) −5.12461 + 15.7719i −0.172653 + 0.531370i −0.999518 0.0310292i \(-0.990122\pi\)
0.826866 + 0.562399i \(0.190122\pi\)
\(882\) 0 0
\(883\) 6.65248 20.4742i 0.223874 0.689012i −0.774530 0.632537i \(-0.782014\pi\)
0.998404 0.0564755i \(-0.0179863\pi\)
\(884\) 0 0
\(885\) 23.0902 0.776168
\(886\) 0 0
\(887\) 30.6525 22.2703i 1.02921 0.747764i 0.0610591 0.998134i \(-0.480552\pi\)
0.968150 + 0.250370i \(0.0805522\pi\)
\(888\) 0 0
\(889\) −5.09017 3.69822i −0.170719 0.124034i
\(890\) 0 0
\(891\) −28.7984 + 20.9232i −0.964782 + 0.700955i
\(892\) 0 0
\(893\) 36.8885 1.23443
\(894\) 0 0
\(895\) −30.2254 21.9601i −1.01032 0.734044i
\(896\) 0 0
\(897\) −13.4787 41.4832i −0.450041 1.38508i
\(898\) 0 0
\(899\) 57.6312 1.92211
\(900\) 0 0
\(901\) −7.59675 −0.253084
\(902\) 0 0
\(903\) 1.74671 + 5.37582i 0.0581269 + 0.178896i
\(904\) 0 0
\(905\) −15.0000 46.1653i −0.498617 1.53458i
\(906\) 0 0
\(907\) 10.8197 0.359261 0.179630 0.983734i \(-0.442510\pi\)
0.179630 + 0.983734i \(0.442510\pi\)
\(908\) 0 0
\(909\) 0.0901699 0.0655123i 0.00299075 0.00217291i
\(910\) 0 0
\(911\) 14.0451 + 10.2044i 0.465334 + 0.338085i 0.795620 0.605796i \(-0.207145\pi\)
−0.330286 + 0.943881i \(0.607145\pi\)
\(912\) 0 0
\(913\) −35.2705 + 25.6255i −1.16728 + 0.848081i
\(914\) 0 0
\(915\) 14.1844 + 43.6551i 0.468922 + 1.44319i
\(916\) 0 0
\(917\) 1.19098 3.66547i 0.0393297 0.121044i
\(918\) 0 0
\(919\) 4.80902 14.8006i 0.158635 0.488228i −0.839876 0.542778i \(-0.817372\pi\)
0.998511 + 0.0545502i \(0.0173725\pi\)
\(920\) 0 0
\(921\) 10.5279 + 32.4014i 0.346905 + 1.06766i
\(922\) 0 0
\(923\) 29.0066 + 21.0745i 0.954763 + 0.693676i
\(924\) 0 0
\(925\) −5.81559 17.8986i −0.191216 0.588501i
\(926\) 0 0
\(927\) 15.9443 + 11.5842i 0.523679 + 0.380475i
\(928\) 0 0
\(929\) 18.0967 + 55.6961i 0.593735 + 1.82733i 0.560925 + 0.827867i \(0.310446\pi\)
0.0328105 + 0.999462i \(0.489554\pi\)
\(930\) 0 0
\(931\) −11.3992 + 35.0831i −0.373593 + 1.14980i
\(932\) 0 0
\(933\) −11.1180 + 34.2178i −0.363988 + 1.12024i
\(934\) 0 0
\(935\) −1.70820 + 5.25731i −0.0558642 + 0.171932i
\(936\) 0 0
\(937\) −0.354102 + 0.257270i −0.0115680 + 0.00840465i −0.593554 0.804794i \(-0.702276\pi\)
0.581986 + 0.813199i \(0.302276\pi\)
\(938\) 0 0
\(939\) 13.9443 + 10.1311i 0.455054 + 0.330616i
\(940\) 0 0
\(941\) 24.3156 17.6663i 0.792666 0.575905i −0.116088 0.993239i \(-0.537035\pi\)
0.908753 + 0.417334i \(0.137035\pi\)
\(942\) 0 0
\(943\) 26.7639 0.871554
\(944\) 0 0
\(945\) −1.90983 −0.0621268
\(946\) 0 0
\(947\) 6.49342 + 19.9847i 0.211008 + 0.649415i 0.999413 + 0.0342591i \(0.0109071\pi\)
−0.788405 + 0.615156i \(0.789093\pi\)
\(948\) 0 0
\(949\) 61.7984 2.00606
\(950\) 0 0
\(951\) −21.8328 −0.707978
\(952\) 0 0
\(953\) 2.84752 + 8.76378i 0.0922404 + 0.283887i 0.986525 0.163613i \(-0.0523147\pi\)
−0.894284 + 0.447499i \(0.852315\pi\)
\(954\) 0 0
\(955\) −9.47214 + 29.1522i −0.306511 + 0.943344i
\(956\) 0 0
\(957\) −47.8885 −1.54802
\(958\) 0 0
\(959\) −1.54508 + 1.12257i −0.0498934 + 0.0362497i
\(960\) 0 0
\(961\) −36.2705 26.3521i −1.17002 0.850067i
\(962\) 0 0
\(963\) −5.32624 + 3.86974i −0.171636 + 0.124701i
\(964\) 0 0
\(965\) −10.3262 + 7.50245i −0.332413 + 0.241512i
\(966\) 0 0
\(967\) −2.61803 + 8.05748i −0.0841903 + 0.259111i −0.984286 0.176581i \(-0.943496\pi\)
0.900096 + 0.435692i \(0.143496\pi\)
\(968\) 0 0
\(969\) 2.84095 8.74353i 0.0912643 0.280883i
\(970\) 0 0
\(971\) 14.6976 + 45.2344i 0.471667 + 1.45164i 0.850400 + 0.526136i \(0.176360\pi\)
−0.378733 + 0.925506i \(0.623640\pi\)
\(972\) 0 0
\(973\) −4.39919 3.19620i −0.141031 0.102465i
\(974\) 0 0
\(975\) −50.8156 + 36.9197i −1.62740 + 1.18238i
\(976\) 0 0
\(977\) 4.28115 + 3.11044i 0.136966 + 0.0995118i 0.654159 0.756357i \(-0.273023\pi\)
−0.517192 + 0.855869i \(0.673023\pi\)
\(978\) 0 0
\(979\) −4.00000 12.3107i −0.127841 0.393453i
\(980\) 0 0
\(981\) −9.23607 + 28.4257i −0.294885 + 0.907563i
\(982\) 0 0
\(983\) −6.42705 + 19.7804i −0.204991 + 0.630898i 0.794723 + 0.606973i \(0.207616\pi\)
−0.999714 + 0.0239250i \(0.992384\pi\)
\(984\) 0 0
\(985\) 34.7984 + 25.2825i 1.10877 + 0.805567i
\(986\) 0 0
\(987\) −4.73607 + 3.44095i −0.150751 + 0.109527i
\(988\) 0 0
\(989\) 18.5902 + 13.5065i 0.591133 + 0.429483i
\(990\) 0 0
\(991\) 23.3156 16.9398i 0.740644 0.538110i −0.152269 0.988339i \(-0.548658\pi\)
0.892913 + 0.450230i \(0.148658\pi\)
\(992\) 0 0
\(993\) −58.2918 −1.84983
\(994\) 0 0
\(995\) −21.0172 + 15.2699i −0.666291 + 0.484089i
\(996\) 0 0
\(997\) −14.6697 45.1487i −0.464594 1.42987i −0.859492 0.511148i \(-0.829220\pi\)
0.394899 0.918725i \(-0.370780\pi\)
\(998\) 0 0
\(999\) 8.41641 0.266283
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.m.a.41.1 4
4.3 odd 2 400.2.u.a.241.1 4
5.2 odd 4 1000.2.q.a.49.2 8
5.3 odd 4 1000.2.q.a.49.1 8
5.4 even 2 1000.2.m.a.201.1 4
25.2 odd 20 1000.2.q.a.449.1 8
25.6 even 5 5000.2.a.c.1.2 2
25.11 even 5 inner 200.2.m.a.161.1 yes 4
25.14 even 10 1000.2.m.a.801.1 4
25.19 even 10 5000.2.a.a.1.1 2
25.23 odd 20 1000.2.q.a.449.2 8
100.11 odd 10 400.2.u.a.161.1 4
100.19 odd 10 10000.2.a.i.1.2 2
100.31 odd 10 10000.2.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.m.a.41.1 4 1.1 even 1 trivial
200.2.m.a.161.1 yes 4 25.11 even 5 inner
400.2.u.a.161.1 4 100.11 odd 10
400.2.u.a.241.1 4 4.3 odd 2
1000.2.m.a.201.1 4 5.4 even 2
1000.2.m.a.801.1 4 25.14 even 10
1000.2.q.a.49.1 8 5.3 odd 4
1000.2.q.a.49.2 8 5.2 odd 4
1000.2.q.a.449.1 8 25.2 odd 20
1000.2.q.a.449.2 8 25.23 odd 20
5000.2.a.a.1.1 2 25.19 even 10
5000.2.a.c.1.2 2 25.6 even 5
10000.2.a.g.1.1 2 100.31 odd 10
10000.2.a.i.1.2 2 100.19 odd 10