Properties

Label 20.3.d
Level $20$
Weight $3$
Character orbit 20.d
Rep. character $\chi_{20}(19,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $3$
Sturm bound $9$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 20.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(9\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(20, [\chi])\).

Total New Old
Modular forms 8 8 0
Cusp forms 4 4 0
Eisenstein series 4 4 0

Trace form

\( 4 q - 4 q^{5} - 16 q^{6} - 4 q^{9} + 16 q^{10} + 16 q^{14} + 64 q^{16} - 64 q^{20} - 32 q^{21} - 64 q^{24} + 36 q^{25} - 96 q^{26} + 40 q^{29} + 80 q^{30} + 64 q^{34} + 128 q^{36} - 64 q^{40} + 88 q^{41}+ \cdots - 256 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(20, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
20.3.d.a 20.d 20.d $1$ $0.545$ \(\Q\) \(\Q(\sqrt{-5}) \) 20.3.d.a \(-2\) \(4\) \(-5\) \(-4\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{2}+4q^{3}+4q^{4}-5q^{5}-8q^{6}+\cdots\)
20.3.d.b 20.d 20.d $1$ $0.545$ \(\Q\) \(\Q(\sqrt{-5}) \) 20.3.d.a \(2\) \(-4\) \(-5\) \(4\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}-4q^{3}+4q^{4}-5q^{5}-8q^{6}+\cdots\)
20.3.d.c 20.d 20.d $2$ $0.545$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 20.3.d.c \(0\) \(0\) \(6\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{2}-4 q^{4}+(-2\beta+3)q^{5}-4\beta q^{8}+\cdots\)