Defining parameters
Level: | \( N \) | = | \( 20 = 2^{2} \cdot 5 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 3 \) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(20))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 34 | 14 | 20 |
Cusp forms | 14 | 10 | 4 |
Eisenstein series | 20 | 4 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(20))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(20)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)