Defining parameters
Level: | \( N \) | = | \( 2 \) |
Weight: | \( k \) | = | \( 44 \) |
Character orbit: | \([\chi]\) | = | 2.a (trivial) |
Character field: | \(\Q\) | ||
Newforms: | \( 2 \) | ||
Sturm bound: | \(11\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{44}(\Gamma_0(2))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 4 | 8 |
Cusp forms | 10 | 4 | 6 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators.
\(2\) | Dim. |
---|---|
\(+\) | \(2\) |
\(-\) | \(2\) |
Trace form
Decomposition of \(S_{44}^{\mathrm{new}}(\Gamma_0(2))\) into irreducible Hecke orbits
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 2 | |||||||
2.44.a.a | \(2\) | \(23.422\) | \(\mathbb{Q}[x]/(x^{2} - \cdots)\) | None | \(-4194304\) | \(-12981630984\) | \(-3\!\cdots\!00\) | \(11\!\cdots\!08\) | \(+\) | \(q-2^{21}q^{2}+(-6490815492-\beta )q^{3}+\cdots\) | |
2.44.a.b | \(2\) | \(23.422\) | \(\mathbb{Q}[x]/(x^{2} - \cdots)\) | None | \(4194304\) | \(-22341634056\) | \(-4\!\cdots\!20\) | \(-2\!\cdots\!28\) | \(-\) | \(q+2^{21}q^{2}+(-11170817028-\beta )q^{3}+\cdots\) |
Decomposition of \(S_{44}^{\mathrm{old}}(\Gamma_0(2))\) into lower level spaces
\( S_{44}^{\mathrm{old}}(\Gamma_0(2)) \cong \) \(S_{44}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)