Properties

Label 2.42.a
Level 22
Weight 4242
Character orbit 2.a
Rep. character χ2(1,)\chi_{2}(1,\cdot)
Character field Q\Q
Dimension 33
Newform subspaces 22
Sturm bound 1010
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2 2
Weight: k k == 42 42
Character orbit: [χ][\chi] == 2.a (trivial)
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 1010
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M42(Γ0(2))M_{42}(\Gamma_0(2)).

Total New Old
Modular forms 11 3 8
Cusp forms 9 3 6
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++551144441133110011
-662244552233110011

Trace form

3q+1048576q2+13906864044q3+3298534883328q4+49094989194930q5+40 ⁣ ⁣12q6+97 ⁣ ⁣88q7+11 ⁣ ⁣76q8+30 ⁣ ⁣39q9+15 ⁣ ⁣80q10+32 ⁣ ⁣36q11+15 ⁣ ⁣32q99+O(q100) 3 q + 1048576 q^{2} + 13906864044 q^{3} + 3298534883328 q^{4} + 49094989194930 q^{5} + 40\!\cdots\!12 q^{6} + 97\!\cdots\!88 q^{7} + 11\!\cdots\!76 q^{8} + 30\!\cdots\!39 q^{9} + 15\!\cdots\!80 q^{10} + 32\!\cdots\!36 q^{11}+ \cdots - 15\!\cdots\!32 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S42new(Γ0(2))S_{42}^{\mathrm{new}}(\Gamma_0(2)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2
2.42.a.a 2.a 1.a 11 21.29421.294 Q\Q None 2.42.a.a 1048576-1048576 50435165165043516516 48 ⁣ ⁣50-48\!\cdots\!50 11 ⁣ ⁣68-11\!\cdots\!68 ++ SU(2)\mathrm{SU}(2) q220q2+5043516516q3+240q4+q-2^{20}q^{2}+5043516516q^{3}+2^{40}q^{4}+\cdots
2.42.a.b 2.a 1.a 22 21.29421.294 Q[x]/(x2)\mathbb{Q}[x]/(x^{2} - \cdots) None 2.42.a.b 20971522097152 88633475288863347528 97 ⁣ ⁣8097\!\cdots\!80 21 ⁣ ⁣5621\!\cdots\!56 - SU(2)\mathrm{SU}(2) q+220q2+(4431673764β)q3+q+2^{20}q^{2}+(4431673764-\beta )q^{3}+\cdots

Decomposition of S42old(Γ0(2))S_{42}^{\mathrm{old}}(\Gamma_0(2)) into lower level spaces

S42old(Γ0(2)) S_{42}^{\mathrm{old}}(\Gamma_0(2)) \simeq S42new(Γ0(1))S_{42}^{\mathrm{new}}(\Gamma_0(1))2^{\oplus 2}