Properties

Label 1984.4.a.r.1.3
Level $1984$
Weight $4$
Character 1984.1
Self dual yes
Analytic conductor $117.060$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,4,Mod(1,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-4,0,-15,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(117.059789451\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 32x^{3} + 19x^{2} + 228x + 172 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.15912\) of defining polynomial
Character \(\chi\) \(=\) 1984.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0377000 q^{3} -13.5012 q^{5} -3.86558 q^{7} -26.9986 q^{9} +37.1306 q^{11} -48.7405 q^{13} -0.508993 q^{15} +32.0202 q^{17} -52.2455 q^{19} -0.145732 q^{21} +23.0922 q^{23} +57.2812 q^{25} -2.03574 q^{27} -221.608 q^{29} -31.0000 q^{31} +1.39982 q^{33} +52.1898 q^{35} -310.448 q^{37} -1.83752 q^{39} -432.581 q^{41} +443.095 q^{43} +364.512 q^{45} +206.668 q^{47} -328.057 q^{49} +1.20716 q^{51} -428.205 q^{53} -501.306 q^{55} -1.96965 q^{57} -621.019 q^{59} +148.908 q^{61} +104.365 q^{63} +658.053 q^{65} +648.871 q^{67} +0.870577 q^{69} -875.630 q^{71} -55.1632 q^{73} +2.15950 q^{75} -143.531 q^{77} -771.120 q^{79} +728.885 q^{81} +365.678 q^{83} -432.310 q^{85} -8.35461 q^{87} +1632.10 q^{89} +188.410 q^{91} -1.16870 q^{93} +705.374 q^{95} +27.5970 q^{97} -1002.47 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{3} - 15 q^{5} + 9 q^{7} + 29 q^{9} - 88 q^{11} + 28 q^{13} - 130 q^{15} + 138 q^{17} + 43 q^{19} - 170 q^{21} + 206 q^{23} + 466 q^{25} - 172 q^{27} - 474 q^{29} - 155 q^{31} - 236 q^{33} + 79 q^{35}+ \cdots - 3988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0377000 0.00725536 0.00362768 0.999993i \(-0.498845\pi\)
0.00362768 + 0.999993i \(0.498845\pi\)
\(4\) 0 0
\(5\) −13.5012 −1.20758 −0.603790 0.797143i \(-0.706343\pi\)
−0.603790 + 0.797143i \(0.706343\pi\)
\(6\) 0 0
\(7\) −3.86558 −0.208722 −0.104361 0.994540i \(-0.533280\pi\)
−0.104361 + 0.994540i \(0.533280\pi\)
\(8\) 0 0
\(9\) −26.9986 −0.999947
\(10\) 0 0
\(11\) 37.1306 1.01776 0.508878 0.860839i \(-0.330061\pi\)
0.508878 + 0.860839i \(0.330061\pi\)
\(12\) 0 0
\(13\) −48.7405 −1.03986 −0.519930 0.854209i \(-0.674042\pi\)
−0.519930 + 0.854209i \(0.674042\pi\)
\(14\) 0 0
\(15\) −0.508993 −0.00876143
\(16\) 0 0
\(17\) 32.0202 0.456826 0.228413 0.973564i \(-0.426646\pi\)
0.228413 + 0.973564i \(0.426646\pi\)
\(18\) 0 0
\(19\) −52.2455 −0.630838 −0.315419 0.948952i \(-0.602145\pi\)
−0.315419 + 0.948952i \(0.602145\pi\)
\(20\) 0 0
\(21\) −0.145732 −0.00151435
\(22\) 0 0
\(23\) 23.0922 0.209351 0.104675 0.994506i \(-0.466620\pi\)
0.104675 + 0.994506i \(0.466620\pi\)
\(24\) 0 0
\(25\) 57.2812 0.458249
\(26\) 0 0
\(27\) −2.03574 −0.0145103
\(28\) 0 0
\(29\) −221.608 −1.41902 −0.709510 0.704696i \(-0.751084\pi\)
−0.709510 + 0.704696i \(0.751084\pi\)
\(30\) 0 0
\(31\) −31.0000 −0.179605
\(32\) 0 0
\(33\) 1.39982 0.00738418
\(34\) 0 0
\(35\) 52.1898 0.252048
\(36\) 0 0
\(37\) −310.448 −1.37939 −0.689693 0.724102i \(-0.742254\pi\)
−0.689693 + 0.724102i \(0.742254\pi\)
\(38\) 0 0
\(39\) −1.83752 −0.00754456
\(40\) 0 0
\(41\) −432.581 −1.64775 −0.823875 0.566772i \(-0.808192\pi\)
−0.823875 + 0.566772i \(0.808192\pi\)
\(42\) 0 0
\(43\) 443.095 1.57143 0.785713 0.618591i \(-0.212296\pi\)
0.785713 + 0.618591i \(0.212296\pi\)
\(44\) 0 0
\(45\) 364.512 1.20752
\(46\) 0 0
\(47\) 206.668 0.641395 0.320698 0.947182i \(-0.396083\pi\)
0.320698 + 0.947182i \(0.396083\pi\)
\(48\) 0 0
\(49\) −328.057 −0.956435
\(50\) 0 0
\(51\) 1.20716 0.00331444
\(52\) 0 0
\(53\) −428.205 −1.10978 −0.554892 0.831923i \(-0.687240\pi\)
−0.554892 + 0.831923i \(0.687240\pi\)
\(54\) 0 0
\(55\) −501.306 −1.22902
\(56\) 0 0
\(57\) −1.96965 −0.00457696
\(58\) 0 0
\(59\) −621.019 −1.37034 −0.685168 0.728385i \(-0.740271\pi\)
−0.685168 + 0.728385i \(0.740271\pi\)
\(60\) 0 0
\(61\) 148.908 0.312552 0.156276 0.987713i \(-0.450051\pi\)
0.156276 + 0.987713i \(0.450051\pi\)
\(62\) 0 0
\(63\) 104.365 0.208711
\(64\) 0 0
\(65\) 658.053 1.25571
\(66\) 0 0
\(67\) 648.871 1.18317 0.591583 0.806244i \(-0.298503\pi\)
0.591583 + 0.806244i \(0.298503\pi\)
\(68\) 0 0
\(69\) 0.870577 0.00151891
\(70\) 0 0
\(71\) −875.630 −1.46364 −0.731818 0.681500i \(-0.761328\pi\)
−0.731818 + 0.681500i \(0.761328\pi\)
\(72\) 0 0
\(73\) −55.1632 −0.0884434 −0.0442217 0.999022i \(-0.514081\pi\)
−0.0442217 + 0.999022i \(0.514081\pi\)
\(74\) 0 0
\(75\) 2.15950 0.00332476
\(76\) 0 0
\(77\) −143.531 −0.212428
\(78\) 0 0
\(79\) −771.120 −1.09820 −0.549100 0.835757i \(-0.685029\pi\)
−0.549100 + 0.835757i \(0.685029\pi\)
\(80\) 0 0
\(81\) 728.885 0.999842
\(82\) 0 0
\(83\) 365.678 0.483595 0.241797 0.970327i \(-0.422263\pi\)
0.241797 + 0.970327i \(0.422263\pi\)
\(84\) 0 0
\(85\) −432.310 −0.551654
\(86\) 0 0
\(87\) −8.35461 −0.0102955
\(88\) 0 0
\(89\) 1632.10 1.94385 0.971925 0.235290i \(-0.0756040\pi\)
0.971925 + 0.235290i \(0.0756040\pi\)
\(90\) 0 0
\(91\) 188.410 0.217041
\(92\) 0 0
\(93\) −1.16870 −0.00130310
\(94\) 0 0
\(95\) 705.374 0.761788
\(96\) 0 0
\(97\) 27.5970 0.0288871 0.0144435 0.999896i \(-0.495402\pi\)
0.0144435 + 0.999896i \(0.495402\pi\)
\(98\) 0 0
\(99\) −1002.47 −1.01770
\(100\) 0 0
\(101\) 311.229 0.306618 0.153309 0.988178i \(-0.451007\pi\)
0.153309 + 0.988178i \(0.451007\pi\)
\(102\) 0 0
\(103\) −36.1976 −0.0346277 −0.0173138 0.999850i \(-0.505511\pi\)
−0.0173138 + 0.999850i \(0.505511\pi\)
\(104\) 0 0
\(105\) 1.96755 0.00182870
\(106\) 0 0
\(107\) 1267.17 1.14488 0.572439 0.819947i \(-0.305997\pi\)
0.572439 + 0.819947i \(0.305997\pi\)
\(108\) 0 0
\(109\) −849.046 −0.746091 −0.373045 0.927813i \(-0.621686\pi\)
−0.373045 + 0.927813i \(0.621686\pi\)
\(110\) 0 0
\(111\) −11.7039 −0.0100079
\(112\) 0 0
\(113\) 465.656 0.387657 0.193828 0.981035i \(-0.437910\pi\)
0.193828 + 0.981035i \(0.437910\pi\)
\(114\) 0 0
\(115\) −311.772 −0.252808
\(116\) 0 0
\(117\) 1315.92 1.03981
\(118\) 0 0
\(119\) −123.777 −0.0953495
\(120\) 0 0
\(121\) 47.6841 0.0358258
\(122\) 0 0
\(123\) −16.3083 −0.0119550
\(124\) 0 0
\(125\) 914.282 0.654207
\(126\) 0 0
\(127\) 1350.39 0.943526 0.471763 0.881725i \(-0.343618\pi\)
0.471763 + 0.881725i \(0.343618\pi\)
\(128\) 0 0
\(129\) 16.7047 0.0114013
\(130\) 0 0
\(131\) −2772.41 −1.84905 −0.924527 0.381116i \(-0.875540\pi\)
−0.924527 + 0.381116i \(0.875540\pi\)
\(132\) 0 0
\(133\) 201.959 0.131670
\(134\) 0 0
\(135\) 27.4849 0.0175224
\(136\) 0 0
\(137\) −2135.13 −1.33151 −0.665754 0.746171i \(-0.731890\pi\)
−0.665754 + 0.746171i \(0.731890\pi\)
\(138\) 0 0
\(139\) 1942.68 1.18544 0.592720 0.805408i \(-0.298054\pi\)
0.592720 + 0.805408i \(0.298054\pi\)
\(140\) 0 0
\(141\) 7.79136 0.00465355
\(142\) 0 0
\(143\) −1809.77 −1.05832
\(144\) 0 0
\(145\) 2991.96 1.71358
\(146\) 0 0
\(147\) −12.3677 −0.00693928
\(148\) 0 0
\(149\) −115.235 −0.0633583 −0.0316792 0.999498i \(-0.510085\pi\)
−0.0316792 + 0.999498i \(0.510085\pi\)
\(150\) 0 0
\(151\) 1445.85 0.779217 0.389608 0.920981i \(-0.372610\pi\)
0.389608 + 0.920981i \(0.372610\pi\)
\(152\) 0 0
\(153\) −864.501 −0.456802
\(154\) 0 0
\(155\) 418.536 0.216888
\(156\) 0 0
\(157\) 3236.83 1.64540 0.822698 0.568478i \(-0.192468\pi\)
0.822698 + 0.568478i \(0.192468\pi\)
\(158\) 0 0
\(159\) −16.1433 −0.00805188
\(160\) 0 0
\(161\) −89.2649 −0.0436960
\(162\) 0 0
\(163\) 3104.67 1.49188 0.745940 0.666014i \(-0.232001\pi\)
0.745940 + 0.666014i \(0.232001\pi\)
\(164\) 0 0
\(165\) −18.8992 −0.00891699
\(166\) 0 0
\(167\) 1992.12 0.923082 0.461541 0.887119i \(-0.347297\pi\)
0.461541 + 0.887119i \(0.347297\pi\)
\(168\) 0 0
\(169\) 178.638 0.0813102
\(170\) 0 0
\(171\) 1410.55 0.630805
\(172\) 0 0
\(173\) 163.951 0.0720518 0.0360259 0.999351i \(-0.488530\pi\)
0.0360259 + 0.999351i \(0.488530\pi\)
\(174\) 0 0
\(175\) −221.425 −0.0956466
\(176\) 0 0
\(177\) −23.4124 −0.00994228
\(178\) 0 0
\(179\) −3809.18 −1.59057 −0.795284 0.606237i \(-0.792678\pi\)
−0.795284 + 0.606237i \(0.792678\pi\)
\(180\) 0 0
\(181\) 1246.33 0.511819 0.255909 0.966701i \(-0.417625\pi\)
0.255909 + 0.966701i \(0.417625\pi\)
\(182\) 0 0
\(183\) 5.61381 0.00226768
\(184\) 0 0
\(185\) 4191.40 1.66572
\(186\) 0 0
\(187\) 1188.93 0.464937
\(188\) 0 0
\(189\) 7.86933 0.00302862
\(190\) 0 0
\(191\) 1696.97 0.642872 0.321436 0.946931i \(-0.395834\pi\)
0.321436 + 0.946931i \(0.395834\pi\)
\(192\) 0 0
\(193\) 1757.23 0.655377 0.327689 0.944786i \(-0.393730\pi\)
0.327689 + 0.944786i \(0.393730\pi\)
\(194\) 0 0
\(195\) 24.8086 0.00911066
\(196\) 0 0
\(197\) 2899.42 1.04861 0.524303 0.851532i \(-0.324326\pi\)
0.524303 + 0.851532i \(0.324326\pi\)
\(198\) 0 0
\(199\) 3660.29 1.30387 0.651937 0.758273i \(-0.273957\pi\)
0.651937 + 0.758273i \(0.273957\pi\)
\(200\) 0 0
\(201\) 24.4624 0.00858430
\(202\) 0 0
\(203\) 856.643 0.296180
\(204\) 0 0
\(205\) 5840.34 1.98979
\(206\) 0 0
\(207\) −623.458 −0.209340
\(208\) 0 0
\(209\) −1939.91 −0.642039
\(210\) 0 0
\(211\) −5363.21 −1.74985 −0.874925 0.484258i \(-0.839090\pi\)
−0.874925 + 0.484258i \(0.839090\pi\)
\(212\) 0 0
\(213\) −33.0112 −0.0106192
\(214\) 0 0
\(215\) −5982.29 −1.89762
\(216\) 0 0
\(217\) 119.833 0.0374875
\(218\) 0 0
\(219\) −2.07965 −0.000641688 0
\(220\) 0 0
\(221\) −1560.68 −0.475036
\(222\) 0 0
\(223\) −4557.96 −1.36872 −0.684358 0.729146i \(-0.739918\pi\)
−0.684358 + 0.729146i \(0.739918\pi\)
\(224\) 0 0
\(225\) −1546.51 −0.458225
\(226\) 0 0
\(227\) −2234.01 −0.653199 −0.326600 0.945163i \(-0.605903\pi\)
−0.326600 + 0.945163i \(0.605903\pi\)
\(228\) 0 0
\(229\) 1006.17 0.290347 0.145173 0.989406i \(-0.453626\pi\)
0.145173 + 0.989406i \(0.453626\pi\)
\(230\) 0 0
\(231\) −5.41113 −0.00154124
\(232\) 0 0
\(233\) 2154.84 0.605873 0.302937 0.953011i \(-0.402033\pi\)
0.302937 + 0.953011i \(0.402033\pi\)
\(234\) 0 0
\(235\) −2790.25 −0.774536
\(236\) 0 0
\(237\) −29.0712 −0.00796784
\(238\) 0 0
\(239\) 4483.80 1.21353 0.606764 0.794882i \(-0.292467\pi\)
0.606764 + 0.794882i \(0.292467\pi\)
\(240\) 0 0
\(241\) −1460.11 −0.390266 −0.195133 0.980777i \(-0.562514\pi\)
−0.195133 + 0.980777i \(0.562514\pi\)
\(242\) 0 0
\(243\) 82.4440 0.0217645
\(244\) 0 0
\(245\) 4429.15 1.15497
\(246\) 0 0
\(247\) 2546.47 0.655984
\(248\) 0 0
\(249\) 13.7860 0.00350865
\(250\) 0 0
\(251\) 394.531 0.0992134 0.0496067 0.998769i \(-0.484203\pi\)
0.0496067 + 0.998769i \(0.484203\pi\)
\(252\) 0 0
\(253\) 857.430 0.213068
\(254\) 0 0
\(255\) −16.2981 −0.00400245
\(256\) 0 0
\(257\) 6505.01 1.57888 0.789438 0.613830i \(-0.210372\pi\)
0.789438 + 0.613830i \(0.210372\pi\)
\(258\) 0 0
\(259\) 1200.06 0.287908
\(260\) 0 0
\(261\) 5983.10 1.41894
\(262\) 0 0
\(263\) −650.590 −0.152536 −0.0762682 0.997087i \(-0.524301\pi\)
−0.0762682 + 0.997087i \(0.524301\pi\)
\(264\) 0 0
\(265\) 5781.27 1.34015
\(266\) 0 0
\(267\) 61.5302 0.0141033
\(268\) 0 0
\(269\) −2404.32 −0.544960 −0.272480 0.962161i \(-0.587844\pi\)
−0.272480 + 0.962161i \(0.587844\pi\)
\(270\) 0 0
\(271\) −1180.82 −0.264686 −0.132343 0.991204i \(-0.542250\pi\)
−0.132343 + 0.991204i \(0.542250\pi\)
\(272\) 0 0
\(273\) 7.10306 0.00157471
\(274\) 0 0
\(275\) 2126.89 0.466386
\(276\) 0 0
\(277\) −429.648 −0.0931952 −0.0465976 0.998914i \(-0.514838\pi\)
−0.0465976 + 0.998914i \(0.514838\pi\)
\(278\) 0 0
\(279\) 836.956 0.179596
\(280\) 0 0
\(281\) 2300.38 0.488361 0.244181 0.969730i \(-0.421481\pi\)
0.244181 + 0.969730i \(0.421481\pi\)
\(282\) 0 0
\(283\) −4569.89 −0.959901 −0.479950 0.877296i \(-0.659345\pi\)
−0.479950 + 0.877296i \(0.659345\pi\)
\(284\) 0 0
\(285\) 26.5926 0.00552704
\(286\) 0 0
\(287\) 1672.17 0.343921
\(288\) 0 0
\(289\) −3887.71 −0.791310
\(290\) 0 0
\(291\) 1.04040 0.000209586 0
\(292\) 0 0
\(293\) 2782.40 0.554776 0.277388 0.960758i \(-0.410531\pi\)
0.277388 + 0.960758i \(0.410531\pi\)
\(294\) 0 0
\(295\) 8384.48 1.65479
\(296\) 0 0
\(297\) −75.5885 −0.0147680
\(298\) 0 0
\(299\) −1125.53 −0.217696
\(300\) 0 0
\(301\) −1712.82 −0.327991
\(302\) 0 0
\(303\) 11.7333 0.00222462
\(304\) 0 0
\(305\) −2010.42 −0.377431
\(306\) 0 0
\(307\) −8228.72 −1.52976 −0.764882 0.644170i \(-0.777203\pi\)
−0.764882 + 0.644170i \(0.777203\pi\)
\(308\) 0 0
\(309\) −1.36465 −0.000251236 0
\(310\) 0 0
\(311\) 1973.40 0.359811 0.179905 0.983684i \(-0.442421\pi\)
0.179905 + 0.983684i \(0.442421\pi\)
\(312\) 0 0
\(313\) −4157.98 −0.750871 −0.375436 0.926848i \(-0.622507\pi\)
−0.375436 + 0.926848i \(0.622507\pi\)
\(314\) 0 0
\(315\) −1409.05 −0.252035
\(316\) 0 0
\(317\) −1178.13 −0.208739 −0.104370 0.994539i \(-0.533283\pi\)
−0.104370 + 0.994539i \(0.533283\pi\)
\(318\) 0 0
\(319\) −8228.45 −1.44421
\(320\) 0 0
\(321\) 47.7723 0.00830651
\(322\) 0 0
\(323\) −1672.91 −0.288184
\(324\) 0 0
\(325\) −2791.91 −0.476516
\(326\) 0 0
\(327\) −32.0090 −0.00541316
\(328\) 0 0
\(329\) −798.890 −0.133873
\(330\) 0 0
\(331\) 8204.49 1.36242 0.681208 0.732090i \(-0.261455\pi\)
0.681208 + 0.732090i \(0.261455\pi\)
\(332\) 0 0
\(333\) 8381.64 1.37931
\(334\) 0 0
\(335\) −8760.50 −1.42877
\(336\) 0 0
\(337\) 4623.93 0.747423 0.373711 0.927545i \(-0.378085\pi\)
0.373711 + 0.927545i \(0.378085\pi\)
\(338\) 0 0
\(339\) 17.5552 0.00281259
\(340\) 0 0
\(341\) −1151.05 −0.182794
\(342\) 0 0
\(343\) 2594.02 0.408350
\(344\) 0 0
\(345\) −11.7538 −0.00183421
\(346\) 0 0
\(347\) 7290.79 1.12793 0.563963 0.825800i \(-0.309276\pi\)
0.563963 + 0.825800i \(0.309276\pi\)
\(348\) 0 0
\(349\) −758.435 −0.116327 −0.0581635 0.998307i \(-0.518524\pi\)
−0.0581635 + 0.998307i \(0.518524\pi\)
\(350\) 0 0
\(351\) 99.2232 0.0150887
\(352\) 0 0
\(353\) −6142.11 −0.926094 −0.463047 0.886334i \(-0.653244\pi\)
−0.463047 + 0.886334i \(0.653244\pi\)
\(354\) 0 0
\(355\) 11822.0 1.76746
\(356\) 0 0
\(357\) −4.66638 −0.000691795 0
\(358\) 0 0
\(359\) 1387.74 0.204018 0.102009 0.994783i \(-0.467473\pi\)
0.102009 + 0.994783i \(0.467473\pi\)
\(360\) 0 0
\(361\) −4129.41 −0.602043
\(362\) 0 0
\(363\) 1.79769 0.000259929 0
\(364\) 0 0
\(365\) 744.767 0.106802
\(366\) 0 0
\(367\) 11171.9 1.58902 0.794509 0.607252i \(-0.207728\pi\)
0.794509 + 0.607252i \(0.207728\pi\)
\(368\) 0 0
\(369\) 11679.1 1.64766
\(370\) 0 0
\(371\) 1655.26 0.231636
\(372\) 0 0
\(373\) 4865.95 0.675468 0.337734 0.941242i \(-0.390340\pi\)
0.337734 + 0.941242i \(0.390340\pi\)
\(374\) 0 0
\(375\) 34.4684 0.00474651
\(376\) 0 0
\(377\) 10801.3 1.47558
\(378\) 0 0
\(379\) 5435.85 0.736731 0.368365 0.929681i \(-0.379918\pi\)
0.368365 + 0.929681i \(0.379918\pi\)
\(380\) 0 0
\(381\) 50.9097 0.00684562
\(382\) 0 0
\(383\) −11685.3 −1.55898 −0.779489 0.626415i \(-0.784521\pi\)
−0.779489 + 0.626415i \(0.784521\pi\)
\(384\) 0 0
\(385\) 1937.84 0.256523
\(386\) 0 0
\(387\) −11962.9 −1.57134
\(388\) 0 0
\(389\) −8798.11 −1.14674 −0.573370 0.819297i \(-0.694364\pi\)
−0.573370 + 0.819297i \(0.694364\pi\)
\(390\) 0 0
\(391\) 739.419 0.0956369
\(392\) 0 0
\(393\) −104.520 −0.0134156
\(394\) 0 0
\(395\) 10411.0 1.32616
\(396\) 0 0
\(397\) 1169.47 0.147844 0.0739221 0.997264i \(-0.476448\pi\)
0.0739221 + 0.997264i \(0.476448\pi\)
\(398\) 0 0
\(399\) 7.61384 0.000955310 0
\(400\) 0 0
\(401\) 7359.83 0.916540 0.458270 0.888813i \(-0.348469\pi\)
0.458270 + 0.888813i \(0.348469\pi\)
\(402\) 0 0
\(403\) 1510.96 0.186764
\(404\) 0 0
\(405\) −9840.79 −1.20739
\(406\) 0 0
\(407\) −11527.1 −1.40388
\(408\) 0 0
\(409\) −2808.05 −0.339484 −0.169742 0.985489i \(-0.554293\pi\)
−0.169742 + 0.985489i \(0.554293\pi\)
\(410\) 0 0
\(411\) −80.4944 −0.00966057
\(412\) 0 0
\(413\) 2400.60 0.286019
\(414\) 0 0
\(415\) −4937.07 −0.583979
\(416\) 0 0
\(417\) 73.2391 0.00860080
\(418\) 0 0
\(419\) 7641.52 0.890961 0.445481 0.895292i \(-0.353033\pi\)
0.445481 + 0.895292i \(0.353033\pi\)
\(420\) 0 0
\(421\) 9014.87 1.04361 0.521803 0.853066i \(-0.325260\pi\)
0.521803 + 0.853066i \(0.325260\pi\)
\(422\) 0 0
\(423\) −5579.73 −0.641361
\(424\) 0 0
\(425\) 1834.16 0.209340
\(426\) 0 0
\(427\) −575.614 −0.0652363
\(428\) 0 0
\(429\) −68.2281 −0.00767852
\(430\) 0 0
\(431\) 8248.40 0.921836 0.460918 0.887443i \(-0.347520\pi\)
0.460918 + 0.887443i \(0.347520\pi\)
\(432\) 0 0
\(433\) −13762.4 −1.52743 −0.763715 0.645553i \(-0.776627\pi\)
−0.763715 + 0.645553i \(0.776627\pi\)
\(434\) 0 0
\(435\) 112.797 0.0124326
\(436\) 0 0
\(437\) −1206.46 −0.132066
\(438\) 0 0
\(439\) −2191.21 −0.238225 −0.119113 0.992881i \(-0.538005\pi\)
−0.119113 + 0.992881i \(0.538005\pi\)
\(440\) 0 0
\(441\) 8857.08 0.956385
\(442\) 0 0
\(443\) 3397.50 0.364380 0.182190 0.983263i \(-0.441681\pi\)
0.182190 + 0.983263i \(0.441681\pi\)
\(444\) 0 0
\(445\) −22035.3 −2.34735
\(446\) 0 0
\(447\) −4.34434 −0.000459688 0
\(448\) 0 0
\(449\) 2010.24 0.211290 0.105645 0.994404i \(-0.466309\pi\)
0.105645 + 0.994404i \(0.466309\pi\)
\(450\) 0 0
\(451\) −16062.0 −1.67701
\(452\) 0 0
\(453\) 54.5085 0.00565350
\(454\) 0 0
\(455\) −2543.76 −0.262095
\(456\) 0 0
\(457\) −5790.19 −0.592678 −0.296339 0.955083i \(-0.595766\pi\)
−0.296339 + 0.955083i \(0.595766\pi\)
\(458\) 0 0
\(459\) −65.1850 −0.00662870
\(460\) 0 0
\(461\) 4700.84 0.474924 0.237462 0.971397i \(-0.423684\pi\)
0.237462 + 0.971397i \(0.423684\pi\)
\(462\) 0 0
\(463\) 12685.9 1.27335 0.636677 0.771131i \(-0.280308\pi\)
0.636677 + 0.771131i \(0.280308\pi\)
\(464\) 0 0
\(465\) 15.7788 0.00157360
\(466\) 0 0
\(467\) −2483.95 −0.246131 −0.123066 0.992399i \(-0.539273\pi\)
−0.123066 + 0.992399i \(0.539273\pi\)
\(468\) 0 0
\(469\) −2508.26 −0.246952
\(470\) 0 0
\(471\) 122.028 0.0119379
\(472\) 0 0
\(473\) 16452.4 1.59933
\(474\) 0 0
\(475\) −2992.68 −0.289081
\(476\) 0 0
\(477\) 11560.9 1.10973
\(478\) 0 0
\(479\) 4420.05 0.421622 0.210811 0.977527i \(-0.432389\pi\)
0.210811 + 0.977527i \(0.432389\pi\)
\(480\) 0 0
\(481\) 15131.4 1.43437
\(482\) 0 0
\(483\) −3.36528 −0.000317030 0
\(484\) 0 0
\(485\) −372.591 −0.0348835
\(486\) 0 0
\(487\) 3777.16 0.351457 0.175728 0.984439i \(-0.443772\pi\)
0.175728 + 0.984439i \(0.443772\pi\)
\(488\) 0 0
\(489\) 117.046 0.0108241
\(490\) 0 0
\(491\) 5942.03 0.546151 0.273075 0.961993i \(-0.411959\pi\)
0.273075 + 0.961993i \(0.411959\pi\)
\(492\) 0 0
\(493\) −7095.94 −0.648245
\(494\) 0 0
\(495\) 13534.6 1.22896
\(496\) 0 0
\(497\) 3384.82 0.305493
\(498\) 0 0
\(499\) −3259.79 −0.292441 −0.146221 0.989252i \(-0.546711\pi\)
−0.146221 + 0.989252i \(0.546711\pi\)
\(500\) 0 0
\(501\) 75.1028 0.00669729
\(502\) 0 0
\(503\) −12392.2 −1.09849 −0.549246 0.835661i \(-0.685085\pi\)
−0.549246 + 0.835661i \(0.685085\pi\)
\(504\) 0 0
\(505\) −4201.95 −0.370266
\(506\) 0 0
\(507\) 6.73466 0.000589935 0
\(508\) 0 0
\(509\) 19365.1 1.68633 0.843166 0.537654i \(-0.180689\pi\)
0.843166 + 0.537654i \(0.180689\pi\)
\(510\) 0 0
\(511\) 213.238 0.0184600
\(512\) 0 0
\(513\) 106.358 0.00915368
\(514\) 0 0
\(515\) 488.709 0.0418157
\(516\) 0 0
\(517\) 7673.70 0.652783
\(518\) 0 0
\(519\) 6.18095 0.000522762 0
\(520\) 0 0
\(521\) 3656.72 0.307493 0.153747 0.988110i \(-0.450866\pi\)
0.153747 + 0.988110i \(0.450866\pi\)
\(522\) 0 0
\(523\) −21492.5 −1.79694 −0.898472 0.439031i \(-0.855322\pi\)
−0.898472 + 0.439031i \(0.855322\pi\)
\(524\) 0 0
\(525\) −8.34771 −0.000693950 0
\(526\) 0 0
\(527\) −992.627 −0.0820484
\(528\) 0 0
\(529\) −11633.7 −0.956172
\(530\) 0 0
\(531\) 16766.6 1.37026
\(532\) 0 0
\(533\) 21084.2 1.71343
\(534\) 0 0
\(535\) −17108.3 −1.38253
\(536\) 0 0
\(537\) −143.606 −0.0115401
\(538\) 0 0
\(539\) −12181.0 −0.973417
\(540\) 0 0
\(541\) −3188.29 −0.253374 −0.126687 0.991943i \(-0.540434\pi\)
−0.126687 + 0.991943i \(0.540434\pi\)
\(542\) 0 0
\(543\) 46.9867 0.00371343
\(544\) 0 0
\(545\) 11463.1 0.900964
\(546\) 0 0
\(547\) 17131.1 1.33907 0.669536 0.742779i \(-0.266493\pi\)
0.669536 + 0.742779i \(0.266493\pi\)
\(548\) 0 0
\(549\) −4020.29 −0.312535
\(550\) 0 0
\(551\) 11578.0 0.895172
\(552\) 0 0
\(553\) 2980.83 0.229218
\(554\) 0 0
\(555\) 158.016 0.0120854
\(556\) 0 0
\(557\) −14402.4 −1.09560 −0.547800 0.836609i \(-0.684535\pi\)
−0.547800 + 0.836609i \(0.684535\pi\)
\(558\) 0 0
\(559\) −21596.7 −1.63406
\(560\) 0 0
\(561\) 44.8227 0.00337329
\(562\) 0 0
\(563\) 8241.39 0.616933 0.308466 0.951235i \(-0.400184\pi\)
0.308466 + 0.951235i \(0.400184\pi\)
\(564\) 0 0
\(565\) −6286.89 −0.468126
\(566\) 0 0
\(567\) −2817.56 −0.208689
\(568\) 0 0
\(569\) 3903.37 0.287588 0.143794 0.989608i \(-0.454070\pi\)
0.143794 + 0.989608i \(0.454070\pi\)
\(570\) 0 0
\(571\) −3136.17 −0.229851 −0.114925 0.993374i \(-0.536663\pi\)
−0.114925 + 0.993374i \(0.536663\pi\)
\(572\) 0 0
\(573\) 63.9757 0.00466427
\(574\) 0 0
\(575\) 1322.75 0.0959348
\(576\) 0 0
\(577\) −14162.4 −1.02182 −0.510910 0.859634i \(-0.670691\pi\)
−0.510910 + 0.859634i \(0.670691\pi\)
\(578\) 0 0
\(579\) 66.2473 0.00475500
\(580\) 0 0
\(581\) −1413.56 −0.100937
\(582\) 0 0
\(583\) −15899.5 −1.12949
\(584\) 0 0
\(585\) −17766.5 −1.25565
\(586\) 0 0
\(587\) 24292.8 1.70813 0.854065 0.520167i \(-0.174130\pi\)
0.854065 + 0.520167i \(0.174130\pi\)
\(588\) 0 0
\(589\) 1619.61 0.113302
\(590\) 0 0
\(591\) 109.308 0.00760801
\(592\) 0 0
\(593\) −1855.30 −0.128479 −0.0642397 0.997935i \(-0.520462\pi\)
−0.0642397 + 0.997935i \(0.520462\pi\)
\(594\) 0 0
\(595\) 1671.13 0.115142
\(596\) 0 0
\(597\) 137.993 0.00946007
\(598\) 0 0
\(599\) −6780.96 −0.462541 −0.231271 0.972889i \(-0.574288\pi\)
−0.231271 + 0.972889i \(0.574288\pi\)
\(600\) 0 0
\(601\) 13854.1 0.940298 0.470149 0.882587i \(-0.344200\pi\)
0.470149 + 0.882587i \(0.344200\pi\)
\(602\) 0 0
\(603\) −17518.6 −1.18310
\(604\) 0 0
\(605\) −643.791 −0.0432625
\(606\) 0 0
\(607\) 21406.5 1.43140 0.715701 0.698406i \(-0.246107\pi\)
0.715701 + 0.698406i \(0.246107\pi\)
\(608\) 0 0
\(609\) 32.2954 0.00214889
\(610\) 0 0
\(611\) −10073.1 −0.666962
\(612\) 0 0
\(613\) −20936.1 −1.37945 −0.689724 0.724073i \(-0.742268\pi\)
−0.689724 + 0.724073i \(0.742268\pi\)
\(614\) 0 0
\(615\) 220.180 0.0144366
\(616\) 0 0
\(617\) −570.186 −0.0372039 −0.0186020 0.999827i \(-0.505922\pi\)
−0.0186020 + 0.999827i \(0.505922\pi\)
\(618\) 0 0
\(619\) 98.0312 0.00636544 0.00318272 0.999995i \(-0.498987\pi\)
0.00318272 + 0.999995i \(0.498987\pi\)
\(620\) 0 0
\(621\) −47.0099 −0.00303775
\(622\) 0 0
\(623\) −6309.03 −0.405724
\(624\) 0 0
\(625\) −19504.0 −1.24826
\(626\) 0 0
\(627\) −73.1344 −0.00465822
\(628\) 0 0
\(629\) −9940.60 −0.630140
\(630\) 0 0
\(631\) −7723.40 −0.487264 −0.243632 0.969868i \(-0.578339\pi\)
−0.243632 + 0.969868i \(0.578339\pi\)
\(632\) 0 0
\(633\) −202.193 −0.0126958
\(634\) 0 0
\(635\) −18231.8 −1.13938
\(636\) 0 0
\(637\) 15989.7 0.994559
\(638\) 0 0
\(639\) 23640.8 1.46356
\(640\) 0 0
\(641\) 26310.9 1.62125 0.810624 0.585567i \(-0.199128\pi\)
0.810624 + 0.585567i \(0.199128\pi\)
\(642\) 0 0
\(643\) −3462.55 −0.212363 −0.106182 0.994347i \(-0.533863\pi\)
−0.106182 + 0.994347i \(0.533863\pi\)
\(644\) 0 0
\(645\) −225.532 −0.0137679
\(646\) 0 0
\(647\) −11675.2 −0.709430 −0.354715 0.934975i \(-0.615422\pi\)
−0.354715 + 0.934975i \(0.615422\pi\)
\(648\) 0 0
\(649\) −23058.8 −1.39467
\(650\) 0 0
\(651\) 4.51770 0.000271985 0
\(652\) 0 0
\(653\) 1766.63 0.105870 0.0529352 0.998598i \(-0.483142\pi\)
0.0529352 + 0.998598i \(0.483142\pi\)
\(654\) 0 0
\(655\) 37430.7 2.23288
\(656\) 0 0
\(657\) 1489.33 0.0884387
\(658\) 0 0
\(659\) 4676.48 0.276434 0.138217 0.990402i \(-0.455863\pi\)
0.138217 + 0.990402i \(0.455863\pi\)
\(660\) 0 0
\(661\) 22811.1 1.34228 0.671142 0.741329i \(-0.265804\pi\)
0.671142 + 0.741329i \(0.265804\pi\)
\(662\) 0 0
\(663\) −58.8377 −0.00344655
\(664\) 0 0
\(665\) −2726.68 −0.159002
\(666\) 0 0
\(667\) −5117.43 −0.297073
\(668\) 0 0
\(669\) −171.835 −0.00993053
\(670\) 0 0
\(671\) 5529.03 0.318101
\(672\) 0 0
\(673\) −12635.5 −0.723716 −0.361858 0.932233i \(-0.617858\pi\)
−0.361858 + 0.932233i \(0.617858\pi\)
\(674\) 0 0
\(675\) −116.610 −0.00664935
\(676\) 0 0
\(677\) 9097.82 0.516481 0.258241 0.966081i \(-0.416857\pi\)
0.258241 + 0.966081i \(0.416857\pi\)
\(678\) 0 0
\(679\) −106.678 −0.00602936
\(680\) 0 0
\(681\) −84.2220 −0.00473920
\(682\) 0 0
\(683\) 5490.48 0.307595 0.153797 0.988102i \(-0.450850\pi\)
0.153797 + 0.988102i \(0.450850\pi\)
\(684\) 0 0
\(685\) 28826.8 1.60790
\(686\) 0 0
\(687\) 37.9324 0.00210657
\(688\) 0 0
\(689\) 20871.0 1.15402
\(690\) 0 0
\(691\) −21608.2 −1.18960 −0.594801 0.803873i \(-0.702769\pi\)
−0.594801 + 0.803873i \(0.702769\pi\)
\(692\) 0 0
\(693\) 3875.14 0.212416
\(694\) 0 0
\(695\) −26228.5 −1.43151
\(696\) 0 0
\(697\) −13851.3 −0.752735
\(698\) 0 0
\(699\) 81.2375 0.00439583
\(700\) 0 0
\(701\) 31969.4 1.72249 0.861245 0.508189i \(-0.169685\pi\)
0.861245 + 0.508189i \(0.169685\pi\)
\(702\) 0 0
\(703\) 16219.5 0.870170
\(704\) 0 0
\(705\) −105.192 −0.00561954
\(706\) 0 0
\(707\) −1203.08 −0.0639978
\(708\) 0 0
\(709\) −10002.1 −0.529810 −0.264905 0.964274i \(-0.585341\pi\)
−0.264905 + 0.964274i \(0.585341\pi\)
\(710\) 0 0
\(711\) 20819.1 1.09814
\(712\) 0 0
\(713\) −715.860 −0.0376005
\(714\) 0 0
\(715\) 24433.9 1.27801
\(716\) 0 0
\(717\) 169.039 0.00880458
\(718\) 0 0
\(719\) −7201.14 −0.373515 −0.186757 0.982406i \(-0.559798\pi\)
−0.186757 + 0.982406i \(0.559798\pi\)
\(720\) 0 0
\(721\) 139.925 0.00722755
\(722\) 0 0
\(723\) −55.0461 −0.00283152
\(724\) 0 0
\(725\) −12694.0 −0.650265
\(726\) 0 0
\(727\) −12589.0 −0.642226 −0.321113 0.947041i \(-0.604057\pi\)
−0.321113 + 0.947041i \(0.604057\pi\)
\(728\) 0 0
\(729\) −19676.8 −0.999684
\(730\) 0 0
\(731\) 14188.0 0.717869
\(732\) 0 0
\(733\) −35438.6 −1.78575 −0.892875 0.450304i \(-0.851316\pi\)
−0.892875 + 0.450304i \(0.851316\pi\)
\(734\) 0 0
\(735\) 166.979 0.00837974
\(736\) 0 0
\(737\) 24093.0 1.20417
\(738\) 0 0
\(739\) −5883.61 −0.292872 −0.146436 0.989220i \(-0.546780\pi\)
−0.146436 + 0.989220i \(0.546780\pi\)
\(740\) 0 0
\(741\) 96.0018 0.00475940
\(742\) 0 0
\(743\) 26512.0 1.30906 0.654530 0.756036i \(-0.272866\pi\)
0.654530 + 0.756036i \(0.272866\pi\)
\(744\) 0 0
\(745\) 1555.80 0.0765103
\(746\) 0 0
\(747\) −9872.78 −0.483569
\(748\) 0 0
\(749\) −4898.35 −0.238961
\(750\) 0 0
\(751\) 27797.6 1.35066 0.675331 0.737515i \(-0.264001\pi\)
0.675331 + 0.737515i \(0.264001\pi\)
\(752\) 0 0
\(753\) 14.8738 0.000719829 0
\(754\) 0 0
\(755\) −19520.7 −0.940967
\(756\) 0 0
\(757\) −27213.3 −1.30658 −0.653291 0.757106i \(-0.726612\pi\)
−0.653291 + 0.757106i \(0.726612\pi\)
\(758\) 0 0
\(759\) 32.3251 0.00154588
\(760\) 0 0
\(761\) −10067.1 −0.479541 −0.239771 0.970830i \(-0.577072\pi\)
−0.239771 + 0.970830i \(0.577072\pi\)
\(762\) 0 0
\(763\) 3282.06 0.155725
\(764\) 0 0
\(765\) 11671.8 0.551625
\(766\) 0 0
\(767\) 30268.8 1.42496
\(768\) 0 0
\(769\) −15206.7 −0.713092 −0.356546 0.934278i \(-0.616046\pi\)
−0.356546 + 0.934278i \(0.616046\pi\)
\(770\) 0 0
\(771\) 245.239 0.0114553
\(772\) 0 0
\(773\) 25658.5 1.19388 0.596942 0.802284i \(-0.296382\pi\)
0.596942 + 0.802284i \(0.296382\pi\)
\(774\) 0 0
\(775\) −1775.72 −0.0823040
\(776\) 0 0
\(777\) 45.2422 0.00208887
\(778\) 0 0
\(779\) 22600.4 1.03946
\(780\) 0 0
\(781\) −32512.7 −1.48962
\(782\) 0 0
\(783\) 451.137 0.0205905
\(784\) 0 0
\(785\) −43701.0 −1.98695
\(786\) 0 0
\(787\) −38239.3 −1.73200 −0.865999 0.500046i \(-0.833317\pi\)
−0.865999 + 0.500046i \(0.833317\pi\)
\(788\) 0 0
\(789\) −24.5272 −0.00110671
\(790\) 0 0
\(791\) −1800.03 −0.0809123
\(792\) 0 0
\(793\) −7257.84 −0.325010
\(794\) 0 0
\(795\) 217.953 0.00972329
\(796\) 0 0
\(797\) −24256.1 −1.07804 −0.539019 0.842294i \(-0.681205\pi\)
−0.539019 + 0.842294i \(0.681205\pi\)
\(798\) 0 0
\(799\) 6617.54 0.293006
\(800\) 0 0
\(801\) −44064.5 −1.94375
\(802\) 0 0
\(803\) −2048.24 −0.0900137
\(804\) 0 0
\(805\) 1205.18 0.0527664
\(806\) 0 0
\(807\) −90.6429 −0.00395388
\(808\) 0 0
\(809\) −14967.1 −0.650450 −0.325225 0.945637i \(-0.605440\pi\)
−0.325225 + 0.945637i \(0.605440\pi\)
\(810\) 0 0
\(811\) 28851.2 1.24920 0.624601 0.780944i \(-0.285262\pi\)
0.624601 + 0.780944i \(0.285262\pi\)
\(812\) 0 0
\(813\) −44.5170 −0.00192039
\(814\) 0 0
\(815\) −41916.6 −1.80156
\(816\) 0 0
\(817\) −23149.7 −0.991316
\(818\) 0 0
\(819\) −5086.81 −0.217030
\(820\) 0 0
\(821\) −35631.5 −1.51468 −0.757338 0.653023i \(-0.773500\pi\)
−0.757338 + 0.653023i \(0.773500\pi\)
\(822\) 0 0
\(823\) −34599.6 −1.46545 −0.732725 0.680525i \(-0.761752\pi\)
−0.732725 + 0.680525i \(0.761752\pi\)
\(824\) 0 0
\(825\) 80.1835 0.00338380
\(826\) 0 0
\(827\) −5375.51 −0.226028 −0.113014 0.993593i \(-0.536050\pi\)
−0.113014 + 0.993593i \(0.536050\pi\)
\(828\) 0 0
\(829\) −44162.4 −1.85021 −0.925105 0.379710i \(-0.876024\pi\)
−0.925105 + 0.379710i \(0.876024\pi\)
\(830\) 0 0
\(831\) −16.1977 −0.000676165 0
\(832\) 0 0
\(833\) −10504.5 −0.436925
\(834\) 0 0
\(835\) −26895.9 −1.11470
\(836\) 0 0
\(837\) 63.1081 0.00260613
\(838\) 0 0
\(839\) 8942.73 0.367983 0.183991 0.982928i \(-0.441098\pi\)
0.183991 + 0.982928i \(0.441098\pi\)
\(840\) 0 0
\(841\) 24721.1 1.01362
\(842\) 0 0
\(843\) 86.7244 0.00354323
\(844\) 0 0
\(845\) −2411.83 −0.0981886
\(846\) 0 0
\(847\) −184.327 −0.00747762
\(848\) 0 0
\(849\) −172.285 −0.00696442
\(850\) 0 0
\(851\) −7168.93 −0.288775
\(852\) 0 0
\(853\) −25694.1 −1.03136 −0.515680 0.856781i \(-0.672461\pi\)
−0.515680 + 0.856781i \(0.672461\pi\)
\(854\) 0 0
\(855\) −19044.1 −0.761748
\(856\) 0 0
\(857\) −34742.0 −1.38479 −0.692394 0.721519i \(-0.743444\pi\)
−0.692394 + 0.721519i \(0.743444\pi\)
\(858\) 0 0
\(859\) −1772.90 −0.0704198 −0.0352099 0.999380i \(-0.511210\pi\)
−0.0352099 + 0.999380i \(0.511210\pi\)
\(860\) 0 0
\(861\) 63.0409 0.00249527
\(862\) 0 0
\(863\) 23432.6 0.924281 0.462140 0.886807i \(-0.347082\pi\)
0.462140 + 0.886807i \(0.347082\pi\)
\(864\) 0 0
\(865\) −2213.53 −0.0870083
\(866\) 0 0
\(867\) −146.566 −0.00574124
\(868\) 0 0
\(869\) −28632.2 −1.11770
\(870\) 0 0
\(871\) −31626.3 −1.23033
\(872\) 0 0
\(873\) −745.079 −0.0288856
\(874\) 0 0
\(875\) −3534.23 −0.136547
\(876\) 0 0
\(877\) 22630.7 0.871361 0.435681 0.900101i \(-0.356508\pi\)
0.435681 + 0.900101i \(0.356508\pi\)
\(878\) 0 0
\(879\) 104.896 0.00402510
\(880\) 0 0
\(881\) −4713.81 −0.180264 −0.0901319 0.995930i \(-0.528729\pi\)
−0.0901319 + 0.995930i \(0.528729\pi\)
\(882\) 0 0
\(883\) 1947.12 0.0742080 0.0371040 0.999311i \(-0.488187\pi\)
0.0371040 + 0.999311i \(0.488187\pi\)
\(884\) 0 0
\(885\) 316.094 0.0120061
\(886\) 0 0
\(887\) 14418.3 0.545794 0.272897 0.962043i \(-0.412018\pi\)
0.272897 + 0.962043i \(0.412018\pi\)
\(888\) 0 0
\(889\) −5220.04 −0.196934
\(890\) 0 0
\(891\) 27064.0 1.01759
\(892\) 0 0
\(893\) −10797.4 −0.404617
\(894\) 0 0
\(895\) 51428.4 1.92074
\(896\) 0 0
\(897\) −42.4324 −0.00157946
\(898\) 0 0
\(899\) 6869.85 0.254863
\(900\) 0 0
\(901\) −13711.2 −0.506978
\(902\) 0 0
\(903\) −64.5732 −0.00237969
\(904\) 0 0
\(905\) −16826.9 −0.618062
\(906\) 0 0
\(907\) −634.066 −0.0232126 −0.0116063 0.999933i \(-0.503694\pi\)
−0.0116063 + 0.999933i \(0.503694\pi\)
\(908\) 0 0
\(909\) −8402.74 −0.306602
\(910\) 0 0
\(911\) −42359.7 −1.54055 −0.770274 0.637713i \(-0.779881\pi\)
−0.770274 + 0.637713i \(0.779881\pi\)
\(912\) 0 0
\(913\) 13577.9 0.492181
\(914\) 0 0
\(915\) −75.7929 −0.00273840
\(916\) 0 0
\(917\) 10717.0 0.385938
\(918\) 0 0
\(919\) −38569.5 −1.38443 −0.692215 0.721692i \(-0.743365\pi\)
−0.692215 + 0.721692i \(0.743365\pi\)
\(920\) 0 0
\(921\) −310.222 −0.0110990
\(922\) 0 0
\(923\) 42678.7 1.52198
\(924\) 0 0
\(925\) −17782.8 −0.632103
\(926\) 0 0
\(927\) 977.283 0.0346259
\(928\) 0 0
\(929\) 2229.10 0.0787237 0.0393619 0.999225i \(-0.487467\pi\)
0.0393619 + 0.999225i \(0.487467\pi\)
\(930\) 0 0
\(931\) 17139.5 0.603356
\(932\) 0 0
\(933\) 74.3970 0.00261056
\(934\) 0 0
\(935\) −16051.9 −0.561449
\(936\) 0 0
\(937\) −1352.28 −0.0471472 −0.0235736 0.999722i \(-0.507504\pi\)
−0.0235736 + 0.999722i \(0.507504\pi\)
\(938\) 0 0
\(939\) −156.756 −0.00544784
\(940\) 0 0
\(941\) −32318.8 −1.11962 −0.559811 0.828621i \(-0.689126\pi\)
−0.559811 + 0.828621i \(0.689126\pi\)
\(942\) 0 0
\(943\) −9989.26 −0.344958
\(944\) 0 0
\(945\) −106.245 −0.00365730
\(946\) 0 0
\(947\) −14722.7 −0.505198 −0.252599 0.967571i \(-0.581285\pi\)
−0.252599 + 0.967571i \(0.581285\pi\)
\(948\) 0 0
\(949\) 2688.68 0.0919688
\(950\) 0 0
\(951\) −44.4154 −0.00151448
\(952\) 0 0
\(953\) 2361.87 0.0802817 0.0401408 0.999194i \(-0.487219\pi\)
0.0401408 + 0.999194i \(0.487219\pi\)
\(954\) 0 0
\(955\) −22911.1 −0.776319
\(956\) 0 0
\(957\) −310.212 −0.0104783
\(958\) 0 0
\(959\) 8253.52 0.277915
\(960\) 0 0
\(961\) 961.000 0.0322581
\(962\) 0 0
\(963\) −34211.8 −1.14482
\(964\) 0 0
\(965\) −23724.6 −0.791421
\(966\) 0 0
\(967\) 10193.5 0.338987 0.169494 0.985531i \(-0.445787\pi\)
0.169494 + 0.985531i \(0.445787\pi\)
\(968\) 0 0
\(969\) −63.0687 −0.00209088
\(970\) 0 0
\(971\) 32087.8 1.06050 0.530251 0.847841i \(-0.322098\pi\)
0.530251 + 0.847841i \(0.322098\pi\)
\(972\) 0 0
\(973\) −7509.60 −0.247427
\(974\) 0 0
\(975\) −105.255 −0.00345729
\(976\) 0 0
\(977\) 172.357 0.00564399 0.00282199 0.999996i \(-0.499102\pi\)
0.00282199 + 0.999996i \(0.499102\pi\)
\(978\) 0 0
\(979\) 60601.1 1.97836
\(980\) 0 0
\(981\) 22923.0 0.746052
\(982\) 0 0
\(983\) −26441.8 −0.857946 −0.428973 0.903317i \(-0.641124\pi\)
−0.428973 + 0.903317i \(0.641124\pi\)
\(984\) 0 0
\(985\) −39145.5 −1.26627
\(986\) 0 0
\(987\) −30.1181 −0.000971297 0
\(988\) 0 0
\(989\) 10232.1 0.328979
\(990\) 0 0
\(991\) −55415.8 −1.77633 −0.888164 0.459527i \(-0.848019\pi\)
−0.888164 + 0.459527i \(0.848019\pi\)
\(992\) 0 0
\(993\) 309.309 0.00988482
\(994\) 0 0
\(995\) −49418.1 −1.57453
\(996\) 0 0
\(997\) 37593.5 1.19418 0.597090 0.802174i \(-0.296323\pi\)
0.597090 + 0.802174i \(0.296323\pi\)
\(998\) 0 0
\(999\) 631.992 0.0200154
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1984.4.a.r.1.3 5
4.3 odd 2 1984.4.a.s.1.3 5
8.3 odd 2 496.4.a.i.1.3 5
8.5 even 2 31.4.a.b.1.4 5
24.5 odd 2 279.4.a.h.1.2 5
40.29 even 2 775.4.a.f.1.2 5
56.13 odd 2 1519.4.a.c.1.4 5
248.61 odd 2 961.4.a.e.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.4.a.b.1.4 5 8.5 even 2
279.4.a.h.1.2 5 24.5 odd 2
496.4.a.i.1.3 5 8.3 odd 2
775.4.a.f.1.2 5 40.29 even 2
961.4.a.e.1.4 5 248.61 odd 2
1519.4.a.c.1.4 5 56.13 odd 2
1984.4.a.r.1.3 5 1.1 even 1 trivial
1984.4.a.s.1.3 5 4.3 odd 2