Properties

Label 1976.2.a.f
Level $1976$
Weight $2$
Character orbit 1976.a
Self dual yes
Analytic conductor $15.778$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1976,2,Mod(1,1976)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1976, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1976.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1976 = 2^{3} \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1976.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.7784394394\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.26825.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + 5x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + \beta_{2} q^{5} + ( - \beta_{2} + \beta_1 - 1) q^{7} + (\beta_{2} + \beta_1) q^{9} + ( - \beta_{2} + 1) q^{11} - q^{13} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{15} + (\beta_{3} - 2) q^{17}+ \cdots + ( - \beta_{3} - \beta_1 - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{7} + 2 q^{9} + 4 q^{11} - 4 q^{13} - 3 q^{15} - 7 q^{17} - 4 q^{19} - 9 q^{21} - 4 q^{23} - 2 q^{25} - 11 q^{27} + 9 q^{29} - 9 q^{31} + q^{33} - 15 q^{35} + 7 q^{37} + 2 q^{39} - 5 q^{41}+ \cdots - 19 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 5x^{2} + 5x + 5 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 3\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 5\beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.92520
1.45612
−0.696894
−1.68442
0 −2.92520 0 2.63158 0 −0.706381 0 5.55677 0
1.2 0 −1.45612 0 −2.33583 0 2.79195 0 −0.879714 0
1.3 0 0.696894 0 −1.81744 0 0.120551 0 −2.51434 0
1.4 0 1.68442 0 1.52170 0 −4.20612 0 −0.162720 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1976.2.a.f 4
4.b odd 2 1 3952.2.a.w 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1976.2.a.f 4 1.a even 1 1 trivial
3952.2.a.w 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1976))\):

\( T_{3}^{4} + 2T_{3}^{3} - 5T_{3}^{2} - 5T_{3} + 5 \) Copy content Toggle raw display
\( T_{5}^{4} - 9T_{5}^{2} - T_{5} + 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 2 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$5$ \( T^{4} - 9T^{2} - T + 17 \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 7 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$19$ \( (T + 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots + 10 \) Copy content Toggle raw display
$29$ \( T^{4} - 9 T^{3} + \cdots - 112 \) Copy content Toggle raw display
$31$ \( T^{4} + 9 T^{3} + \cdots - 112 \) Copy content Toggle raw display
$37$ \( T^{4} - 7 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$41$ \( T^{4} + 5 T^{3} + \cdots + 2482 \) Copy content Toggle raw display
$43$ \( T^{4} - 4 T^{3} + \cdots + 29 \) Copy content Toggle raw display
$47$ \( T^{4} + 2 T^{3} + \cdots + 739 \) Copy content Toggle raw display
$53$ \( T^{4} - 5 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$59$ \( T^{4} + 26 T^{3} + \cdots + 290 \) Copy content Toggle raw display
$61$ \( T^{4} + 14 T^{3} + \cdots + 80 \) Copy content Toggle raw display
$67$ \( T^{4} + 11 T^{3} + \cdots + 20 \) Copy content Toggle raw display
$71$ \( T^{4} + 22 T^{3} + \cdots - 857 \) Copy content Toggle raw display
$73$ \( T^{4} + 3 T^{3} + \cdots + 40 \) Copy content Toggle raw display
$79$ \( T^{4} + 16 T^{3} + \cdots + 3676 \) Copy content Toggle raw display
$83$ \( T^{4} + 18 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$89$ \( T^{4} + 15 T^{3} + \cdots - 16200 \) Copy content Toggle raw display
$97$ \( T^{4} + 16 T^{3} + \cdots - 3824 \) Copy content Toggle raw display
show more
show less